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At this stage, ⌧ is the instanton–anti-instanton separation, ! = 2a, and S0 = 8a3
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3g is

the action of a single instanton. The e
4!3

g e�!⌧

factor in the integrand is the I-Ī long-distance

attraction and the two factors in the brackets are the fermion-correlated, ⇠ e�2!⌧ , and scalar-

correlated, ⇠ e�!⌧ , contributions. Naively, the integral over the separation in (2.8) is to be

taken from ⌧ = 0 to ⌧ = 1. It seems impossible that E0 in (2.8) can ever vanish, as the

integrand is strictly positive for any ⌧ � 0. As it stands, this is in contradiction with the

constraints of supersymmetry, and more disastrously, with the supersymmetry algebra which

demands that energy is positive semi-definite. But the story is more subtle, and one with

happy ending.
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Naive cycle

Figure 2. The steepest descent cycles for the fermion-correlated channel vs. scalar correlated chan-
nels. The blue cycle is the naive cycle in which the separation between the instanton and anti-instanton
is interpreted as real. A result compatible with supersymmetry only comes about if we use the critical
point cycles.

As argued in [5] and formalized more recently in [27–29] in the context of resurgence and

Picard-Lefschetz theory, the integral should be thought of as an integral in the complex ⌧

plane. Since ⌧ corresponds to some field direction, its complexification is to be thought of

as the complexification of the original fields, which are to be treated by complex gradient

flow (Picard-Lefschetz) equations. Of course, the full complexified field space is infinite di-

mensional, and in principle, we have to work in the context of the Picard-Lefschetz equations

for the full theory. However, in the background of multi-instanton saddles, as concrete evi-

dence is provided in [26, 28, 29], this space usually factorizes into finite dimensional zero and

quasi-zero modes directions and infinite dimensional gaussian modes:

J full = J Gaussian ⇥ J zm ⇥ J qzm . (2.9)

In the determination of the correlated instanton–anti-instanton contribution to ground state

energy, the most important subcomponent of the thimble J full, which governs some of the

salient features of the multi-instanton configuration, is J qzm. This reduces a formidable task

of treating an infinite dimensional path integral to that of treating an interesting finite (in

this case one-) dimensional integral by Picard-Lefschetz theory and a much less interesting

infinite dimensional Gaussian integration.
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This is about using SUSY as a tool to study QFT
Instantons play a role in many physical problems. 

N=1 SUSY theories: nonperturbative superpotentials. 
N=2 SUSY theories: Seiberg-Witten curves. 
Phenomenological “instanton liquid” models 
of chiral symmetry breaking in QCD. … 

mass gap, confinement & center stability in a controlled manner!

 QCD(adj)/SYM & deformed Yang-Mills theory on R    xS  , small L

despite weak coupling, a major difficulty: 
“How to define & calculate instanton—anti-instanton contributions?”

Key to understanding important physics, e.g.:

more recent and closer to my point: Unsal w/ Shifman,Yaffe, EP, Argyres… 2007+

1,2 1



Not merely a question of calculating exponentially suppressed effects. 
Instanton—anti-instanton (I-I*) contributions have been 
found to give the leading effect in many cases:

M

KK*

M*

Ex. 1: SYM, mass gap (confinement) 
and center stability due to  
such configurations: vacuum  
is a dilute gas of “magnetic  
bions” and “neutral bions.” 
both are different types 
of I-I* “molecules”

KK

for SU(2)

“How to define & calculate instanton—anti-instanton contributions?”

 (from talk at SUSY2013
  on work with Schafer/Unsal)

BPST instanton ‘falls apart’ into  
constituents with magnetic charge  
under U(1) part of SU(2) 
[string theorists/lattice people…late 1990’s]
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so, neutral bions seem important… but hard to understand!

1. supersymmetry, exact W -> V=|W’|^2
2. analytic continuation:
   MM* “live” at complex separation?!
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Ex. 1: SYM; my purpose here:  
to argue that 2. makes sense… 

(not prove, give evidence]

so, neutral bions seem important… but hard to understand!

1. supersymmetry, exact W -> V=|W’|^2
2. analytic continuation:
   MM* “live” at complex separation?!

      I-I* ‘bound states’
all interactions attractive!
 unlike positronium: no time
“instant”-o=localized in time!

Ex. 2: “Resurgent” cancellations: imaginary parts due to Borel 
resummation of perturbation theory vs imaginary parts of I-I* 

high orders of perturbation theory
double-well QM, non Borel-summable:

II* contribution: 
requires analytic continuation 

 Bogomolnyi, Zinn-Justin

ambiguity of Borel sum of pert. series:



Complexification seems crucial. Hypothesis/dream/ is that MM* lie on a 
different “Lefshetz thimble” from the perturbative vacuum and are 
distinguished from it by a phase associated with the thimble.

Not merely a question of calculating exponentially suppressed effects. 
Instanton—anti-instanton (I-I*) contributions have been 
found to give the leading effect in many cases: Ex. 1; Ex. 2 above

“How to define & calculate instanton—anti-instanton contributions?”

J0
-

J1
-

- p2 - p4 0 p
4

p
2

- 3 p4

- p2

- p4

0

p
4

p
2

3 p
4

Re z

I
m
z

J0
+

-J1
+

- p2 - p4 0 p
4

p
2

- 3 p4

- p2

- p4

0

p
4

p
2

3 p
4

Re z

I
m
z

Figure 1. Left: Lefschetz thimbles at � = ei✓ with ✓ = 0�: J0 + J1. Right: At ✓ = 0+. J0 � J1.
We take ✓ = ⌥0.1 to ease visualization.

where ⌃ has real dimension one for general arg(�) 5. We must now address the question of

how the integration cycle in Z(�) changes once ✓ 6= 0.

There are two non-degenerate critical points, call them z
0

and z
1

, obtained by extremizing

the action

dS

dz
= 0 =) critical points: {z

0

, z
1

} =
n

0,
⇡

2

o

. (2.3)

We call the first one the P-saddle (perturbative vacuum) since it has zero action, and call the

latter the NP-saddle since it has a positive action:

S(z
0

) = 0, S(z
1

) =
1

2�
S
10

= S
1

� S
0

=
1

2�
. (2.4)

We have also defined the “relative action” S
10

(called the “singulant” by Dingle[10]), which

plays an important role in asymptotic analysis.6

5More generally, we generalize I ⇢ RN �! ⌃ ⇢ CN , where ⌃ has real dimension N .
6 One might naively think that a singulant is the equivalent of an instanton (which is a non-trivial saddle

in the path integral formulation) in quantum mechanics or QFT, since both are nontrivial saddle points.

However, in QM, or QFT, there is in general a charge (topological or perhaps emergent, as we will see here)

associated with instantons, while the perturbative vacuum is neutral under this charge. Thus, the role that
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Consider the zero dimensional partition function Z(�)

Z(�) =

Z

⇡

2

p
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dx e�
1

2�

sin
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(x) (2.1)

=
⇡ e

�1

4�p
�

I
0

✓

1

4�

◆

,

where I
0

is the modified Bessel function of the first kind. Z(�) is an integral of a real function

over a real domain on a finite interval I =
⇥�⇡

2

, ⇡
2

⇤

, hence the result is manifestly real for

real �. In order to demonstrate the use of some of the resurgence technology that we will use

in QFT, we would like to study this integral by using the steepest descent expansion, which

is the counter-part of the semi-classical expansion in our QFT example. The fundamental

idea of the analysis is that to understand the behavior of the Z(�) for � 2 R+ one should

understand the behavior of the analytic continuation of Z(�) when � 2 C.

Our analysis will proceed as follows:

1) Identify all critical points.

2) Allow � to move o↵ R+ into C, and analytically continue Z(�) by rewriting the origi-

nal integration cycle as a sum over steepest descent paths, which are called Lefschetz

thimbles in general.

3) Develop perturbation theory around the P and NP saddles, and derive the respective

asymptotic expansions. This is the counterpart of the semi-classical approximation in

QFT.

4) Show that the action of the NP saddle governs the growth of late terms in the pertur-

bative series around P-saddle, and that sub-leading corrections to the late terms in the

perturbative series around the P-saddle are governed by early terms of the perturbative

expansion around the NP-saddle and vice versa.

5) Show the cancellation of ambiguities and the reality of the trans-series representation

of Z(�) on the � 2 R+ Stokes line.

We first view the action as a meromorphic function S(z). This leads to a more natural

description of steepest descent method and the semiclassical expansion both in the present

zero-dimensional example and in QFT. It is also the natural way to study the properties

of partition functions under analytic continuation. In fact, a judicious analysis of the semi-

classical expansion urges us to view all actions as meromorphic functions of the fields as we

will see very explicitly. So we now change perspective on the integration cycle I as

I ⇢ R �! ⌃ ⇢ C, ⌃ = I for ✓ ⌘ arg(�) = 0 (2.2)
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trivial saddle (perturbative)

nonperturbative 
saddle

perturbative & nonperturbative



(I think) we are far from understanding of what “defining the path 

integral on Lefshetz thimbles” means.

All I will do is to show you a simple, yet not completely trivial, 
example supporting the need of complexification.

N=2 SUSY QM = 4d WZ model reduced to 2d

of hidden topological angle phase di↵erence between the two distinct thimbles.

This paper is organized as follows. The reader interested in the main features of the result

will be satisfied with reading Section 2 only. There, we present the model and sketch the can-

cellation of the instanton–anti-instanton contribution to the vacuum energy described above,

stressing the importance of integration over Lefshetz thimbles. Section 3 gives significantly

more detail on the derivation of the main result. We conclude in Section 4.

2 Basics of N = 2 supersymmetric quantum mechanics

We consider N = 2 supersymmetric (SUSY) quantum mechanics (QM). It is obtained by di-

mensional reduction of the 4D Wess-Zumino model of a single chiral superfield z and arbitrary

superpotential W (z) down to quantum mechanics. The Euclidean Lagrangian is

gLE = |ż(t)|2 + |W 0(z)|2 +
⇣
�̄1 �2

⌘ 
�@t +

 
0 W 00(z)

W 00(z) 0

!! 
�1

�̄2

!
, (2.1)

where

z(t) = x(t) + iy(t) (2.2)

is the complex coordinate of the particle and �1,2(t), �̄1,2(t) are Grassmann-valued coordinates

of the particle.1 Further below, we specialize to the case of the double-well potential with

k = 2, and W (z) = 1
3z

3 � za2, taking a real without loss of generality. The frequency around

the minima of the bosonic potential, z± = ±a, is ! = 2a. Upon rescaling, it is seen that

anharmonic terms are multiplied by
p

g of dimension !
3
2 . In this paper, we focus on the

semiclassical limit g ⌧ !3. The action is invariant under the SUSY transformation

�z =
p

2(✏2�1 � ✏1�2) , �z̄ =
p

2(✏̄1�̄2 � ✏̄2�̄1) , (2.3a)

��1 =
p

2(�ż✏̄2 � W 0✏1) , ��̄1 =
p

2( ˙̄z✏2 � W 0✏̄1) , (2.3b)

��2 =
p

2(ż✏̄1 � W 0✏2) , ��̄2 =
p

2(� ˙̄z✏1 � W 0✏̄2) . (2.3c)

The critical points of the superpotential, assumed nondegenerate, W 0(zi) = 0, zi, i =

1, . . . k (k = 2 for our cubic W ) are the classical minima of the bosonic potential |W 0(z)|2. It

has been known for a long time that all classical ground states remain quantum-mechanical

ground states [39] (see also Ch. 10 in [40]). To quickly review the argument, recall that

the Witten index is invariant under continuous deformations of the potential, in particular

under rescaling of the superpotential W ! �W . Taking first � ! 1, the theory is well ap-

proximated by k distinct SUSY quantum harmonic oscillators. In a harmonic approximation,

quantizing the system on the left and the right well, we obtain

HL,R = |⇧z|2 + (±2a)2|z|2 + (±2a)(a†1a
†
2 + a1a2) , (2.4)

1As opposed to field theory, the Grassmann fields do not represent separate particles, but instead endow a

2D quantum particle at (x, y) with a spin degree of freedom, which is spin 1
2 ⌦ 1

2 because of N = 2 structure.
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where a†i , ai (i = 1, 2) are fermion creation/annihilation operators. The harmonic ground

states on the left well and right well are given by

|L,0ib ⌦ (| ""i + | ##i) , |R,0ib ⌦ (| ""i � | ##i) , (2.5)

both of which are bosonic, and there are no fermionic partners. Fermionic states involving

| "#i, | #"i are excited states. Since in a supersymmetric theory, all positive energy states

are Bose/Fermi paired by supersymmetry, and states can only ascend/descend in Bose/Fermi

pairs, the two bosonic ground states can never be lifted. Thus the Witten index is nonzero

(IW = 2) and supersymmetry is unbroken. Further, none of the classical ground states can

be lifted by perturbative or nonperturbative (instanton or multi-instanton) e↵ects, thus they

all remain true ground states of the full quantum theory.

Di↵erence between N = 1 and N = 2 QM, and a puzzle: Note the sharp contrast

between N = 1 supersymmetry, with real superpotential W (x) and the N = 2 theory with

holomorphic superpotential W (z), e.g.

W (x) =
k+1Y

i=1

(x � xi) vs. W (z) =
k+1Y

i=1

(z � zi) (2.6)

In the N = 1 case, the harmonic zero energy ground states in any two consecutive harmonic

wells are always alternating, if one is bosonic, the other is strictly fermionic. Consequently,

since a Bose-Fermi paired zero energy state can happily move up simultaneously, in N = 1

supersymmetry, lifting happens generically. In the N = 2, this is never the case. All harmonic

grounds states are either fermionic or bosonic, and hence, the zero energy levels can never be

lifted. Consequently, if the number of critical points is k, the Witten index is,

|IW | = k (mod 2) N = 1,

|IW | = k N = 2. (2.7)

The lifting of the harmonic zero energy states cannot happen perturbatively, but may happen

non-perturbatively. In the N = 1 case, this provides the k low-lying states with energies

⇠ e�2S0/g (where S0/g is the instanton action) or zero. Strictly, the energies of low lying levels

arise from a multi-instanton e↵ect, and not an instanton. On the other hand, in the N = 2

case, instantons and multi-instantons seem to do nothing. This is the curious incident that

we would like to understand by semi-classical methods, instead of relying on supersymmetry.

Our hope is to learn something important about the nature of the semi-classical method,

which is more widely applicable than the supersymmetric techniques.

2.1 The curious incident of instantons in N = 2 QM, and the necessity of thim-

bles

Although the non-lifting of the zero energy grounds states in N = 2 QM is well known,

it may at first appear strange to someone not familiar with the constraints of (extended)
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Witten index=number of critical points of W(z)
E_vac=0, as opposed to N=1 SUSY QM: well known.

Understand E_vac = 0 from next-order semiclassics.
Upshot: It’s not completely trivial. {Relation to motivation: complexification!}
Goal: 

Repeat again: I want to understand E_vac = 0 ‘simply’, without deformation invariance 
and localization (i.e. traditional Witten index technology!).
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stressing the importance of integration over Lefshetz thimbles. Section 3 gives significantly

more detail on the derivation of the main result. We conclude in Section 4.

2 Basics of N = 2 supersymmetric quantum mechanics

We consider N = 2 supersymmetric (SUSY) quantum mechanics (QM). It is obtained by di-

mensional reduction of the 4D Wess-Zumino model of a single chiral superfield z and arbitrary

superpotential W (z) down to quantum mechanics. The Euclidean Lagrangian is

gLE = |ż(t)|2 + |W 0(z)|2 +
⇣
�̄1 �2

⌘ 
�@t +

 
0 W 00(z)

W 00(z) 0

!! 
�1

�̄2

!
, (2.1)

where

z(t) = x(t) + iy(t) (2.2)

is the complex coordinate of the particle and �1,2(t), �̄1,2(t) are Grassmann-valued coordinates

of the particle.1 Further below, we specialize to the case of the double-well potential with

k = 2, and W (z) = 1
3z

3 � za2, taking a real without loss of generality. The frequency around

the minima of the bosonic potential, z± = ±a, is ! = 2a. Upon rescaling, it is seen that

anharmonic terms are multiplied by
p

g of dimension !
3
2 . In this paper, we focus on the

semiclassical limit g ⌧ !3. The action is invariant under the SUSY transformation

�z =
p

2(✏2�1 � ✏1�2) , �z̄ =
p

2(✏̄1�̄2 � ✏̄2�̄1) , (2.3a)

��1 =
p

2(�ż✏̄2 � W 0✏1) , ��̄1 =
p

2( ˙̄z✏2 � W 0✏̄1) , (2.3b)

��2 =
p

2(ż✏̄1 � W 0✏2) , ��̄2 =
p

2(� ˙̄z✏1 � W 0✏̄2) . (2.3c)

The critical points of the superpotential, assumed nondegenerate, W 0(zi) = 0, zi, i =

1, . . . k (k = 2 for our cubic W ) are the classical minima of the bosonic potential |W 0(z)|2. It

has been known for a long time that all classical ground states remain quantum-mechanical

ground states [39] (see also Ch. 10 in [40]). To quickly review the argument, recall that

the Witten index is invariant under continuous deformations of the potential, in particular

under rescaling of the superpotential W ! �W . Taking first � ! 1, the theory is well ap-

proximated by k distinct SUSY quantum harmonic oscillators. In a harmonic approximation,

quantizing the system on the left and the right well, we obtain

HL,R = |⇧z|2 + (±2a)2|z|2 + (±2a)(a†1a
†
2 + a1a2) , (2.4)

1As opposed to field theory, the Grassmann fields do not represent separate particles, but instead endow a

2D quantum particle at (x, y) with a spin degree of freedom, which is spin 1
2 ⌦ 1

2 because of N = 2 structure.
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x

ypotential w/ two 
minima

BPS (anti)instantonsThe BPS equations which give an (anti-)instanton solution are

ż = ±W 0 . (3.3)

This equation is solved by

z = ⌥a tanh(at) . (3.4)

We will call the solution with the upper sign an instanton, and the one with the lower

sign an anti-instanton. The instanton solution breaks half of the supersymmetries (2.3). In

particular, an instanton background is invariant under SUSY with parameters ✏̄1 = ✏2, ✏̄2 =

�✏1, but under the remaining SUSY transformations with ✏ = ✏̄1 = �✏2 and ✏̃ = ✏̄2 = ✏1, the

fermionic fields become

��1 = �2
p

2ż✏̃ , ��̄1 = �2
p

2 ˙̄z✏ , (3.5)

��2 = 2
p

2ż✏ , ��̄2 = �2
p

2 ˙̄z✏̃ . (3.6)

The fermions depending on ✏ and ✏̃ can be, respectively, combined into two-component spinors,

omitting the Grassmann factors of ✏, ✏̃:

⇠ = N

 
ż

� ˙̄z

!
, ⇠̄ = N

 
ż
˙̄z

!
. (3.7)

where we introduced a normalization factor N (it is easily seen that N2 = 3/(8a3) for unit-

normalized fermions). The fermions ⇠ and ⇠̄ are respective zeromodes of the Weyl operator

D and its hermitean conjugate

D = @t +

 
0 W 00(z)

W 00(z) 0

!
, D† = �@t +

 
0 W 00(z)

W 00(z) 0

!
. (3.8)

Thus, an instanton always has two zeromodes of opposite chirality (in accordance with the

index theorem, dimKerDD† � dimKerD†D = 0 for any background). This has important

consequences in what follows, allowing zero modes to get lifted by perturbative e↵ects.

3.1 Strategy and guide to calculation

In this section we will calculate the two contributions to the instanton–anti-instanton ampli-

tude [IĪ]. The two contributions that need to be calculated are

• The fermion correlated amplitude [IĪ]F (Top of Fig. 1),

• The Yukawa-scalar-exchange correlated amplitude [IĪ]Y (Bottom of Fig. 1).

The most important part of [IĪ]F amplitude calculation is that the instanton fermion

zeromode is lifted by the presence of the anti–instanton. We therefore must carefully compute

the lowest mode of the fermion operator in the instanton–anti-instanton background. The

way we do this is by applying the standard degenerate perturbation theory. In short the
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I
I*

two fermion zero modes each  

  take “a” real (plot for a=1)

I,I*: tunnelling between minima;
(with opposite “chirality” from 4d p.o.v.)

To rephrase question: 

supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner

E0 / �e�2S0

Z
d⌧ e

4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)
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after all, the far away I* will lift the zero modes of I (and v.v.), e.g.: 

so, why does the I-I* contribution to E_vac vanish?
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a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner

E0 / �e�2S0

Z
d⌧ e

4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)
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Accepting Eq. (2.8) for the moment (it is one of our main results and will be carefully

derived in the Section 3), we define the following integrals

I1 =

Z

J1

d⌧ e
4!3

g e�!⌧�2!⌧
, (2.10a)

I2 =

Z

J2

d⌧ e
4!3

g e�!⌧�!⌧
, (2.10b)

and identify

J qzm = J1 + J2 . (2.11)

The saddle points of the exponents in the complex ⌧ plane are

!⌧1 = i⇡ + log
2!3

g
, (2.12)

!⌧2 = i⇡ + log
4!3

g
, (2.13)

where the index 1, 2 corresponds to integrals I1,2.2 The integrals are then evaluated on the

steepest-descent paths, satisfying complex gradient flow equations:

@⌧

@u
=

@V i(⌧̄)

@⌧̄
, (2.14)

where u is gradient flow time, and u = �1 is the critical point of Vi(⌧). Equivalently, due to

the one-dimensional nature of the present problem, this cycle corresponds to the stationary

phase cycle:

Im Vi(⌧) = Im Vi(⌧i), i.e. Im (!⌧) = ⇡ (2.15)

along the path. It is easy to see that in both cases this corresponds to integrating on the line

parallel to the real axis and shifted by i⇡/!, i.e. ⌧ 2 (�1 + i⇡/!,1 + i⇡/!). This yields

I1 =
g2

16!7
, (2.16)

I2 = � g

4!4
=

4!3

g
(ei⇡I1) , (2.17)

2The exponent has other critical points, but since the integrand only depends on e

�!⌧ , the values of ⌧ are

equivalent up to a 2⇡i/! shift. There are, however, two critical points which are not a priori equivalent and

di↵er by having Im(!⌧) = ±⇡. Which saddle point is selected cannot be determined for real g. Instead g

should be defined as having a small imaginary part which will be sent to zero at the end of the computation.

In the present case the final result will not depend on whether we selected Img > 0 or Img < 0 and which

saddle point we choose to evaluate the quasi-zeromode integral. In general, for non-supersymmetric theories,

this will not be the case and will cause an inherent ambiguity in semiclassical computations. In these theories,

however, the ambiguity will be cancelled exactly by the ambiguity of the perturbation theory which is caused

by its non-Borel summability. The two ambiguities shall always cancel exactly leaving an unambiguous and

real result for real observables. This is one of the essential features of the resurgent expansion.
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The Weyl operator is D = DI + 2y(t)⌧2, where DI = @t + 2x1(t)⌧1 is the Weyl operator

in the instanton background. In the same way as before, we compute the lowest Dirac

eigenvalue by computing the matrix element of the Dirac operator (taken in the instanton

plus y-fluctuation background) in the zero mode basis

" = �i

Z
dt  

T
1 /D 1 = �i2

Z
dt ⇠̄ T y⌧2⇠ = 4N2

Z
dt ẋ1(t)

2 y(t) =
3a

2

Z
dt

y(t)

cosh4(at)
,

(3.20)

where  1 are unit-normalized four-component spinors (3.12) composed of the ⇠, ⇠̄ zero modes

from (3.7) (the value of N is given there) and x1(t) is the instanton solution (3.4). In other

words, we find that an instanton at position t1 couples to the background y-field as

[I]y =
3a

2

Z
dt

y(t)

cosh4(a(t � t1))
e�S0dµI . (3.21)

One can interpret this result as follows: Formally, the fermion zero mode structure of an

instanton is ⇠ e�S0�1�2(t1)dµI and the Yukawa term in the action is
R

dt�̄1�̄2y. The instan-

ton amplitude is thus modified into (3.21) where the kernel is the square of the zero mode

wave-function. Note that the support of the kernel is a|t � t1| . 1, and thus, the modified

instanton amplitude is roughly [I]y ⇠ y(t1)e�S0dµI , where fermion zeromodes are converted

into a scalar. However, we will need the exact kernel and expressions in order to show our

main results. Repeating the same for the anti-instanton, we find the same coupling of y(t)

to an anti-instanton at t2. Because the average hy(t)i = 0, the single-instanton events do not

contribute to the ground state energy.

On the other hand, the I-Ī scalar-correlated event may and does contribute to the ground

state energy. The contribution is

[IĪ]Y =
9a2

4

Z
dt

Z
dt0

hy(t)y(t0)i
cosh4(a(t � t1)) cosh4(a(t0 � t2))

e�2S0�SintdµIdµĪ , (3.22)

where hy(t)y(t0)i is the scalar propagator in the I-Ī background. The other factors in (3.22)—

measure, nonzero mode determinants, action—are the same as in the [IĪ]F fermion-correlated

event whose contribution is given in (3.17). Notice that (3.22) can be equivalently viewed

as due to two Yukawa-coupling insertions, taken in the I/Ī zeromode basis, and a scalar

propagator from I to Ī—as pictorially shown in the bottom diagram of Fig. 1.

y-propagator in the I-Ī background: What remains is to find the y-propagator in the

I-Ī background and compute the integral in (3.22). To begin, note that to quadratic order

in y, we have the action in the I-Ī background x(t) of (3.9)

Sy =
1

g

Z
dt y(�@2

t + (2x2 + 2a2))y , (3.23)

so that ⌦
y(t)y(t0)

↵
=

g

2

1

�@2
t + (2x2 + 2a2)

=
g

2
G(t, t0; t1, t2) , (3.24)
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where ei⇡ is the relative phase between the two thimbles, J1 and J2—an example of a hidden

topological angle [26]. Therefore, the vacuum energy (2.8) vanishes:

E0 / 4!3I1 + gI2 = 4!3(1 + ei⇡)I1 = 0 . (2.18)

Remarkably, the two contributions not only have the opposite sign, but are of the same

order in g and cancel exactly! How did this happen? Crucial to the cancellation was the

exponential suppression e�2!⌧ in the case of fermion-correlated event and e�!⌧ in the case

of scalar-correlated event. The critical points of both integrals are at Re(⌧1,2!) / � log g.

However the integrand at the critical point of I1 and I2 integrals contain e�2!⌧1 / g2 and

e�!⌧2 / g, so that although I1 started initially as lower order in g, the exponential suppression

due to fermion exchange forced the integral I1 to contain an extra factor g compared to the

integral I2.

We find this incredible conspiracy nothing short of remarkable. It gives compelling evi-

dence that a general principle of evaluating higher order semiclassical contributions by treating

their quasi-moduli via Picard-Lefschetz theory is the correct and necessary procedure.

The relative hidden topological angle among saddles is a universal feature seen in a broad

class of supersymmetric and non-supersymmetric theories. In all cases studied so far, this

phase di↵erence arises from the integration over di↵erent thimbles Ji in the complex plane,

whose contributions have a relative factor of ei⇡. For example, in N = 1 supersymmetric

QM, the real cycle and complex cycle (associated with a real saddle and complex saddle)

di↵er by ei⇡, while in non-supersymmetric QM with nf fermion field the relative phase is

einf⇡. These factors may lead to either constructive or destructive “interference” between the

contributions of di↵erent saddles. In field theory, the cleanest example is given by comparing

the contributions of the magnetic bion vs. neutral bion cycle in QCD(adj) with nf flavors of

fermions. There, the relative phase is ei(4nf�3)⇡ which, for positive integer nf , is always ei⇡

[15, 41]. This overall sign is of physical significance, and reflects the fact that neutral bions

induce a center-stabilizing potential for any physical value of nf . In the problem considered

in this paper, it is two distinct complex cycles (instead of one real vs. one complex) which

have a relative ei⇡ phase.

We will now proceed to show explicitly how the contributions I1 and I2 to (2.8) arise.

3 Computation of I-

¯

I contributions to the ground state energy

In this Section, we analyze in detail the IĪ contributions starting from the Lagrangian (2.1).

Instantons are solutions of the BPS equation

ż = ei↵W 0 . (3.1)

Generically there will be no instantons for arbitrary value of ↵. We will consider the case of

the double well potential, with the superpotential already given after Eq. (2.1)

W (z) =
z3

3
� a2z . (3.2)
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supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner

E0 / �e�2S0

Z
d⌧ e

4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)
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( )

-both come with same (wrong!) sign:
how to cancel? 

entire story rests on
relative factor - 
somewhat hard calculation

Yukawa squared =

y-

-two contributions, different orders in g!

so, why does the I-I* contribution to E_vac vanish?
answer: “quasi-zero mode thimble”

crucial points:
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due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner

E0 / �e�2S0

Z
d⌧ e

4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)
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The Weyl operator is D = DI + 2y(t)⌧2, where DI = @t + 2x1(t)⌧1 is the Weyl operator

in the instanton background. In the same way as before, we compute the lowest Dirac

eigenvalue by computing the matrix element of the Dirac operator (taken in the instanton

plus y-fluctuation background) in the zero mode basis

" = �i

Z
dt  

T
1 /D 1 = �i2

Z
dt ⇠̄ T y⌧2⇠ = 4N2

Z
dt ẋ1(t)

2 y(t) =
3a

2

Z
dt

y(t)

cosh4(at)
,

(3.20)

where  1 are unit-normalized four-component spinors (3.12) composed of the ⇠, ⇠̄ zero modes

from (3.7) (the value of N is given there) and x1(t) is the instanton solution (3.4). In other

words, we find that an instanton at position t1 couples to the background y-field as

[I]y =
3a

2

Z
dt

y(t)

cosh4(a(t � t1))
e�S0dµI . (3.21)

One can interpret this result as follows: Formally, the fermion zero mode structure of an

instanton is ⇠ e�S0�1�2(t1)dµI and the Yukawa term in the action is
R

dt�̄1�̄2y. The instan-

ton amplitude is thus modified into (3.21) where the kernel is the square of the zero mode

wave-function. Note that the support of the kernel is a|t � t1| . 1, and thus, the modified

instanton amplitude is roughly [I]y ⇠ y(t1)e�S0dµI , where fermion zeromodes are converted

into a scalar. However, we will need the exact kernel and expressions in order to show our

main results. Repeating the same for the anti-instanton, we find the same coupling of y(t)

to an anti-instanton at t2. Because the average hy(t)i = 0, the single-instanton events do not

contribute to the ground state energy.

On the other hand, the I-Ī scalar-correlated event may and does contribute to the ground

state energy. The contribution is

[IĪ]Y =
9a2

4

Z
dt

Z
dt0

hy(t)y(t0)i
cosh4(a(t � t1)) cosh4(a(t0 � t2))

e�2S0�SintdµIdµĪ , (3.22)

where hy(t)y(t0)i is the scalar propagator in the I-Ī background. The other factors in (3.22)—

measure, nonzero mode determinants, action—are the same as in the [IĪ]F fermion-correlated

event whose contribution is given in (3.17). Notice that (3.22) can be equivalently viewed

as due to two Yukawa-coupling insertions, taken in the I/Ī zeromode basis, and a scalar

propagator from I to Ī—as pictorially shown in the bottom diagram of Fig. 1.

y-propagator in the I-Ī background: What remains is to find the y-propagator in the

I-Ī background and compute the integral in (3.22). To begin, note that to quadratic order

in y, we have the action in the I-Ī background x(t) of (3.9)

Sy =
1

g

Z
dt y(�@2

t + (2x2 + 2a2))y , (3.23)

so that ⌦
y(t)y(t0)

↵
=

g

2

1

�@2
t + (2x2 + 2a2)

=
g

2
G(t, t0; t1, t2) , (3.24)
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Yukawa squared =

so, why does the I-I* contribution to E_vac vanish?
At this stage, ⌧ is the instanton–anti-instanton separation, ! = 2a, and S0 = 8a3

3g = !3

3g is

the action of a single instanton. The e
4!3

g e�!⌧

factor in the integrand is the I-Ī long-distance

attraction and the two factors in the brackets are the fermion-correlated, ⇠ e�2!⌧ , and scalar-

correlated, ⇠ e�!⌧ , contributions. Naively, the integral over the separation in (2.8) is to be

taken from ⌧ = 0 to ⌧ = 1. It seems impossible that E0 in (2.8) can ever vanish, as the

integrand is strictly positive for any ⌧ � 0. As it stands, this is in contradiction with the

constraints of supersymmetry, and more disastrously, with the supersymmetry algebra which

demands that energy is positive semi-definite. But the story is more subtle, and one with

happy ending.

i⇡
⌧

i⇡
⌧

log(2!3/g) log(4!3/g)

[IĪ]F [IĪ]Y

Naive cycle

Figure 2. The steepest descent cycles for the fermion-correlated channel vs. scalar correlated chan-
nels. The blue cycle is the naive cycle in which the separation between the instanton and anti-instanton
is interpreted as real. A result compatible with supersymmetry only comes about if we use the critical
point cycles.

As argued in [5] and formalized more recently in [27–29] in the context of resurgence and

Picard-Lefschetz theory, the integral should be thought of as an integral in the complex ⌧

plane. Since ⌧ corresponds to some field direction, its complexification is to be thought of

as the complexification of the original fields, which are to be treated by complex gradient

flow (Picard-Lefschetz) equations. Of course, the full complexified field space is infinite di-

mensional, and in principle, we have to work in the context of the Picard-Lefschetz equations

for the full theory. However, in the background of multi-instanton saddles, as concrete evi-

dence is provided in [26, 28, 29], this space usually factorizes into finite dimensional zero and

quasi-zero modes directions and infinite dimensional gaussian modes:

J full = J Gaussian ⇥ J zm ⇥ J qzm . (2.9)

In the determination of the correlated instanton–anti-instanton contribution to ground state

energy, the most important subcomponent of the thimble J full, which governs some of the

salient features of the multi-instanton configuration, is J qzm. This reduces a formidable task

of treating an infinite dimensional path integral to that of treating an interesting finite (in

this case one-) dimensional integral by Picard-Lefschetz theory and a much less interesting

infinite dimensional Gaussian integration.
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- both come with same (wrong!) sign:
how to cancel? 

-two contributions, different orders in g!

“quasi-zero mode thimble”
integration gives E_vac = 0

Imaginary part,          
change of relative sign - one vs. two “massive propagators”; g-order! 
Absolute value of separation is large at small g - self consistent!
   I and I* are never on top of each other: complex separation

Integrating over the thimbles gives E_vac = 0!

1

2

3

answer: “quasi-zero mode thimble”



Understand E_vac = 0 from plain next-order semiclassics
… no localization, no deformation invariance…

Upshot: It’s not completely trivial. {Relation to motivation: complexification!}

Found that complexifying the quasi-zeromode crucial. I and I* “live” a 
complex & large separation apart; consistent next-to-leading order semiclassics. 

Comments/future:

“Quasi-zeromode” is just one direction in field space (the most relevant for 
this case!). Suggests that complexification of path integral important. 

status: “theoretical experiment”  
                   in search of a theory…

finite dimensional thimbles (lattice)? 
mathematics? 

Solving analogous puzzles in SW theory harder… but worthwhile, beyond QM?

Magnetic and neutral bions in SYM can be seen to emerge in a similar way, at 
(generally) complex separations. (Recall SYM is only SUSY w/out scalars…YM)

Goal: 

(subjects of research in various communities)


