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uv

anomaly matching

IR ?2?

limits fantasies about IR!

thought anomaly matching was set in stone since ca. 1980
“0-form” anomalies played major role in, say, “preon” models (1980’s), Seiberg duality (1990’s)

new “‘generalized 't Hooft anomaly matching”
Gaiotto, Kapustin, Komargodski, Seiberg,Willett + ... (2014-)



Topic of this talk:

4d gauge theory with arbitrary gauge group w/ center:

SU(N) (Zy), Sp(N) (4,), Spin(N) (£,,72,, or £, X Z,), E¢(Z;), E;(Z£,)

pure YM: mixed anomaly O-form parity at @ = 7 and |-form center symmetry

QCD(adj),YM + n,Weyl adjoints: mixed anomaly between 0-form discrete
chiral and |-form center symmetry

Upshot:
Anomalies’ consequence in Hilbert space on T°: exact degeneracies.

Explain how these come about and discuss implications.

For many, a trip back to the '80s - but with novel interpretation!



Plan:

I Review Euclidean picture

2 Motivation: why Hilbert space!... 2d

3 Gauging Zjifl) on T°, quantization, and centrally-extended algebra

4 Consequences, discussion, old vs new most of talk use
example of SU(N)

, , and parity/center
5 Discrete chiral/center anomaly anomaly at 0 = 7

6 Summary & outlook



Il Review Euclidean picture

gauge theory w/ center - pure YM or QCD(adj): |-form symmetry



| Review Euclidean picture

gauge theory w/ center - pure YM or QCD(adj): |-form symmetry
parity at & = 7 (or discrete chiral): 0-form symmetry
parity at @ = & (or discrete chiral): require 27 shift of & angle

partition function only invariant if Q¢opn integer



| Review Euclidean picture

gauge theory w/ center - pure YM or QCD(adj): |-form symmetry
parity at & = 7 (or discrete chiral): 0-form symmetry
parity at @ = & (or discrete chiral): require 27 shift of & angle

partition function only invariant if Q¢opn integer

mixed anomaly: gauge background for |-form, observe 0-form violated

vacuum can’t be “trivially gapped”



2 Motivation: why Hilbert space?...
- implications very immediate, as seen in 2d

L= fuf™ + iy (0 +igA Yoy + it (B +igA )

d +7 = ‘ N : N . 2r
ZQ?;: Wy — e ahy Zg: el $ Avdr Wy g!$ Avdr wg=e€e q.

ng Yq = Wy Yq qu (wq — 617) [Anber, EP 2018, in fermion formulation]




2 Motivation: why Hilbert space?...
- implications very immediate, as seen in 2d

L= fuf™ + iy (0 +igA Yoy + it (B +igA )

d +7 = ‘ N : N . 2r
ZQ?;: Wy — e ahy Zg: el $ Avdr Wy g!$ Avdr wg=e€e q.

ng Yq = Wy Yq qu (wq — 617) [Anber, EP 2018, in fermion formulation]

X2q P, ‘9> — ‘P + 1(m0d Q), (9> - discrete chiral broken

—P _—10
Yq P, (9> — |P, (9> Wy € - discrete E-field in each vacuum

- general interest, to understand phenomena from different angles



3 Gauging Zjill) on 77, quantization and centrally-extended algebra

- to see extension of algebra, introduce 2-form center background on 7™

't Hooft twisted b.c. 't Hooft '81; van Baal '82,84; Witten '82,00;
Gonzalez-Arroyo, Korthals Altes '88 ...
_ ~1
A(Ly,y,z) = 1Ay, 21 torus = one coordinate chart
A(x, Ly, 2) = I',A(x,0,2)175 : transition functions on overlaps = b.c.
A(x,y, Ly) = T3A(x, y,00[5 ! cocycle condition on triple overlaps

e AT
_ i=Fe, m. , ,
L, =11 e~ - constant twist matrices

m (mod N) ... discrete magnetic flux

27

2 . e , .
... center vortex e ?g C? = 7 Skim™m i Kapustin, Seiberg 14 formalism
ki



3 Gauging Z](Vl) on 77, quantization and centrally-extended algebra

space of fields w/ b.c.: quantization, Ay = 0, Gauss’ law:
A(Ly,y,z) = 1'1A(0,y, Z)Fl_l U(L,y,z) =1,U(0,y, Z)rl_l
A(x, Ly, 2) = DA (6,0, U(x, Ly, 2) = T,U(x,0,2T7"
A(x,y, L) = T;A(x, y,0)[5 U(x,y, Ly) = T3U(x, y,0)L'5

e AT

[ = Tlye ™ e =Ly e H 2 Uly) = e |y), U }



3 Gauging Zjifl) on 77, quantization and centrally-extended algebra

space of fields w/ b.c.: quantization, Ay = 0, Gauss’ law:
A(Ly,y,z) =1,A(0,y, Z)rl_l U(L,,y,z) =1,U(,y, Z)rl_l
A(x, Ly, 2) = DA (6,0, U(x, Ly, 2) = T,U(x,0,2T7"
A(x,y, L) = T'3A(x, y,O)FS_1 Ulx,y, Ly) = 15U(x, y,())l“‘l
[0, = [0, cun™ e = L) € 1o O ) = e |y), VU |
| -form symmetrles ... “improper gauge trsfs.”,“central conjugations” (Luscher)
Clk, v)(L1,y, 2) =¢' 5 T1C[k, ] (0, y, 2)07 "
Clk, v](x, La, 2) =€ 2N 0bC[k, v](x,0, 2)T5 "
Clk, v)(x,y, Ls) =¢' ~" T3C[k,v](x,y,0)5"




3 Gauging ZZS) on 77, quantization and centrally-extended algebra

space of fields w/ b.c.: quantization, Ay = 0, Gauss’ law:
A(Ly,y,2) = T1A0,y, )I'T U(L,y,2) =TU0,y, I}
A(x, Ly, 2) = DA (6,0, U(x, Ly, 2) = T,U(x,0,2T7"
A(x,y, Ly) = T;A(x, y,0)[5 U(x,y, Ly) = T3U(x, y,000'5!
[y = DLy ™ e = {|o) € - Ulg) = e u) WU}
| -form symmetries ... “improper gauge trsfs.”,“central conjugations” (Luscher)
C[E, v|(Lq,y, 2) :ei%zrxl;l FlC[,lZ, (0, vy, z)I‘l_l introduce some notation:
ClF, v)(w, L, 2) =¢' 5" ToC[k,](x,0,)T5" A () [A) = |A)A(x)
Clk,v](x,y, Ls) =¢" " T3C[k,v](z,y,0)T5 " goA = g(A—id)g™!

functions C[?, ] define operators: é[?, V] |A) = | C[?, U] o A)



3 Gauging Zjifl) on 77, quantization and centrally-extended algebra

space of fields w/ b.c.: quantization, Ay = 0, Gauss’ law:

A(Ly,y,z) = 11,A(0,y, Z)rl_l U(Ly,y,z) = 17U0(0,y, Z)rl_l

A(x, Ly, 2) = DA (6,0, U(x, Ly, 2) = T,U(x,0,2T7"

Alx,y, Ly) = 1'ZA(x, y,O)Fg_1 Ulx,y, L) = I5U(x, y,())l“‘l

[y = [ ¥ s e = LJg) e M2 O fw) = |y) WU}

| -form symmetrles ... “improper gauge trsfs.”,“central conjugations” (Luscher)

Clk. V)(L1,y, 2) =¢" 5 T1C[k,v](0,y, 2); 7y |A) = |C[(1,0,0),0] o A)
CIR,v)(x, Ly, z) =¢ 2N [,ClF, v](,0, )Ty Ty |A) =|C[(0,1,0),0] 0 A)
C[F, V)(z,y, Ls) =¢"" %" TsC[k,v)(x,y,0)T5" T3 |A) = |C[(0,0,1),0] o A)

I'; generate global symmetries: act on Wilson loops in i-th direction



3 Gauging Zjifl) on 77, quantization and centrally-extended algebra

11 |A)

T
T;

C
C

=|C1(1,0,0),0

(0,1,0),0
(0,0,1),0

0 A)
| o A)
o A)

I’ generate global symmetries:
act by Z,; on Wilson loops wound in x'



3 Gauging Zjifl) on 77, quantization and centrally-extended algebra

T1 |A) =|C][(1,0,0),0] 0 A) YA’Z- generate global symmetries:
T»|A) =|C[(0,1,0),0] o A) act by Z,, on Wilson loops wound in x*

e

T5|A) =|C'(0,0,1),0]0 A)

YA’Z- , (or their C’s) when m # 0, have fractional 7° — SU(N) winding number

1 g o _mok =...= the instanton number
QLT = 2472 [Eg tr(CdC)" =...= N 7 of a 4d field configuration twisted by
" ['.in space and C| k,v] in time...
A [ —
we define 7; s.t. QT = —— fractional part only m, k dependent

N



3 Gauging Zjifl) on 77, quantization and centrally-extended algebra

T, |A) =1|C[(1,0,0),0] o A)

Th|A) =

C
C

(0,1,0),0

(0,0,1),0

o A)
o A)

I’ generate global symmetries:
act by Z,; on Wilson loops wound in x'

YA’Z- , (or their C’s) when m # 0, have fractional 7° — SU(N) winding number

QIC) = —

~ 242

/ tr (CdC™1)?
T3

Q[C] = the instanton number of a 4d field configuration twisted by

I, in space and C[?, v] in time; fractional part only 1, ?dependent [’t Hooft '81; our appx. ]

1

QIC] =

T3

Ko(A)

Ko(CoA)— Ky(A)

st (ANF =S ANANA)

~ U2

b.c.!
1

/ tr (CdC™1)° 4 dtr (iA dC~1C)
T3 87'('2 3



3 Gauging Zjifl) on 77, quantization and centrally-extended algebra

T1 |A) =|C][(1,0,0),0] 0 A) YA’Z- generate global symmetries:
T»|A) =|C[(0,1,0),0] o A) act by Z,, on Wilson loops wound in x*

e

T5|A) =|C'(0,0,1),0]0 A)

YA’Z- , (or their C’s) when m # 0, have fractional 7° — SU(N) winding number

1 g o _mok =...= the instanton number
QLT = 2472 [Eg tr(CdC)" =...= N 7 of a 4d field configuration twisted by
" ['.in space and C| k,v] in time...
A [ —
we define 7; s.t. QT = —— fractional part only m, k dependent

N



3 Gauging Zjifl) on 77, quantization and centrally-extended algebra

T1 |A) =|C][(1,0,0),0] 0 A) Ti generate global symmetries:
T5|A) =1|C1(0,1,0),0] 0 A) act by Z,; on Wilson loops wound in x'

T3 |A) =|C[(0,0,1),0] o A)

YA’Z- , (or their C’s) when m # 0, have fractional 7° — SU(N) winding number

1=y [ i == 1
- 247? T3 ] T N |
boundary conditions on T3
- Ty : —
we define 7; s.t. Q|1}] = N take co-prime M (mod N) ...

, R | discrete magnetic flux
then, N Hg o : TN |¢> — ‘w> e_zeml

eigenvalues of fl, generating 1-form Z

and Tl e) = |e) e Fer iy = |¢) e ) ‘e (mod N) ...
discrete electric flux



3 Gauging Zjifl) on 77, quantization and centrally-extended algebra

11 |A)

T
T;

=[C'[(1,0,0), ] A) YA’I- generate global symmetries:
=|C'(0,1,0),0] 0o A) act by Z,; on Wilson loops wound in x'
= |C'[(0, 0, 1) A)

7) = |7) eF0F = | 7) eiFertm

- 1; commute with Hamiltonian, generate |-form Z]ifl)

- all eigenvectors of H also labeled by Z,, electric flux e

- states with different ¢ related by winding Wilson loops



3 Gauging Zjifl) on 77, quantization and centrally-extended algebra

Va [A] — e Jrs Ko(A) jEKO shifts by | under a unit winding gauge trf.

o shifts 0 angle, consider commutator with |-form center:

AR Tz_l — U, [Clk; = 6;1,0]0 A] = ¢i® J3 [Ko(f[kiéiz,o]oﬁ)—Ko(A)] v, = pio gL A
Tr
QITi] = 47

T V o 67,277— ‘7 T relation is behind the central extensions of
[ V2 — 2 41 all 1-form/0-form algebras, reflecting the

anomaly in the 77 # 0 Hilbert space on T



3 Gauging ZZS) on 77, quantization and centrally-extended algebra

A(ZC,y,Z) — AP(LE,y,Z) — _FPA(Ll o vaQ — y7L3 — Z)FP FPFiFP — €i¢ri—]

p()TZP() acts as a center trfm.: T} (x,y,z) =I'pT;(L1 — x, Lo — vy, L3 — 2)'p.
so on physical states 7" is equivalent to 7!
P() Ti P() — T; = dihedral group of order 2N,at § = 0

at @ = &, however, parityis P = Vo_ [

A 2

_ 3 g_ Ya 0 5aN (Fra 0 Sa 1 ha DA 3 “Travr—1  Tra

HQ —/d$(2 (115 SWQBi)(Hi 87T2Bi) 2 BiBi) VQWHZ' V27r - Hz
T3



3 Gauging Zjifl) on 77, quantization and centrally-extended algebra

PO T PO — TJr dihedral group of order 2N, at § = 0

at 0 = r, however, the parity generator is PW — VQT‘-P()

A\ A\ A\

P . P = g%mj ]A’T so the algebra at 6 = 7 is extended
T j

fromnowon m = (0,0,1) ignore 7,,7, and labels ¢, ¢,
[T37ﬁ9:ﬂ‘] =0 7 [Pﬂ'vﬁezﬂ‘] =0 7 T?)pﬂ' — eiWPﬂ'Tg 1

FIH:W|E’ 63> — ‘E’ 63>E TS(pW‘E7€3>) — (pﬂ|E7€3>)6i2ﬁ(1_63)

. 27T

T5|E,e3) = |E, e3)e' N 3 P, : |E,e3) — |E, 1 — es (modN))



3 Gauging Zjifl) on 77, quantization and centrally-extended algebra

ﬁ() . |E,e;) = |E,—e;) 6 =0,e; =0is parity invariant for all N

- “global inconsistency” for odd-N

N+ 1
2

0 = m, odd-N: e; = invariant

P, :|E,e3) — |E,1 — e3 (modN))
6 = =, even-N all states doubly degenerate

- mixed center/parity anomaly for even-N SU(N)

- mixed center/parity anomaly for all groups ... if center is of even order
(i.e., for all but £, where “global inconsistency”)



4 Consequences, discussion, old vs new

m = (0,0,1) Ty, Hy_r] =0, [Pr,Hp_r] =0, T3P, =€e'¥ P11

- even N, exact parity degeneracy at any size torus (already seen in anomalies)

delicate cancellations of tunneling: semiclassics
phases due to m1/contours/thimbles... dYM ?

- as L, — oo, expect lowest energy e-flux states => parity breaking vacua

other N-2 higher energy fluxes: metastable/unstable pairs of vacua... seen in dYM

old vs new: ... 1980 vs now:
Interpretation as anomaly and the centrally-extended algebra new



4 Consequences, discussion, old vs new

m = (0,0,1) Ty, Ho_x] =0, [Pr,Hp_r] =0, T3P, =€l PTI

- as L K A~! “femtouniverse” [van Baal in 1999 review,

1.0

05
87T2 -

Ce 9°N 21 Y
E(0,e3) = Lyt COS (Feg ng) ‘

0.5+

fractional I's on T> X R; no analytic soltns

~1.0

for the experts, compare with dYM vacuum energies: L, [, = o0, L, = L < 1/(NA)

extended algebra seen In IR of dYM [Aitken, Cherman, Unsal 2018]: no m ... precise relation



4 Consequences, discussion, old vs new

- contact with Euclidean, IR TQFT - double degeneracy constrains Z:

[T37ﬁ6’:’ﬂ] =0 ; [pﬂ'aﬁezw] =0 ; TSpﬂ' — ei%ﬁﬂ' A:;f 1

Zk,1] = tr (6_619[9:7T T?fj) trace over Hgiy@s' with m; # 0

insert IA’% = 1 in trace and use algebra: Z[k7 m3] — Z[_k;7 mS] @izwﬁvmg

. 7T/€m3

solution  Zlk,m3| = e'" ¥ =, with Z even wrt k

ks

for a two-state IRTQFT X = 2cos Y

- e.g.van Baal’s e=0,| states only, set E=0



4 Consequences, discussion, old vs new

Summary: mixed parity/center anomaly in 777 leads to extended algebra

Ty, Hy_r] =0, [Pr,Hpr] =0, T3P, =€~ P71 7 =(0,0,1)

anomaly: SU(2k), Sp(2k+1), Spin(2k), £
global inconsistency: SU(2k+1), L
neither: Sp(2k), Spin(2k+1)

the most unusual feature is the exact degeneracy at finite volume in the 77
background implied by the extension

would like to better understand in a calculable framework valid in a
(partially) infinite volume, dYM



5 Chiral-center algebras: central extensions

SU(N) QCD(adj) with n, < 5 massless Weyl adjoint fermions

ZQn NXSU(TLJL‘) | | 5
/ 7 anomaly free chiral X L0 =€ 2anQ _ o zan | dzj; V2
nf anN
mixed chiral/center anomaly Imore general twists

possible - not here!]

in m = (0,0,1) leads to extended algebra

13, H] =0, [X o H]=0, TsX o =e N X (0) Ty

2’an anN 2an

X (0) E.e3) =|E,e3 —1) - implies N-fold degeneracy

anN



5 Chiral-center algebras: central extensions

X o |E,es)=|E,e3—1) -implies N-fold degeneracy

anN
- exact at any size 7-... at least Z2an — £, ’

- yes, for n, = 1 (SYM)

- YES, for any nf < 6 on R3 X Sl Unsal 2007

- various R proposals for ne > 1 ordow Dumiresc 2018

Ryttov, EP 2019

most recent lattice work
Athenodorou, Bennett, Bergner, Lucini 2021

- other groups: 2-fold, 3-fold, 4-fold degeneracies on T’

whose centeris Z,,Z,X7Z, Zj Z,

- min. breaking with multi-fermion condensates (or bilinear)



6 Summary & outlook

- the mixed anomaly between 0-form parity/chiral/ and 1-form center

can be seen as an extension of the symmetry operator algebra on
T3 with twisted b.c. (= 2-form background for the 1-form center symmetry)

- these central extensions imply exact degeneracies between appropriate
electric flux states on 7~



6 Summary & outlook

how is tunneling at finite volume avoided?
(learn more about semiclassics?)

may be useful for lattice studies (0 = r, especially)?

what happens in theories (e.g. ne = 4,5 QCD(adj))
thought to flow to CFTs in R* limit?

do more general anomalies involving O-form and 1-
form symmetries have Hilbert space implications?



