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1 Introduction

Our purpose here is to extend the study of [1, 2] to the case with fundamental fermions. This

is closer to the real world QCD compared to those studies, and hence of some interest.

2 Quarks with Dirac mass

We begin with our naive expectations, starting with adding massive quark supermultiplets.

We generalize the setup of Ref. [2] by adding N

f

massive chiral super fields in the fundamental

of the gauge group (their fermionic parts constitute N

f

Dirac fundamental flavours).

2.1 Taming the perturbative contributions
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with nl = δll0, l0 = 1, ..., N for N elementary strings forming the “baryon.”
The monopoles carry the SU(N) magnetic fluxes given in Eq. (4.5.1) and,
therefore, can be located at the corners of the polygon in Fig. 12a.

ba

Figure 12: a). A schematic picture of the “baryon” formed by monopoles and
strings for N = 6; b). The “baryon” acquires the shape of a star once the neigh-
boring strings form non-BPS bound states.

In highly quantum regime, at m̃l = 0, both strings and monopoles carry
no average SU(N) magnetic flux, see (4.9.1). The confined monopoles are
seen as kinks interpolating between the “neighboring” quantum vacua of the
CP(N − 1) model (a.k.a. strings) in the closed necklace configuration in
Fig. 12a.

As was mentioned, the monopoles/kinks acquire flavor global quantum
numbers. They become fundamentals in SU(N)C+F . Thus, the “baryon” is
in the

N
∏

1

(N)

representation of SU(N)C+F . Note that both quarks and monopoles do not
carry baryon numbers. Therefore, our “baryon” has no baryon number too.
The reason for this is that the U(1) baryon current is coupled to a gauge boson
in the U(N) gauge theory that we consider here. This means, in particular,
that the “baryons” can decay into the monopole “mesons” or gauge/quark
multiplets.

We mentioned that the “neighboring” elementary strings can form a non-
BPS bound state, a composite string. It is plausible then that in practice the
monopole “baryon” actually resembles a configuration shown in Fig. 12b.

Let us emphasize that all states seen in the physical spectrum of the
theory are gauge singlets. This goes without saying. While color charges
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(ref. also motivated by other analogies to their work...)



Motivation/Summary/Outline I:

It is interesting to study the few understood QFT cases, their 
relations to each other, to string, and to lattice...

Lattice - numerical experiment - confining flux tubes exist, for sure, spectrum etc.

- Seiberg-Witten theory: N=2 super YM with N=1 soft mass,            
  abelian confinement  Douglas Shenker; Hanany Strassler Zaffaroni mid/late 1990s 

- monopole confinement in abelian Higgs model and in related          
  (dual) models with nonabelian strings  Gorsky, Shifman, Yung 2004-2014-

>   (here) confinement on R x S  , abelian  Unsal, Shifman, Yaffe,... 2007-
3 1

Confining strings may seem ubiquitous and ‘old’... but are analytically
understood - within continuum QFT, starting from the microscopic QFT
degrees of freedom, and in a controlled manner - only in a few cases. 

String theory - strings are there in dual theory, to begin with 
one only has to work to make them give linear potential (so they don’t fall to horizon)
- under control in regimes quite far from asymptotically-free QFT 



- confinement on R x S , abelian  Unsal, Shifman, Yaffe,... 

In this talk, I will study the last case above:

Many properties of theories with semiclassical confinement in this 
setup have been understood

We shall see that confining strings in these theories have properties 
distinct from other theories with abelian confinement (e.g. SW) and 
show surprising similarities to various dual theories with (non-) 
abelian confinement of monopoles discussed previously.   

Motivation/Summary/Outline II:

13

SYM: Seiberg, Witten/Aharony,Intriligator,Hanany,Seiberg,Strassler late 1990s

SYM, with new insight, & non-SYM: Unsal w/ Yaffe,Shifman... since 2007

 but confining strings have not been studied in any detail.



Motivation/Summary/Outline III:

1. a lightning review of confinement on R x S : 
   deformed Yang-Mills theory and QCD(adjoint)/SYM 
   Unsal w/ Yaffe, Shifman... 

2. confining strings in deformed YM and QCD(adj):                                 
   domain walls, mesons, and baryons

experts: hopefully not too bored

3. comparison to other understood cases and the transition to           
   the nonabelian regime

4.  for the future: 
    lattice & transition to nonabelian confinement?
    

non-experts: can’t explain all, will assert a few facts 
- but if these are accepted, study of strings will be clear 
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1. confinement on R^3 x S^1, size of circle- L: 

dYM: pure YM with particular double-trace “deformation”

We study SU(N) in the regime

Before describing dynamics, some remarks on “philosophy”:
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QCD(adj): YM with n  adjoint Weyl fermions; n  =1 is SYMf f

“This is not the real world, even without quarks: 
   partially compactified theory, abelianized dynamics… 
   all different from physical theories on R :4

why bother?”



“…why bother?”

2

Most importantly, these monopole-instantons have no size modulus, avoiding the “IR-embarassment”
that plagues instanton studies on R4, see e.g. [7].

The first new insight to follow was by Ünsal [1], who showed that the mass gap and confinement
in QCD(adj) (QCD with adjoint instead of fundamental quarks) can be analytically understood as
due to Debye screening in a three dimensional plasma of “topological molecules”, termed “magnetic
bions”, of these monopole-instantons. The mass gap of gauge fluctuations, related to the confining
string tension, can be calculated from first principles, via a locally 4d generalization of the 3d
Polyakov mechanism [8]. The mere fact that the mechanism extends (even if only infinitesimally)
above 3d is of interest, as there are only a few cases where confinement is understood analytically,
in the continuum, in a controlled manner and starting from the microscopic degrees of freedom.1

Here, the price to pay for theoretical control is the required small size L⇤Nc ⌧ 1. As this small-L,
Abelianized, world is not quite the physical one, one might be tempted to ask: “Why bother?”. It is
important to address this “philosophical” question at the outset. I have three answers:

i. The picture of the confining vacuum and of the thermal deconfinement transition emerging from
these calculable examples is beautiful and elegant. This fact alone is very satisfying to a theorist.

ii. One might hope that upon studying a solvable example, new unexpected and interesting
features of more general utility will be encountered.

iii. Once an analytical approach is understood within its region of validity, it is tempting to
push it to, and even beyond, its limits—i.e. the approach might contain qualitative lessons for
phenomenological models of the real strongly coupled system.

We shall see that all these expectations—the initial motivation for our studies—have borne fruit.
My involvement in the subject began by a physicists’s derivation [10] of the index theorem in

monopole-instanton backgrounds, which is to this day indispensable to study QCD(adj) and other
theories [11]. It was then applied [12] to argue that the ISS model of supersymmetry breaking does
not break supersymmetry; since then, this has also been shown via the superconformal index [13]. We
also studied how the mass gap for gauge fluctuations (⇠ string tension), for a large class of chiral and
vectorlike theories, depends on the radius L [14, 15]. For all theories, we found that there is a change
of behavior, when the number of flavors is increased, with the mass gap changing from increasing
with L to decreasing with L. We suggested that this may be related to the onset of conformality
in the respective gauge theories, diagnosed by the vanishing of the mass gap in the infinite L limit.
While this lacks rigor—the semiclassical calculation loses its validity upon increase of L, except in
perhaps a few cases [15, 16]—we made the qualitative point that one should use the mass gap as a
diagnostic of conformality, not just the commonly used fermion bilinear. Another qualitative lesson
was that the nature of the light fermions in the theory can play a crucial role in the confinement
mechanism via the formation of a zoo of various topological molecules, depending on the theory.

The most interesting observations, till now, that have emerged from the R3⇥S1
L studies, however,

originated in [9]. While studying a known supersymmetric theory, the “topological molecule”2 way
of looking at it gave rise to observations transcending supersymmetry, with deeper implications. One
kind of molecule, giving rise to confinement via the generalized Polyakov mechanism, the “magnetic
bion”, was already found in [1]. In [9], we showed that there is another kind of molecule, more
elusive, but with very interesting physical properties. We called it a “center-stabilizing bion”, later
also called “neutral bion” [17]. Its existence is less trivial to establish than that of the magnetic

1
For QCD(adj) with a single Weyl quark there is a connection of the small-L magnetic bion mechanism [9] with

another abelian confinement mechanism on R4
, the celebrated monopole/dyon condensation in Seiberg-Witten theory.

2
The atomistic language should be taken with a grain of salt: these “molecules” are correlated tunneling events and

there is no “time” in which the dynamics unfolds. Yet, the vacuum functional of the theory takes the form of (the

potential part of) a grand partition function of a gas of interacting charged and neutral “molecules.”
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The first new insight to follow was by Ünsal [1], who showed that the mass gap and confinement
in QCD(adj) (QCD with adjoint instead of fundamental quarks) can be analytically understood as
due to Debye screening in a three dimensional plasma of “topological molecules”, termed “magnetic
bions”, of these monopole-instantons. The mass gap of gauge fluctuations, related to the confining
string tension, can be calculated from first principles, via a locally 4d generalization of the 3d
Polyakov mechanism [8]. The mere fact that the mechanism extends (even if only infinitesimally)
above 3d is of interest, as there are only a few cases where confinement is understood analytically,
in the continuum, in a controlled manner and starting from the microscopic degrees of freedom.1

Here, the price to pay for theoretical control is the required small size L⇤Nc ⌧ 1. As this small-L,
Abelianized, world is not quite the physical one, one might be tempted to ask: “Why bother?”. It is
important to address this “philosophical” question at the outset. I have three answers:

i. The picture of the confining vacuum and of the thermal deconfinement transition emerging from
these calculable examples is beautiful and elegant. This fact alone is very satisfying to a theorist.

ii. One might hope that upon studying a solvable example, new unexpected and interesting
features of more general utility will be encountered.

iii. Once an analytical approach is understood within its region of validity, it is tempting to
push it to, and even beyond, its limits—i.e. the approach might contain qualitative lessons for
phenomenological models of the real strongly coupled system.

We shall see that all these expectations—the initial motivation for our studies—have borne fruit.
My involvement in the subject began by a physicists’s derivation [10] of the index theorem in

monopole-instanton backgrounds, which is to this day indispensable to study QCD(adj) and other
theories [11]. It was then applied [12] to argue that the ISS model of supersymmetry breaking does
not break supersymmetry; since then, this has also been shown via the superconformal index [13]. We
also studied how the mass gap for gauge fluctuations (⇠ string tension), for a large class of chiral and
vectorlike theories, depends on the radius L [14, 15]. For all theories, we found that there is a change
of behavior, when the number of flavors is increased, with the mass gap changing from increasing
with L to decreasing with L. We suggested that this may be related to the onset of conformality
in the respective gauge theories, diagnosed by the vanishing of the mass gap in the infinite L limit.
While this lacks rigor—the semiclassical calculation loses its validity upon increase of L, except in
perhaps a few cases [15, 16]—we made the qualitative point that one should use the mass gap as a
diagnostic of conformality, not just the commonly used fermion bilinear. Another qualitative lesson
was that the nature of the light fermions in the theory can play a crucial role in the confinement
mechanism via the formation of a zoo of various topological molecules, depending on the theory.

The most interesting observations, till now, that have emerged from the R3⇥S1
L studies, however,

originated in [9]. While studying a known supersymmetric theory, the “topological molecule”2 way
of looking at it gave rise to observations transcending supersymmetry, with deeper implications. One
kind of molecule, giving rise to confinement via the generalized Polyakov mechanism, the “magnetic
bion”, was already found in [1]. In [9], we showed that there is another kind of molecule, more
elusive, but with very interesting physical properties. We called it a “center-stabilizing bion”, later
also called “neutral bion” [17]. Its existence is less trivial to establish than that of the magnetic

1
For QCD(adj) with a single Weyl quark there is a connection of the small-L magnetic bion mechanism [9] with

another abelian confinement mechanism on R4
, the celebrated monopole/dyon condensation in Seiberg-Witten theory.

2
The atomistic language should be taken with a grain of salt: these “molecules” are correlated tunneling events and

there is no “time” in which the dynamics unfolds. Yet, the vacuum functional of the theory takes the form of (the

potential part of) a grand partition function of a gas of interacting charged and neutral “molecules.”

Personal information will be stored in the Personal Information Bank for the appropriate program.
PROTECTED B WHEN COMPLETED

1

Description of Proposed Research Poppitz

1 Gauge dynamics, Semiclassical methods, Continuity, and Resurgence

MOTIVATION: Quantum Field Theory (QFT) describes the non-gravitational elementary particle
interactions and the long-distance properties of various many-body systems. The physics of the
electroweak interactions is well captured by perturbation theory, an expansion in a small coupling
constant. The strong interactions governed by Quantum Chromodynamics (QCD) are di↵erent: ob-
servables involving short-distance physics can be studied via perturbation theory. However, QCD’s
most interesting properties—the structure of the ground state and low-lying excitations—are non-
perturbative and involve a dramatic rearrangement of the degrees of freedom. The answer has been
known from experiment for a long time, yet the reasons behind it still puzzle! The lattice is one
theoretical tool to study QCD, but it alone yields little insight into the continuum dynamics of, say,
confinement and chiral symmetry breaking (it is an immensely practical tool, whose modern use is
a numerical experiment, a kind of ‘black box’ not immediately yielding to a physicist’s desire for
intuitive qualitative understanding).

Thus, the development of any theoretical ideas that shed some dynamical insight into nonper-
turbative QCD is of interest. Furthermore, one should also consider other asymptotically free gauge
theories, obtained by adding di↵erent numbers and representations of “quarks” and/or changing
the gauge group. This excursion away from QCD is motivated: i.) due to our inherent theoretical
curiosity and since exploring the “theory space” is likely to yield insights as to what makes the Stan-
dard Model so special and ii.) because non-QCD like dynamics has long been suggested as possibly
relevant to models of physics Beyond the Standard Model—it su�ces to mention the ideas of com-
positeness, unification via dualities, or flavor via near-conformality (all ideas that are simply pushed
to higher scales with the 125 GeV Higgs discovery). The outstanding big questions, posed long ago
and still waiting for a definitive answer, range from the more theoretical: “What is QFT?”, “What

phases do gauge theories have?”, “Which theories are conformal?” “When are quarks confined or

not?”, “What happens upon ‘heating up’?”, “When and why does chiral symmetry break?”, ... to
the more ‘practical’: “What is the mechanism behind the mass hierarchy in Nature?”.

Theoretically-controlled methods to help find answers are hard to come by. Supersymmetry and
gauge-gravity dualities are two ideas that have given nontrivial insight in the past 20 years, but
hardly cover all theories and observables. A new method to study the nonperturbative dynamics of
asymptotically-free gauge theories emerged over the past few years [1, 2]. It is based on the use of
spatial compactification as an infrared (IR) regulator, allowing theoretically controlled semiclassical
studies of the dynamics of confinement and discrete or abelian chiral symmetry breaking (earlier
related studies [3, 4] relied mainly on supersymmetry and thus overlooked many general aspects).
Surprising new insight into gauge dynamics has already been gained from this approach and I expect
more in the future, as I describe below.

REVIEW OF RECENT PROGRESS: The spacetime manifold considered is not Minkowski space
R1,3, but rather R1,2⇥S1

L (or Euclidean R3⇥S1
L), where the radius of the spatial circle L is a control

parameter. It turns out that, in many cases, if L⇤Nc ⌧ 1 (⇤ is the strong scale and Nc the number
of colors) the theory dynamically Abelianizes due to a nontrivial holonomy expectation value. The
gauge coupling is “frozen” at a small value, making semiclassics theoretically sound.

The crucial discovery that is exploited in this setup was made almost simultaneously and inde-
pendently by the string [5] and lattice [6] communities: it was shown that four dimensional instantons
“dissociate” into constituent monopole-instantons (for SU(Nc) gauge group into Nc constituents).
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of looking at it gave rise to observations transcending supersymmetry, with deeper implications. One
kind of molecule, giving rise to confinement via the generalized Polyakov mechanism, the “magnetic
bion”, was already found in [1]. In [9], we showed that there is another kind of molecule, more
elusive, but with very interesting physical properties. We called it a “center-stabilizing bion”, later
also called “neutral bion” [17]. Its existence is less trivial to establish than that of the magnetic
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Most importantly, these monopole-instantons have no size modulus, avoiding the “IR-embarassment”
that plagues instanton studies on R4, see e.g. [7].

The first new insight to follow was by Ünsal [1], who showed that the mass gap and confinement
in QCD(adj) (QCD with adjoint instead of fundamental quarks) can be analytically understood as
due to Debye screening in a three dimensional plasma of “topological molecules”, termed “magnetic
bions”, of these monopole-instantons. The mass gap of gauge fluctuations, related to the confining
string tension, can be calculated from first principles, via a locally 4d generalization of the 3d
Polyakov mechanism [8]. The mere fact that the mechanism extends (even if only infinitesimally)
above 3d is of interest, as there are only a few cases where confinement is understood analytically,
in the continuum, in a controlled manner and starting from the microscopic degrees of freedom.1

Here, the price to pay for theoretical control is the required small size L⇤Nc ⌧ 1. As this small-L,
Abelianized, world is not quite the physical one, one might be tempted to ask: “Why bother?”. It is
important to address this “philosophical” question at the outset. I have three answers:

i. The picture of the confining vacuum and of the thermal deconfinement transition emerging from
these calculable examples is beautiful and elegant. This fact alone is very satisfying to a theorist.

ii. One might hope that upon studying a solvable example, new unexpected and interesting
features of more general utility will be encountered.

iii. Once an analytical approach is understood within its region of validity, it is tempting to
push it to, and even beyond, its limits—i.e. the approach might contain qualitative lessons for
phenomenological models of the real strongly coupled system.

We shall see that all these expectations—the initial motivation for our studies—have borne fruit.
My involvement in the subject began by a physicists’s derivation [10] of the index theorem in

monopole-instanton backgrounds, which is to this day indispensable to study QCD(adj) and other
theories [11]. It was then applied [12] to argue that the ISS model of supersymmetry breaking does
not break supersymmetry; since then, this has also been shown via the superconformal index [13]. We
also studied how the mass gap for gauge fluctuations (⇠ string tension), for a large class of chiral and
vectorlike theories, depends on the radius L [14, 15]. For all theories, we found that there is a change
of behavior, when the number of flavors is increased, with the mass gap changing from increasing
with L to decreasing with L. We suggested that this may be related to the onset of conformality
in the respective gauge theories, diagnosed by the vanishing of the mass gap in the infinite L limit.
While this lacks rigor—the semiclassical calculation loses its validity upon increase of L, except in
perhaps a few cases [15, 16]—we made the qualitative point that one should use the mass gap as a
diagnostic of conformality, not just the commonly used fermion bilinear. Another qualitative lesson
was that the nature of the light fermions in the theory can play a crucial role in the confinement
mechanism via the formation of a zoo of various topological molecules, depending on the theory.

The most interesting observations, till now, that have emerged from the R3⇥S1
L studies, however,

originated in [9]. While studying a known supersymmetric theory, the “topological molecule”2 way
of looking at it gave rise to observations transcending supersymmetry, with deeper implications. One
kind of molecule, giving rise to confinement via the generalized Polyakov mechanism, the “magnetic
bion”, was already found in [1]. In [9], we showed that there is another kind of molecule, more
elusive, but with very interesting physical properties. We called it a “center-stabilizing bion”, later
also called “neutral bion” [17]. Its existence is less trivial to establish than that of the magnetic
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Most importantly, these monopole-instantons have no size modulus, avoiding the “IR-embarassment”
that plagues instanton studies on R4, see e.g. [7].

The first new insight to follow was by Ünsal [1], who showed that the mass gap and confinement
in QCD(adj) (QCD with adjoint instead of fundamental quarks) can be analytically understood as
due to Debye screening in a three dimensional plasma of “topological molecules”, termed “magnetic
bions”, of these monopole-instantons. The mass gap of gauge fluctuations, related to the confining
string tension, can be calculated from first principles, via a locally 4d generalization of the 3d
Polyakov mechanism [8]. The mere fact that the mechanism extends (even if only infinitesimally)
above 3d is of interest, as there are only a few cases where confinement is understood analytically,
in the continuum, in a controlled manner and starting from the microscopic degrees of freedom.1

Here, the price to pay for theoretical control is the required small size L⇤Nc ⌧ 1. As this small-L,
Abelianized, world is not quite the physical one, one might be tempted to ask: “Why bother?”. It is
important to address this “philosophical” question at the outset. I have three answers:

i. The picture of the confining vacuum and of the thermal deconfinement transition emerging from
these calculable examples is beautiful and elegant. This fact alone is very satisfying to a theorist.

ii. One might hope that upon studying a solvable example, new unexpected and interesting
features of more general utility will be encountered.

iii. Once an analytical approach is understood within its region of validity, it is tempting to
push it to, and even beyond, its limits—i.e. the approach might contain qualitative lessons for
phenomenological models of the real strongly coupled system.

We shall see that all these expectations—the initial motivation for our studies—have borne fruit.
My involvement in the subject began by a physicists’s derivation [10] of the index theorem in

monopole-instanton backgrounds, which is to this day indispensable to study QCD(adj) and other
theories [11]. It was then applied [12] to argue that the ISS model of supersymmetry breaking does
not break supersymmetry; since then, this has also been shown via the superconformal index [13]. We
also studied how the mass gap for gauge fluctuations (⇠ string tension), for a large class of chiral and
vectorlike theories, depends on the radius L [14, 15]. For all theories, we found that there is a change
of behavior, when the number of flavors is increased, with the mass gap changing from increasing
with L to decreasing with L. We suggested that this may be related to the onset of conformality
in the respective gauge theories, diagnosed by the vanishing of the mass gap in the infinite L limit.
While this lacks rigor—the semiclassical calculation loses its validity upon increase of L, except in
perhaps a few cases [15, 16]—we made the qualitative point that one should use the mass gap as a
diagnostic of conformality, not just the commonly used fermion bilinear. Another qualitative lesson
was that the nature of the light fermions in the theory can play a crucial role in the confinement
mechanism via the formation of a zoo of various topological molecules, depending on the theory.

The most interesting observations, till now, that have emerged from the R3⇥S1
L studies, however,

originated in [9]. While studying a known supersymmetric theory, the “topological molecule”2 way
of looking at it gave rise to observations transcending supersymmetry, with deeper implications. One
kind of molecule, giving rise to confinement via the generalized Polyakov mechanism, the “magnetic
bion”, was already found in [1]. In [9], we showed that there is another kind of molecule, more
elusive, but with very interesting physical properties. We called it a “center-stabilizing bion”, later
also called “neutral bion” [17]. Its existence is less trivial to establish than that of the magnetic
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Most importantly, these monopole-instantons have no size modulus, avoiding the “IR-embarassment”
that plagues instanton studies on R4, see e.g. [7].

The first new insight to follow was by Ünsal [1], who showed that the mass gap and confinement
in QCD(adj) (QCD with adjoint instead of fundamental quarks) can be analytically understood as
due to Debye screening in a three dimensional plasma of “topological molecules”, termed “magnetic
bions”, of these monopole-instantons. The mass gap of gauge fluctuations, related to the confining
string tension, can be calculated from first principles, via a locally 4d generalization of the 3d
Polyakov mechanism [8]. The mere fact that the mechanism extends (even if only infinitesimally)
above 3d is of interest, as there are only a few cases where confinement is understood analytically,
in the continuum, in a controlled manner and starting from the microscopic degrees of freedom.1

Here, the price to pay for theoretical control is the required small size L⇤Nc ⌧ 1. As this small-L,
Abelianized, world is not quite the physical one, one might be tempted to ask: “Why bother?”. It is
important to address this “philosophical” question at the outset. I have three answers:

i. The picture of the confining vacuum and of the thermal deconfinement transition emerging from
these calculable examples is beautiful and elegant. This fact alone is very satisfying to a theorist.

ii. One might hope that upon studying a solvable example, new unexpected and interesting
features of more general utility will be encountered.

iii. Once an analytical approach is understood within its region of validity, it is tempting to
push it to, and even beyond, its limits—i.e. the approach might contain qualitative lessons for
phenomenological models of the real strongly coupled system.

We shall see that all these expectations—the initial motivation for our studies—have borne fruit.
My involvement in the subject began by a physicists’s derivation [10] of the index theorem in

monopole-instanton backgrounds, which is to this day indispensable to study QCD(adj) and other
theories [11]. It was then applied [12] to argue that the ISS model of supersymmetry breaking does
not break supersymmetry; since then, this has also been shown via the superconformal index [13]. We
also studied how the mass gap for gauge fluctuations (⇠ string tension), for a large class of chiral and
vectorlike theories, depends on the radius L [14, 15]. For all theories, we found that there is a change
of behavior, when the number of flavors is increased, with the mass gap changing from increasing
with L to decreasing with L. We suggested that this may be related to the onset of conformality
in the respective gauge theories, diagnosed by the vanishing of the mass gap in the infinite L limit.
While this lacks rigor—the semiclassical calculation loses its validity upon increase of L, except in
perhaps a few cases [15, 16]—we made the qualitative point that one should use the mass gap as a
diagnostic of conformality, not just the commonly used fermion bilinear. Another qualitative lesson
was that the nature of the light fermions in the theory can play a crucial role in the confinement
mechanism via the formation of a zoo of various topological molecules, depending on the theory.

The most interesting observations, till now, that have emerged from the R3⇥S1
L studies, however,

originated in [9]. While studying a known supersymmetric theory, the “topological molecule”2 way
of looking at it gave rise to observations transcending supersymmetry, with deeper implications. One
kind of molecule, giving rise to confinement via the generalized Polyakov mechanism, the “magnetic
bion”, was already found in [1]. In [9], we showed that there is another kind of molecule, more
elusive, but with very interesting physical properties. We called it a “center-stabilizing bion”, later
also called “neutral bion” [17]. Its existence is less trivial to establish than that of the magnetic
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Most importantly, these monopole-instantons have no size modulus, avoiding the “IR-embarassment”
that plagues instanton studies on R4, see e.g. [7].

The first new insight to follow was by Ünsal [1], who showed that the mass gap and confinement
in QCD(adj) (QCD with adjoint instead of fundamental quarks) can be analytically understood as
due to Debye screening in a three dimensional plasma of “topological molecules”, termed “magnetic
bions”, of these monopole-instantons. The mass gap of gauge fluctuations, related to the confining
string tension, can be calculated from first principles, via a locally 4d generalization of the 3d
Polyakov mechanism [8]. The mere fact that the mechanism extends (even if only infinitesimally)
above 3d is of interest, as there are only a few cases where confinement is understood analytically,
in the continuum, in a controlled manner and starting from the microscopic degrees of freedom.1

Here, the price to pay for theoretical control is the required small size L⇤Nc ⌧ 1. As this small-L,
Abelianized, world is not quite the physical one, one might be tempted to ask: “Why bother?”. It is
important to address this “philosophical” question at the outset. I have three answers:

i. The picture of the confining vacuum and of the thermal deconfinement transition emerging from
these calculable examples is beautiful and elegant. This fact alone is very satisfying to a theorist.

ii. One might hope that upon studying a solvable example, new unexpected and interesting
features of more general utility will be encountered.

iii. Once an analytical approach is understood within its region of validity, it is tempting to
push it to, and even beyond, its limits—i.e. the approach might contain qualitative lessons for
phenomenological models of the real strongly coupled system.

We shall see that all these expectations—the initial motivation for our studies—have borne fruit.
My involvement in the subject began by a physicists’s derivation [10] of the index theorem in

monopole-instanton backgrounds, which is to this day indispensable to study QCD(adj) and other
theories [11]. It was then applied [12] to argue that the ISS model of supersymmetry breaking does
not break supersymmetry; since then, this has also been shown via the superconformal index [13]. We
also studied how the mass gap for gauge fluctuations (⇠ string tension), for a large class of chiral and
vectorlike theories, depends on the radius L [14, 15]. For all theories, we found that there is a change
of behavior, when the number of flavors is increased, with the mass gap changing from increasing
with L to decreasing with L. We suggested that this may be related to the onset of conformality
in the respective gauge theories, diagnosed by the vanishing of the mass gap in the infinite L limit.
While this lacks rigor—the semiclassical calculation loses its validity upon increase of L, except in
perhaps a few cases [15, 16]—we made the qualitative point that one should use the mass gap as a
diagnostic of conformality, not just the commonly used fermion bilinear. Another qualitative lesson
was that the nature of the light fermions in the theory can play a crucial role in the confinement
mechanism via the formation of a zoo of various topological molecules, depending on the theory.

The most interesting observations, till now, that have emerged from the R3⇥S1
L studies, however,

originated in [9]. While studying a known supersymmetric theory, the “topological molecule”2 way
of looking at it gave rise to observations transcending supersymmetry, with deeper implications. One
kind of molecule, giving rise to confinement via the generalized Polyakov mechanism, the “magnetic
bion”, was already found in [1]. In [9], we showed that there is another kind of molecule, more
elusive, but with very interesting physical properties. We called it a “center-stabilizing bion”, later
also called “neutral bion” [17]. Its existence is less trivial to establish than that of the magnetic
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Most importantly, these monopole-instantons have no size modulus, avoiding the “IR-embarassment”
that plagues instanton studies on R4, see e.g. [7].

The first new insight to follow was by Ünsal [1], who showed that the mass gap and confinement
in QCD(adj) (QCD with adjoint instead of fundamental quarks) can be analytically understood as
due to Debye screening in a three dimensional plasma of “topological molecules”, termed “magnetic
bions”, of these monopole-instantons. The mass gap of gauge fluctuations, related to the confining
string tension, can be calculated from first principles, via a locally 4d generalization of the 3d
Polyakov mechanism [8]. The mere fact that the mechanism extends (even if only infinitesimally)
above 3d is of interest, as there are only a few cases where confinement is understood analytically,
in the continuum, in a controlled manner and starting from the microscopic degrees of freedom.1

Here, the price to pay for theoretical control is the required small size L⇤Nc ⌧ 1. As this small-L,
Abelianized, world is not quite the physical one, one might be tempted to ask: “Why bother?”. It is
important to address this “philosophical” question at the outset. I have three answers:

i. The picture of the confining vacuum and of the thermal deconfinement transition emerging from
these calculable examples is beautiful and elegant. This fact alone is very satisfying to a theorist.

ii. One might hope that upon studying a solvable example, new unexpected and interesting
features of more general utility will be encountered.

iii. Once an analytical approach is understood within its region of validity, it is tempting to
push it to, and even beyond, its limits—i.e. the approach might contain qualitative lessons for
phenomenological models of the real strongly coupled system.

We shall see that all these expectations—the initial motivation for our studies—have borne fruit.
My involvement in the subject began by a physicists’s derivation [10] of the index theorem in

monopole-instanton backgrounds, which is to this day indispensable to study QCD(adj) and other
theories [11]. It was then applied [12] to argue that the ISS model of supersymmetry breaking does
not break supersymmetry; since then, this has also been shown via the superconformal index [13]. We
also studied how the mass gap for gauge fluctuations (⇠ string tension), for a large class of chiral and
vectorlike theories, depends on the radius L [14, 15]. For all theories, we found that there is a change
of behavior, when the number of flavors is increased, with the mass gap changing from increasing
with L to decreasing with L. We suggested that this may be related to the onset of conformality
in the respective gauge theories, diagnosed by the vanishing of the mass gap in the infinite L limit.
While this lacks rigor—the semiclassical calculation loses its validity upon increase of L, except in
perhaps a few cases [15, 16]—we made the qualitative point that one should use the mass gap as a
diagnostic of conformality, not just the commonly used fermion bilinear. Another qualitative lesson
was that the nature of the light fermions in the theory can play a crucial role in the confinement
mechanism via the formation of a zoo of various topological molecules, depending on the theory.

The most interesting observations, till now, that have emerged from the R3⇥S1
L studies, however,

originated in [9]. While studying a known supersymmetric theory, the “topological molecule”2 way
of looking at it gave rise to observations transcending supersymmetry, with deeper implications. One
kind of molecule, giving rise to confinement via the generalized Polyakov mechanism, the “magnetic
bion”, was already found in [1]. In [9], we showed that there is another kind of molecule, more
elusive, but with very interesting physical properties. We called it a “center-stabilizing bion”, later
also called “neutral bion” [17]. Its existence is less trivial to establish than that of the magnetic
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1. confinement on R^3 x S^1, size of circle- L: 

dYM: pure YM with particular double-trace “deformation”

in each case, dynamical* abelianization at 1/(NL) 

We study SU(N) in the regime
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N-1 massless  “photons”no light states charged under the 

since only adjoint fields, massless states after breaking neutral under Cartan 

i.)

in the regime we study, perturbative IR dynamics boring: 
free U(1)s + light neutral Cartan subalgebra “gauginos” in QCD(adj)

not by “maximal abelian gauge” !*



in each case, the theory abelianizes at a scale 1/(NL) 
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i.)
in the regime we study, perturbative IR dynamics boring: 
free U(1)s + Cartan components of gauginos in QCD(adj)

ii.)nonperturbatively, however, the dynamics is quite rich
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theory has instanton solutions

these change the IR behavior of the theory and 
generate a mass gap (Polyakov mechanism in a locally 4d setting)

P SU(2):

1. confinement on R^3 x S^1, size of circle- L: 

Cartan

Chapter 1. Introduction and Outline 5

Figure 1.2: The running of the coupling of QCD and non-Abelian gauge theories. The blue line indicates
the strong coupling scale ⇤ where the gauge coupling becomes of order 1, and the red line indicates the
leveling o↵ of the coupling at a small value at energies less than ⇡ 1/NL.

Figure 1.3: Running of the QED coupling.

energy scale

1/L gauge coupling “freezes” (Higgsed) to a small value a scale 1/L
boring perturbative IR dynamics

SYM: Seiberg, Witten/Aharony,Intriligator,Hanany,Seiberg,Strassler
SYM & non-SYM:Unsal w/ Yaffe,Shifman...



usual monopole 
trivially
embedded in 4d

M

KK
Wilson line breaks SU(2) to U(1) so there are monopole-instantons

For SU(N), 4d BPST instanton 
dissociates into N constituents:

As opposed to 4d BPST instantons, have long-range “magnetic field”.
Dilute monopole-instanton gas - as in SM to obtain  ‘t Hooft vertex 
(qqql)^3  = 3d dilute - but Coulomb! - gas 
      [this is all non-experts need to accept/believe/ to understand study of strings]

1. confinement on R^3 x S^1, size of circle- L: 
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sigma = dual photon field

spatial gradient = 3d electric fieldtime derivative = 
3d magnetic field monodromy of sigma around a spatial loop = 

electric charge inside

1. confinement on R^3 x S^1, size of circle- L: 
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electric coupling ~ 4d coupling at 1/L
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Main result 

[Polyakov, 1970’s]:

for SU(2), only one dual photon (Cartan)
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sigma = dual photon field

time derivative = 
3d magnetic field
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electric coupling ~ 4d coupling at 1/L
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Main result 

[Polyakov, 1970’s]:

for SU(2), only one dual photon (Cartan)
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“’t Hooft vertex” = 
monopole operator

“magnetic charge       
 operator” at fixed time, 

creates unit magnetic vortex
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monopole-instanton 
fugacity 

same as before, except N-1 dual photons and N monopole-instantons

Z ⇠
Z

D� e

�e

2
R
dx (@

i

�)

2 X

n+

⇣

n+

n

+

!

⇣
dx e

i�(x)

⌘
n+ X

n�

⇣

n�

n�!

⇣
dy e

�i�(y)

⌘
n�

Z ⇠
Z

D� e

�e

2
R
dx (@

i

�)

2
e

i⇣

R
dx e

i�(x)
e

�i⇣

R
dy e

�i�(y)
=

Z ⇠
Z

D� e

R
dx

[

�e

2
(@

i

�)

2
+⇣ cos�(x)

]

Z ⇠
Z

D� e

�
R
dxL

eff

(x)

, L

eff

(x) = e

2

(@

i

�)

2 � ⇣ cos�(x)

Z[j] = hei
R
dxj(x)⇢

m

(x)i, L

eff

(x) = e

2

(@

i

�)

2 � ⇣ cos(�(x) + j(x))

e

2

=

g

2

L

, g

2 ⇠ g

2

4

(1/L)

@

0

� ⇠ L

g

2

F

12

@

i

� ⇠ L

g

2

✏

ij

E

j

, j = 1, 2

⇣ ⇠ L

�3

e

� 4⇡2

g

2

⇣ ⇠ L

�3

e

� 8⇡2

g

2

L

dYM

eff

=

g

2

L

(@

i

~�)

2 �
NX

i

⇣ cos ~↵

i

· ~�

L

dYM

eff

= M

"
(@

i

~�)

2 �
NX

i

m

2

cos ~↵

i

· ~�
#

L

QCD(adj)

eff

=

g

2

L

(@

i

~�)

2 �
NX

i

⇣ cos(~↵

i

� ~↵

j(modN)

) · ~�

L

QCD(adj)

eff

= M

"
(@

i

~�)

2 �
NX

i

m

2

cos(~↵

i

� ~↵

j(modN)

) · ~�
#

~↵

1

= (1,�1, 0, 0, ...0)

2

~↵

2

= (0, 1,�1, 0, ...0)

~↵

N�1

= (0, 0, 0, ...0, 1,�1)

~↵

N

= (�1, 0, 0, ...0,�1)

3

~↵

2

= (0, 1,�1, 0, ...0)

~↵

N�1

= (0, 0, 0, ...0, 1,�1)

~↵

N

= (�1, 0, 0, ...0,�1)

3

 monopole-instanton charges (under U(1)   , convenient basis)=all simple+lowest root

1. confinement on R^3 x S^1, size of circle- L: 
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same as before, except N-1 dual photons and N monopole-instantons

formulae reveal different confinement mechanisms in dYM and QCD(adj): 
monopole instantons vs “magnetic bions”

monopole instantons

magnetic bions
“bound states” of monopole instantons and anti-monopole instantons
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 monopole-instanton charges (under U(1)   , convenient basis)=all simple+lowest root
N

“topological molecules”, or
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monopole instantons

magnetic bions
“bound states” of monopole instantons and anti-monopole instantons

a crucial - for strings - property, most easily seen QCD(adj) L_eff:
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Z    Weyl symmetry (due to center stability)

formulae reveal different confinement mechanisms in dYM and QCD(adj): 
monopole instantons vs “magnetic bions”

later also denote by 



Z ⇠
Z

D� e

�e

2
R
dx (@

i

�)

2 X

n+

⇣

n+

n

+

!

⇣
dx e

i�(x)

⌘
n+ X

n�

⇣

n�

n�!

⇣
dy e

�i�(y)

⌘
n�

Z ⇠
Z

D� e

�e

2
R
dx (@

i

�)

2
e

i⇣

R
dx e

i�(x)
e

�i⇣

R
dy e

�i�(y)
=

Z ⇠
Z

D� e

R
dx

[

�e

2
(@

i

�)

2
+⇣ cos�(x)

]

Z ⇠
Z

D� e

�
R
dxL

eff

(x)

, L

eff

(x) = e

2

(@

i

�)

2 � ⇣ cos�(x)

Z[j] = hei
R
dxj(x)⇢

m

(x)i, L

eff

(x) = e

2

(@

i

�)

2 � ⇣ cos(�(x) + j(x))

e

2

=

g

2

L

, g

2 ⇠ g

2

4

(1/L)

@

0

� ⇠ L

g

2

F

12

@

i

� ⇠ L

g

2

✏

ij

E

j

, j = 1, 2

⇣ ⇠ L

�3

e

� 4⇡2

g

2

⇣ ⇠ L

�3

e

� 8⇡2

g

2

L

dYM

eff

=

g

2

L

(@

i

~�)

2 �
NX

i

⇣ cos ~↵

i

· ~�

L

dYM

eff

= M

"
(@

i

~�)

2 �
NX

i

m

2

cos ~↵

i

· ~�
#

L

QCD(adj)

eff

=

g

2

L

(@

i

~�)

2 �
NX

i

⇣ cos(~↵

i

� ~↵

j(modN)

) · ~�

L

QCD(adj)

eff

= M

"
(@

i

~�)

2 �
NX

i

m

2

cos(~↵

i

� ~↵

j(modN)

) · ~�
#

~↵

1

= (1,�1, 0, 0, ...0)

2

1I. confining strings in QCD(adj) and dYM:

probe for confinement - area law for quarks in representation 

Brief Article

The Author

April 27, 2015

R

WR(C) = trR Pe

i

H
A

k

dx

k ⇠ e

�RT⌃

str.

NL⇤ ⌧ 1

~↵

j

· ~� ! ~↵

j+1(modN)

· ~�

~� ! P~�

P = s

↵

N�1s↵N�2 ...s↵2s↵1

s

↵

~v = ~v � 2~↵

~v · ~↵
~↵ · ~↵

SU(N) ! U(1)

N�1

1

NL

� ⇤

Z =

X

n+,n�

dx

1

...dx

n

⇣

n++n�

n

+

!n�!
e

�
n++n�P

a,b

1
e

2
q

a

q

b

|x
a

�x

b

|

q

a

, q

b

= ±1

1

e

2

1

in the abelian regime of small L, simplify: 

Brief Article

The Author

April 27, 2015

R

WR(C) = trR Pe

i
H
C

A
k

dxk

⇠ e

�Area(C)⌃

str.

WR(C) =

X

H2R
trR e

i ~H·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
R

S:@S=C

~B
normal

d2x

=

X

~⌫2R
e

i~⌫·~�(S(C))

NL⇤ ⌧ 1

~↵j · ~� ! ~↵j+1(modN)

· ~�

~� ! P~�

P = s↵
N�1

s↵
N�2

...s↵
2

s↵
1

s↵~v = ~v � 2~↵

~v · ~↵
~↵ · ~↵

SU(N) ! U(1)

N�1

1

NL

� ⇤

1

Brief Article

The Author

April 27, 2015

R

WR(C) = trR Pe

i
H
C

A
k

dxk

⇠ e

�Area(C)⌃

str.

WR(C) =

X

H2R
trR e

i ~H·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
R

S:@S=C

~B
normal

d2x

=

X

~⌫2R
e

i~⌫·~�(S(C))

NL⇤ ⌧ 1

~↵j · ~� ! ~↵j+1(modN)

· ~�

~� ! P~�

P = s↵
N�1

s↵
N�2

...s↵
2

s↵
1

s↵~v = ~v � 2~↵

~v · ~↵
~↵ · ~↵

SU(N) ! U(1)

N�1

1

NL

� ⇤

1

Brief Article

The Author

April 27, 2015

R

WR(C) = trR Pe

i
H
C

A
k

dxk

⇠ e

�Area(C)⌃

str.

WR(C) =

X

H2R
trR e

i ~H·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
R

S:@S=C

~B
normal

d2x

=

X

~⌫2R
e

i~⌫·~�(S(C))

NL⇤ ⌧ 1

~↵j · ~� ! ~↵j+1(modN)

· ~�

~� ! P~�

P = s↵
N�1

s↵
N�2

...s↵
2

s↵
1

s↵~v = ~v � 2~↵

~v · ~↵
~↵ · ~↵

SU(N) ! U(1)

N�1

1

NL

� ⇤

1

Z ⇠
Z

D� e

�e2
R
dx (@

i

�)2
X

n
+

⇣

n
+

n

+

!

⇣
dx e

i�(x)
⌘n

+

X

n�

⇣

n�

n�!

⇣
dy e

�i�(y)
⌘n�

Z ⇠
Z

D� e

�e2
R
dx (@

i

�)2
e

i⇣
R
dx ei�(x)

e

�i⇣
R
dy e�i�(y)

=

Z ⇠
Z

D� e

R
dx

[

�e2(@
i

�)2+⇣ cos�(x)
]

Z ⇠
Z

D� e

�
R
dxL

eff

(x)
, Leff (x) = e

2

(@i�)
2 � ⇣ cos�(x)

Z[j] = hei
R
dxj(x)⇢

m

(x)i, Leff (x) = e

2

(@i�)
2 � ⇣ cos(�(x) + j(x))

e

2

=

g

2

L

, g

2 ⇠ g

2

4

(1/L)

@

0

� ⇠ L

g

2

F

12

@i� ⇠ L

g

2

✏ijEj , j = 1, 2

⇣ ⇠ L

�3

e

� 4⇡

2

g

2

⇣ ⇠ L

�3

e

� 8⇡

2

g

2

L

dYM
eff =

g

2

L

(@i~�)
2 �

NX

i

⇣ cos ~↵i · ~�

L

dYM
eff = M

"
(@i~�)

2 �
NX

i

m

2

cos ~↵i · ~�
#

L

QCD(adj)
eff =

g

2

L

(@i~�)
2 �

NX

i

⇣ cos(~↵i � ~↵i�1(modN)

) · ~�

L

QCD(adj)
eff = M

"
(@i~�)

2 �
NX

i

m

2

cos(~↵i � ~↵i�1(modN)

) · ~�
#

~↵

1

= (1,�1, 0, 0, ...0)

3

: all we need is magnetic flux through C
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: all we need is magnetic flux through C

picture: euclidean gas of monopoles with density 
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: all we need is magnetic flux through C
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 all goes through for a multimonopole gas: 



1I. confining strings in QCD(adj) and dYM:

Brief Article

The Author

April 27, 2015

R

WR(C) = trR Pe

i
H
C

A
k

dxk

⇠ e

�Area(C)⌃

str.

WR(C) =

X

H2R
trR e

i ~H·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
R

S:@S=C

~B
normal

d2x

=

X

~⌫2R
e

i~⌫·~�(S(C))

hWR(C)i =
X

~⌫2R
hei~⌫·~�(S(C))i

NL⇤ ⌧ 1

~↵j · ~� ! ~↵j+1(modN)

· ~�

~� ! P~�

P = s↵
N�1

s↵
N�2

...s↵
2

s↵
1

s↵~v = ~v � 2~↵

~v · ~↵
~↵ · ~↵

SU(N) ! U(1)

N�1

1

quarks with charges 

Brief Article

The Author

April 27, 2015

~�(x) ! ~�(x) + ~⌫⌘C(x)

~⇢ · ~⌫ 2 1

2

Z

R

W (~⌫) =

Z
D� exp

2

4�M

Z

R3

(@~�)

2 �Mm

2

Z

R3

NX

i=1

⇢
cos ~↵i · (~� + ~⌫⌘C)

cos

~

(↵i � ↵i+1(modN)

) · (~� + ~⌫⌘C)

3

5

WR(C) = trR Pe

i
H
C

A
k

dxk

⇠ e

�Area(C)⌃

str.

WR(C) =

X

H2R
trR e

i ~H·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
R

S:@S=C

~B
normal

d2x

=

X

~⌫2R
e

i~⌫·~�(S(C))

hWR(C)i =
X

~⌫2R
hei~⌫·~�(S(C))i

hei~⌫·~�(S(C))i = hei~⌫·
R
d3x~⇢

m

(x)⌘
C

(x)i

NL⇤ ⌧ 1

~↵j · ~� ! ~↵j+1(modN)

· ~�

1

Wilson loop-

dYM

QCD(adj)

Brief Article

The Author

April 27, 2015

~�(x) ! ~�(x) + ~⌫⌘C(x)

~⇢ · ~⌫ 2 1

2

Z

R

hW (~⌫)i =
Z

D� exp

2

4�M

Z

R3

(@~�)

2 �Mm

2

Z

R3

NX

i=1

⇢
cos ~↵i · (~� + ~⌫⌘C)

cos(~↵i � ~↵i�1(modN)

) · (~� + ~⌫⌘C)

3

5

r2

~� �m

2

NX

i=1

~↵i sin ~↵i · (~� + ~⌫⌘C) = 0

r2

~� �m

2

NX

i=1

(~↵i � ~↵i+1(modN)

) sin(~↵i � ~↵i+1(modN)

) · (~� + ~⌫⌘C) = 0

WR(C) = trR Pe

i
H
C

A
k

dxk

⇠ e

�Area(C)⌃

str.

WR(C) =

X

H2R
trR e

i ~H·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
R

S:@S=C

~B
normal

d2x

=

X

~⌫2R
e

i~⌫·~�(S(C))

hWR(C)i =
X

~⌫2R
hei~⌫·~�(S(C))i

1

dYM

QCD(adj)

Brief Article

The Author

April 27, 2015

~�(x) ! ~�(x) + ~⌫⌘C(x)

~⇢ · ~⌫ 2 1

2

Z

R

hW (~⌫)i =
Z

D� exp

2

4�M

Z

R3

(@~�)

2 �Mm

2

Z

R3

NX

i=1

⇢
cos ~↵i · (~� + ~⌫⌘C)

cos(~↵i � ~↵i�1(modN)

) · (~� + ~⌫⌘C)

3

5

r2

~� �m

2

NX

i=1

~↵i sin ~↵i · (~� + ~⌫⌘C) = 0

r2

~� �m

2

NX

i=1

(~↵i � ~↵i+1(modN)

) sin(~↵i � ~↵i+1(modN)

) · (~� + ~⌫⌘C) = 0

WR(C) = trR Pe

i
H
C

A
k

dxk

⇠ e

�Area(C)⌃

str.

WR(C) =

X

H2R
trR e

i ~H·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
R

S:@S=C

~B
normal

d2x

=

X

~⌫2R
e

i~⌫·~�(S(C))

hWR(C)i =
X

~⌫2R
hei~⌫·~�(S(C))i

1

Brief Article

The Author

April 27, 2015

~�(x) ! ~�(x) + ~⌫⌘C(x)

~⇢ · ~⌫ 2 1

2

Z

R

hW (~⌫)i =
Z

D� exp

2

4�M

Z

R3

(@~�)

2 �Mm

2

Z

R3

NX

i=1

⇢
cos ~↵i · (~� + ~⌫⌘C)

cos(~↵i � ~↵i�1(modN)

) · (~� + ~⌫⌘C)

3

5

r2

~� �m

2

NX

i=1

~↵i sin ~↵i · (~� + ~⌫⌘C) = 0

r2

~� �m

2

NX

i=1

(~↵i � ~↵i�1(modN)

) sin(~↵i � ~↵i�1(modN)

) · (~� + ~⌫⌘C) = 0

WR(C) = trR Pe

i
H
C

A
k

dxk

⇠ e

�Area(C)⌃

str.

WR(C) =

X

H2R
trR e

i ~H·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
R

S:@S=C

~B
normal

d2x

=

X

~⌫2R
e

i~⌫·~�(S(C))

hWR(C)i =
X

~⌫2R
hei~⌫·~�(S(C))i

1

Semiclassically,  

Brief Article

The Author

April 27, 2015

~�(x) ! ~�(x) + ~⌫⌘C(x)

~⇢ · ~⌫ 2 1

2

Z

R

hW (~⌫)i ⇠ e

�S[~�
class.

]

,

hW (~⌫)i =
Z

D� exp

2

4�M

Z

R3

(@~�)

2 �Mm

2

Z

R3

NX

i=1

⇢
cos ~↵i · (~� + ~⌫⌘C)

cos(~↵i � ~↵i�1(modN)

) · (~� + ~⌫⌘C)

3

5

r2

~� �m

2

NX

i=1

~↵i sin ~↵i · (~� + ~⌫⌘C) = 0

r2

~� �m

2

NX

i=1

(~↵i � ~↵i�1(modN)

) sin(~↵i � ~↵i�1(modN)

) · (~� + ~⌫⌘C) = 0

WR(C) = trR Pe

i
H
C

A
k

dxk

⇠ e

�Area(C)⌃

str.

WR(C) =

X

H2R
trR e

i ~H·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
R

S:@S=C

~B
normal

d2x

=

X

~⌫2R
e

i~⌫·~�(S(C))

1

where 

Brief Article

The Author

April 27, 2015

~�(x) ! ~�(x) + ~⌫⌘C(x)

~⇢ · ~⌫ 2 1

2

Z

R

hW (~⌫)i ⇠ e

�S[~�
class.

]

,

hW (~⌫)i =
Z

D� exp

2

4�M

Z

R3

(@~�)

2 �Mm

2

Z

R3

NX

i=1

⇢
cos ~↵i · (~� + ~⌫⌘C)

cos(~↵i � ~↵i�1(modN)

) · (~� + ~⌫⌘C)

3

5

r2

~� �m

2

NX

i=1

~↵i sin ~↵i · (~� + ~⌫⌘C) = 0

r2

~� �m

2

NX

i=1

(~↵i � ~↵i�1(modN)

) sin(~↵i � ~↵i�1(modN)

) · (~� + ~⌫⌘C) = 0

WR(C) = trR Pe

i
H
C

A
k

dxk

⇠ e

�Area(C)⌃

str.

WR(C) =

X

H2R
trR e

i ~H·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

=

X

~⌫2R
e

i~⌫·
H
C

~A
k

dxk

=

X

~⌫2R
e

i~⌫·
R

S:@S=C

~B
normal

d2x

=

X

~⌫2R
e

i~⌫·~�(S(C))

1

solves:

=

X

~⌫2R
hW (~⌫)i

hWR(C)i =
X

~⌫2R
hei~⌫·~�(S(C))i

hei~⌫·~�(S(C))i = hei~⌫·
R
d3x~⇢

m

(x)⌘
C

(x)i

NL⇤ ⌧ 1

~↵j · ~� ! ~↵j+1(modN)

· ~�

~� ! P~�

P = s↵
N�1

s↵
N�2

...s↵
2

s↵
1

s↵~v = ~v � 2~↵

~v · ~↵
~↵ · ~↵

SU(N) ! U(1)

N�1

1

NL

� ⇤

Z =

X

n
+

,n�

dx

1

...dxn
⇣

n
+

+n�

n

+

!n�!
e

�
n

+

+n�P
a,b

1

e

2

q

a

q

b

|x
a

�x

b

|

qa, qb = ±1

1

e

2

e

1

e

2

1

|r
1

�r

2

| ⇠
Z

D� e

�e2
R
dx (@

i

�(x))2
e

i�(r
1

)�i�(r
2

)

, etc.

Z ⇠
Z

D� e

�e2
R
dx (@

i

�)2
X

n
+

,n�

dx

1

...dxn
⇣

n
+

+n�

n

+

!n�!
e

n

+

+n�P
a

iq
a

�(x
a

)

2

These equations are great for numerics, for any contour C, via Gauss-
Seidel relaxation - diffusion process in (discrete, fictitious) “time” t relaxes 
to minimum of action
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Simply put, we are looking for solutions of the equations of motion 
with dual photon monodromy     around C (recall monodromy=electric charge!)
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 no such charges allowed by Dirac; 
(in fact these are genuine DWs separating Z  vacua)

two vacua (broken chiral Z )
DW 1: el. flux  
DW 2: el. flux -  
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So, whatever configuration has 2   monodromy - to confine quarks - must be 
composed of two walls... wall 1 followed by anti-wall 2* has correct flux

e.g., both DWs have “1/2-quark” fluxes,
    not 2 

in SYM, both 1 and 2 DWs are BPS
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1I. confining strings in QCD(adj) and dYM:

2
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(3)

� winds by 2⇡

R

FIG. 1: Left: the Wilson loop and the monodromy of �.
Right: Sketch of the confining string configuration �̄ with the
correct monodromy, composed of two domain walls. The dot
and cross represent probe quarks a distance R apart. The
maximum distance between the walls, of thickness 1/m, is d.

metry (the R-symmetry in SYM).
Confinement is detected by the area law for the Wilson

loop in a representation R, taken along a closed contour
C, W (C, R)⌘ TrRP exp(i

H
C

A). For an SU(2) funda-
mental representation, we need to compute the expecta-
tion value of W (C,

1

2

) ⇠ exp( i

2

H
C

A

(3))= exp( i

2

R
S

B

(3)).

Here A

(3) is the (electric) gauge field in the Cartan di-
rection, B

(3)=dA

(3) is its field strength, and S is a sur-
face spanning C (the omitted second contribution to the
trace of the fundamental Wilson loop gives an identical
area law).

Insertion of the Wilson loop in the dual language of
the � field (recalling that �⇠� + 2⇡) amounts to the fol-
lowing instruction [4]: erase the contour from the space,
and have � wind by 2⇡ for any contour which has link-
ing number one with the Wilson loop—a 2⇡ monodromy
(see left panel of Fig. 1). Take a rectangular contour in
the y�x-plane (y is Euclidean time) with span T (R)
in the y (x)-direction. For infinite R and T , � jumps
by 2⇡ upon crossing the y�x plane. If the potential in
(1) was—as in Polyakov’s original 3d SU(2) gauge the-
ory with an adjoint Higgs field—cos �, the field configu-
ration extremizing the action (1) with the correct mon-
odromy, which we denote �̄, would be equivalent [4] to a
domain wall with y�x-plane worldvolume, where �̄ would
change by 2⇡ as z varies between ±1. We would have
W (C,

1

2

) ⇠ e

�⌃strRT , with string tension ⌃
str

propor-
tional to the domain wall tension (for a recent review see
[21]).

The physical di↵erence between monopole-instanton
confinement in the 3d Polyakov model and QCD(adj)
on R3 ⇥ S1—the fact that the magnetic bions have mag-
netic charge two—is reflected in the cos 2� potential (1).
Now, the �̄-field configuration with the right monodromy
has to be more complicated than a single domain wall.
To study it, we keep the time (y) extent of C infinite
and consider a finite spatial (x) extent R. As the �̄ con-
figuration has monodromy 2⇡ across C, in this simple
one-field case it is clear that (since the periodicity of the
cos 2� potential is ⇡) the string has to be composed of
two domain walls. To get a picture of the extremal con-
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FIG. 2: The action density of the confining string �̄ obtained
by numerically minimizing, via Gauss-Seidel relaxation, the
action (1) with the correct monodromies. The lattice has
spacing 1/M , size 100 ⇥ 100, and M/m = 20. The classical
logR growth of the transverse separation from the model of
Fig. 1 is also seen to hold upon studying di↵erent size strings.

figuration, consider Fig. 1, with parameters R, d defined
in the caption. A sketch of a two-domain wall configura-
tion is shown, with the second infinite worldvolume direc-
tion (the time y) perpendicular to the page. The action
has two parts, excluding contributions from the junctions
(subleading at large R): the tension of the two domain
walls, proportional to twice their area (we take T (R + d)
as the area) and the wall-wall long-distance repulsion
(⇠e

�md). Thus, S ⇠ MmT (R + d) + MmTRe

�md, up
to numerical factors. Extremizing with respect to d, we
find md⇤ ⇠ log mR, a logarithmic growth of the trans-
verse size of the confining string configuration with the
separation between the probe charges.

Remarkably, the above simple model captures the be-
havior of the actual extremum of (1), shown on Fig. 2,
including the log R growth of the transverse size. Our
remarks so far also hold for deformed-YM theory [22],
where, for ✓=⇡ [23] the single monopole contribution van-
ishes.

The adjoint fermions were, so far, ignored. Their Car-
tan components have an e↵ective Lagrangian [1]

L
F

= M

h
i�̄�̄

µ

@

µ

� +
m cos �

2M

nf �1

[(��)nf + h.c.]
i

. (2)

We omitted, for brevity, a summation over the n

f

flavor
indices in the kinetic term and a product over the flavor
indices in the interaction term (the ’t Hooft determinant
in the monopole-instanton background). The field � is
also set to its vanishing vev. For SYM, apart from omit-
ting �, (2) has correct normalization. It is, in fact, the
e↵ect of the fermions on the confining string where the
di↵erence between SYM and QCD(adj) with n

f

>1 shows
up most profoundly.

In SYM, the fermions are massive in the �=0, ⇡ vacua.
They have exact zero modes in a single domain wall

wall action (model) 1-2* repulsion

or via numerical minimization via Gauss-Seidel (logR growth of d holds)

physically, the reason for the 
compositeness of the string is the 
composite nature of magnetic bions

(also, for all SU(N), as we’ll see)

implications for DWs and strings... next:
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FIG. 1: Left: the Wilson loop and the monodromy of �.
Right: Sketch of the confining string configuration �̄ with the
correct monodromy, composed of two domain walls. The dot
and cross represent probe quarks a distance R apart. The
maximum distance between the walls, of thickness 1/m, is d.
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face spanning C (the omitted second contribution to the
trace of the fundamental Wilson loop gives an identical
area law).

Insertion of the Wilson loop in the dual language of
the � field (recalling that �⇠� + 2⇡) amounts to the fol-
lowing instruction [4]: erase the contour from the space,
and have � wind by 2⇡ for any contour which has link-
ing number one with the Wilson loop—a 2⇡ monodromy
(see left panel of Fig. 1). Take a rectangular contour in
the y�x-plane (y is Euclidean time) with span T (R)
in the y (x)-direction. For infinite R and T , � jumps
by 2⇡ upon crossing the y�x plane. If the potential in
(1) was—as in Polyakov’s original 3d SU(2) gauge the-
ory with an adjoint Higgs field—cos �, the field configu-
ration extremizing the action (1) with the correct mon-
odromy, which we denote �̄, would be equivalent [4] to a
domain wall with y�x-plane worldvolume, where �̄ would
change by 2⇡ as z varies between ±1. We would have
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tional to the domain wall tension (for a recent review see
[21]).

The physical di↵erence between monopole-instanton
confinement in the 3d Polyakov model and QCD(adj)
on R3 ⇥ S1—the fact that the magnetic bions have mag-
netic charge two—is reflected in the cos 2� potential (1).
Now, the �̄-field configuration with the right monodromy
has to be more complicated than a single domain wall.
To study it, we keep the time (y) extent of C infinite
and consider a finite spatial (x) extent R. As the �̄ con-
figuration has monodromy 2⇡ across C, in this simple
one-field case it is clear that (since the periodicity of the
cos 2� potential is ⇡) the string has to be composed of
two domain walls. To get a picture of the extremal con-
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FIG. 2: The action density of the confining string �̄ obtained
by numerically minimizing, via Gauss-Seidel relaxation, the
action (1) with the correct monodromies. The lattice has
spacing 1/M , size 100 ⇥ 100, and M/m = 20. The classical
logR growth of the transverse separation from the model of
Fig. 1 is also seen to hold upon studying di↵erent size strings.

figuration, consider Fig. 1, with parameters R, d defined
in the caption. A sketch of a two-domain wall configura-
tion is shown, with the second infinite worldvolume direc-
tion (the time y) perpendicular to the page. The action
has two parts, excluding contributions from the junctions
(subleading at large R): the tension of the two domain
walls, proportional to twice their area (we take T (R + d)
as the area) and the wall-wall long-distance repulsion
(⇠e

�md). Thus, S ⇠ MmT (R + d) + MmTRe

�md, up
to numerical factors. Extremizing with respect to d, we
find md⇤ ⇠ log mR, a logarithmic growth of the trans-
verse size of the confining string configuration with the
separation between the probe charges.

Remarkably, the above simple model captures the be-
havior of the actual extremum of (1), shown on Fig. 2,
including the log R growth of the transverse size. Our
remarks so far also hold for deformed-YM theory [22],
where, for ✓=⇡ [23] the single monopole contribution van-
ishes.

The adjoint fermions were, so far, ignored. Their Car-
tan components have an e↵ective Lagrangian [1]

L
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= M

h
i�̄�̄

µ
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� +
m cos �
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nf �1

[(��)nf + h.c.]
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. (2)

We omitted, for brevity, a summation over the n

f

flavor
indices in the kinetic term and a product over the flavor
indices in the interaction term (the ’t Hooft determinant
in the monopole-instanton background). The field � is
also set to its vanishing vev. For SYM, apart from omit-
ting �, (2) has correct normalization. It is, in fact, the
e↵ect of the fermions on the confining string where the
di↵erence between SYM and QCD(adj) with n

f

>1 shows
up most profoundly.

In SYM, the fermions are massive in the �=0, ⇡ vacua.
They have exact zero modes in a single domain wall

(semiclassically, 
 w/out massless fermion exchange)
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1I. confining strings in QCD(adj) and dYM:

the picture or strings “made out” of DWs also implies that confining strings 
can end on DWs
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,
of

w
h
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h
w

e
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st
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su
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,
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si
m

il
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C
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im
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en

-
er

gy
ca

lc
u
la

ti
on

s.
F
er

m
io

n
lo

op
s

ar
e
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u
n
d
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ge

n
er

at
e

a
w
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l-
w
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l

at
tr

ac
ti

on
at
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rg

e
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.

P
er

u
n
it
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m
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⇠
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,
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in
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g
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e
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ic
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⇠
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m
e

�
m

d
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rg
e

d
.

T
h
e

ex
p
re

ss
io

n
fo

r
th

e
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ti
on

of
ou

r
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y
m

od
el

,w
it

h
fe

rm
io

n
at

tr
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ti
on
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u
d
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S

=
R

(T
+

d
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m
+

R
T

M
m

e

�
m
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�
R

T
m

2

� m M

� 4n f
/

(m
d
)4

n

f
�

4
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T

h
e

ex
tr
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n
d
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n
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w
h
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h
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e
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rm
d
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s
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b
u
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)
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n
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�
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⇠
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�
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⇡

2
(
4
n
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)
/
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2

/
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f
�

3

.
A

t
sm

al
l

g

2

,
w

e
th

u
s

h
av

e
m

d
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⇡
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2
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n

f

+
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/
g

2

,
a

st
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le
w
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l-
w
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l

se
p
ar

at
io

n
p
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et
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ll
y

la
rg

e
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m
p
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e
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n
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e
d
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n

w
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l
w
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.
N

u
m
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n
fi
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at
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n
of
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e
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ed
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e
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d

⇤
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th
e
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n
g
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n
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b
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at
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n
is

re
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l
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A
s
a
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se
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en
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of

th
e

st
ab

il
iz

ed
tr

an
sv

er
se

si
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of
th

e
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n
fi
n
in

g
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n
g
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n
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>
1

Q
C

D
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d
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,
th

e
se
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n
d

tr
an
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ti
on
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G
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d
st
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e

m
od

e,
th

e
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”
m

od
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e
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w
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,
is

n
ow
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p
p
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n
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R
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h
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b
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,
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n
b
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l-
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ra
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⇠
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�
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⇡
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2
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f
/
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T

h
e

b
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at
h
er

m
od

e
m
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s

m

b
r
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n
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e
on

th
e

st
ri

n
g

w
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ee
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w
el

l
b
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th

e
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—
th

e
b
u
lk

m
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s
ga

p
m
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r
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u
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u
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u
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n
s.

T
h
e
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ct

th
at
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e
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n
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e
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p
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t
of

d
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ai
n

w
al
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W
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–
a
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tu

at
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n
op

p
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w

h
at

w
as
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gg

es
te

d
in

[2
5]

–
h
as

d
ra

st
ic

im
p
li
ca

ti
on

s
on

h
ow

th
e

fu
n
d
am

en
-

ta
l
qu

ar
ks

in
te

ra
ct

w
it

h
D

W
s.

F
or

S
U

(2
)

th
er

e
ar

e
tw

o
ty

p
es
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D

W
s,

w
h
ic

h
w

e
la

b
el

B
P

S
1

an
d

B
P

S
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,
an

d
th
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r

an
ti
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al
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.

T
h
e

d
is

ti
n
ct

io
n
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in

th
e

el
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tr
ic

fl
u
xe

s
w

h
ic

h
th
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b
u
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b
ot

h
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ti
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y
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e
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m
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B
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S
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u
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,
e.

g.
[2

6]
.

T
h
e

fu
n
d
am

en
ta

l
st

ri
n
g

is
m

ad
e

ou
t

of

2
)

1
)

3
)

F
IG

.
3
:

A
sk
et
ch

o
f
h
ow

a
qq̄

p
a
ir

ca
n

fu
se

in
to

th
e
D
W

(f
ro
m

le
ft

to
ri
g
h
t)
.
T
h
e
sh
a
d
ed

a
n
d
w
h
it
e
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g
io
n
s
re
p
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n
t

d
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n
ct

va
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f
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ry
.
T
h
e
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li
d
b
la
ck
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n
e
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p
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se
n
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e
B
P
S
1
D
W

,
w
h
il
e
th
e
d
a
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n
e
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p
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n
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e
a
n
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P
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D
W
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w
h
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e
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e
a
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s
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p
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n
t
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r
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u
x
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T
h
e

b
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ck
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e
q
u
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n
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e
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u
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T
h
e
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e
u
p
p
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s
a
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n
d
a
m
en
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l
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ri
n
g
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d
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g
o
n
a

D
W
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e

B
P

S
1
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d
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P
S

2

,
w

h
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2
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e
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n
d
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l
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ec
tr
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fl
u
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u
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p
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r
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e
D

W
,
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,
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e
D

W
fl
u
x
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n
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n
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l
p
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t
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e
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u
x
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q
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p
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d
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to
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s
w
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e
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.
3.

T
h
e

q
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p
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e

D
W
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b
e
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b
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e
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n
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p
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r
h
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b
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W
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n
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T
h
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s
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d
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n
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n
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e
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W
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T

h
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re

m
in
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e

D
W

lo
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w

h
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th
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.
W

e
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n
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e
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a
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n
H
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va
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u
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e
p
ai
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h
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e
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p
p
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b
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8,

29
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n
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e
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W
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p
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n
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y
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F
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.
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.
In

M
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C
D

,
S
Y

M
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ri
n
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h
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e
b
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n
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d
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D
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d
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p
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n
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R
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,
u
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n
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u
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u
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d
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n
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b
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d
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h
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e

li
gh

t
d
eg

re
es

of
fr

ee
d
om

le
ft

af
te

r
S

U
(N

c

)!
U

(1
)N

c
�

1

b
re

ak
in

g.
It

su
�

ce
s

to
st

u
d
y

th
e

op
er

at
or

W
(C

,
�
)

=
e
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h
~
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e
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m
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,
�
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⇠
e

�
S

c
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,
w
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b
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n
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L
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s
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b
ac

k
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n
d
,

w
it

h
ex

p
on
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th
e

w
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B

ec
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se
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th
e
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p

m
in

th
e

b
u
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,
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e
fe

rm
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n
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d
u
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d
w
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l-
w

al
l
in
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n
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ex
p
ec
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d
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b
e
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p
on
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-
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p
p
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,
⇠
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2

e

�
c
m

d
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c
�

1
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u
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ti
on
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th

e
d
et

er
m

in
an

t,
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q
u
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g
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m

e
m

il
d

b
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k
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ou
n
d

m
o
d
el
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g
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r

p
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l
w
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ls

,
y
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at
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w
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h

c
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.

T
h
e

fe
rm

io
n
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n
d
u
ce

d
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p
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en
ti

al
in
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ra

ct
io

n
at

la
rg

e
d
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r-
th

er
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m

p
an
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d

b
y
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”⇠
m

M
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p
p
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n
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ct
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,
h
en

ce
th

e
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l

b
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ic
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p
u
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n

b
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w
ee

n
th

e
w
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⇠
M

m
e

�
m
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d
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.

T
h
u
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in
S
Y

M
th

e
lo

ga
ri

th
m

ic
gr

ow
th

of
th

e
tr

an
sv

er
se

st
ri

n
g

si
ze

is
n
ot
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te
d

b
y
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e
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rm

io
n
s.

T
h
e

lo
g

R
gr

ow
th

of
th

e
st

ri
n
g

tr
an
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er
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ze
is
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m

in
is

ce
n
t

of
th

e
b
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io

r
of

m
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n
et

ic
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ri
n
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N

O
vo
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ic
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)
w

h
ic

h
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n
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n
e

m
on
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on

th
e

H
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b
ra

n
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=
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S
Q

C
D
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H

ow
ev

er
,
th

e
u
n
d
er

ly
in

g
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m
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p
h
y
si

cs
is

d
i↵

er
en

t;
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p
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4]

,
ou

r
st

ri
n
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e

u
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w
w

it
h
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n
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on
⇠

M
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.
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n
tr
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t

to
S
Y

M
,
in

n
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-s
u
p
er
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m

m
et

ri
c

Q
C

D
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d
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w
it

h
n
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>
1
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e

C
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ta
n
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m

p
on

en
ts

of
th

e
n

f

W
ey

l
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e
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d
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e
u
n
b
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)
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T
h
u
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p
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e
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e
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r
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ra
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w
it

h
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l
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)

is
h
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h
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p
p
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ed

,
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ey
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d
u
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p
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e
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m
p
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w
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h
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e
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p
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p
u
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h
e
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in
g

e↵
ec

t
of
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e
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rm

io
n
s

o
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d
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u
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,
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w
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h
w

e
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e
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,
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u
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e
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u
n
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at
e

a
w

al
l-
w

al
l

at
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⇠
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⇠
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h
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n
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e
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at
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+
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/
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d
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e
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⇡
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(
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A

t
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al
l

g

2

,
w

e
th

u
s

h
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e
m

d
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⇡

4⇡
2
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n

f

+
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/
g

2

,
a

st
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le
w
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l-
w

al
l

se
p
ar

at
io

n
p
ar
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et
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ca

ll
y
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rg

e
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m
p
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ed
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e
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n
gl

e
d
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n

w
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l
w
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N

u
m
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n
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at
io

n
of
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e

st
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ed
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e
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d

⇤
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n
g
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n
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b
u
t
ou
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at
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n
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A
s
a
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se

q
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th
e

st
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il
iz

ed
tr

an
sv

er
se
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of
th

e
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n
fi
n
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n
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Q
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d
j)

,
th

e
se
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n
d

tr
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ol
d
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e
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o
d
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”
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o
d
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p
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ga
p
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b
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b
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b
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ra
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⇡
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2
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f
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T

h
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b
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at
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d
e

m
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s
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b
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st
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n
g
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l
b
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e
b
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s
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p
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u
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u
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T
h
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th
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e
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n
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ar
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p
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t
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d
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w
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–
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at
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n
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p
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e
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w

h
at

w
as
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gg

es
te

d
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5]

–
h
as

d
ra

st
ic

im
p
li
ca

ti
on

s
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h
ow

th
e

fu
n
d
am

en
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ta
l
q
u
ar

k
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in
te

ra
ct

w
it

h
D

W
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F
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S
U
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)

th
er

e
ar

e
tw

o
ty

p
es
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D

W
s,

w
h
ic

h
w

e
la

b
el

B
P

S
1
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B
P

S
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,
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d
th
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an
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al
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T
h
e

d
is

ti
n
ct

io
n

is
in

th
e
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tr
ic

fl
u
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w
h
ic

h
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b
u
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b
ot

h
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y
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e
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m
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B
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S
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u
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,
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g.
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6]
.

T
h
e

fu
n
d
am

en
ta

l
st

ri
n
g

is
m
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e

ou
t

of

2
)

1
)

3
)

F
IG

.
3
:

A
sk
et
ch

o
f
h
ow

a
qq̄

p
a
ir

ca
n

fu
se

in
to

th
e
D
W

(f
ro
m

le
ft
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g
h
t)
.
T
h
e
sh
a
d
ed

a
n
d
w
h
it
e
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g
io
n
s
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p
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n
t

d
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ti
n
ct
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T
h
e
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d
b
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n
e
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p
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B
P
S
1
D
W
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w
h
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e
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e
d
a
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n
e
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p
re
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D
W

,
w
h
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e
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r
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u
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T
h
e

b
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ck
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e
q
u
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n
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u
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T
h
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u
p
p
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co
rn
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s
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n
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a
m
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l
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n
g
en

d
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g
o
n
a

D
W
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e

B
P

S
1
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d
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P
S

2

,
w

h
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e
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rr
ie

s
1/

2
of

th
e
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n
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l
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fl
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.
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r
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e
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W
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u
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l
p
ar

t
of
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u
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q
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p
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T
h
e
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W
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b
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b
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p
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h
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W
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h
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W
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e
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H
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u
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p
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29
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n
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p
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b
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e

va
c-

u
u
m

st
ru

ct
u
re

an
d

id
ea

s
ab

ou
t

co
n
fi
n
em

en
t,

is
gi

ve
n

in
[3

1]
.

T
h
e

p
h
en

om
en

on
w

as
su

b
se

q
u
en

tl
y

ex
p
lo

re
d

fr
om

m
o
d
el

in
g

th
e

e↵
ec

ti
ve

ac
ti

on
s

of
th

e
P
ol

ya
ko

v
lo

op
an

d
ga

u
gi

n
o

co
n
d
en

sa
te

s
[3

2]
.

H
er

e,
w

e
fo

u
n
d
—

fo
r

th
e

fi
rs

t
ti

m
e,

to
th

e
b
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d
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d
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h
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⇠
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b
ac

k
gr
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n
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w
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h
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p
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e
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p

m
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b
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,
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e
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n
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d
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d
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l
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n
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p
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p
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⇠
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2
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�
c
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d

,
c
�

1
(a

ca
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u
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e
d
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q
u
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e
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b
ac

k
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n
d
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o
d
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g

ev
en
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r
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l
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,
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h
e
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n
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d
u
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d
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p
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n
at
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e
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p
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d

b
y
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m

M
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p
p
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n
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,
h
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th

e
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l

b
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p
u
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n

b
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w
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n
th

e
w
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⇠
M

m
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�
m
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d
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T
h
u
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S
Y

M
th

e
lo
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m

ic
gr

ow
th

of
th

e
tr

an
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er
se
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n
g
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n
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d

b
y
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e
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n
s.

T
h
e

lo
g

R
gr
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th

of
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e
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ri
n
g
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is
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m
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n
t
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e
b
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r
of

m
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n
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st
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n
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N

O
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)
w

h
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h
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n
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n
e

m
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e

H
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b
ra

n
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=
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C
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ev

er
,
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e
u
n
d
er
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g
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m
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p
h
y
si
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d
i↵
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p
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,
ou

r
st

ri
n
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e

u
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w
w
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h
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n
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⇠

M
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n
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to
S
Y

M
,
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n
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-s
u
p
er
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m

m
et

ri
c

Q
C
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d
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w
it

h
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>
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e

C
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ta
n
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m

p
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en
ts
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e
n

f

W
ey

l
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u
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e
u
n
b
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)
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h
u
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p
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e
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e
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r
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ra
ct
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w
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h
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l
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is
h
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h
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p
p
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ed

,
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in

d
u
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a
p
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e
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m
p
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in
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w
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h
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e
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re

p
u
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e
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T
h
e
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ad
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g

e↵
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t
of

th
e

fe
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n
s

o
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�
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lo
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d
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;
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s
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lc
u
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,
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w
h
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h
w

e
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e
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,
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m

il
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C
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u
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F
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m
io
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u
n
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at
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⇠
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⇠
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�
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T
h
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ex
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n
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r
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e
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r
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at
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+
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�
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/

(m
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⇡
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w
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w
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l
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at
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n
p
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ri
ca

ll
y

la
rg

e
co
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p
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N
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at
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⇤
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n
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n
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b
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at
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le
at
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al

l
g

an
d
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rg

e
R

.

A
s
a

co
n
se

q
u
en

ce
of

th
e

st
ab

il
iz

ed
tr

an
sv

er
se

si
ze

of
th

e
co

n
fi
n
in

g
st

ri
n
g

in
n

f

>
1

Q
C

D
(a

d
j)

,
th

e
se

co
n
d

tr
an

sl
a-

ti
on

al
G

ol
d
st

on
e

m
o
d
e,

th
e

“b
re

at
h
er

”
m

o
d
e

of
th

e
tw

o
w

al
ls

,
is

n
ow

ga
p
p
ed

ev
en

at
in

fi
n
it

e
R

.
T

h
e

ga
p

fo
r

th
is

m
o
d
e,

m

b
r

,
ca

n
b
e

es
ti

m
at

ed
b
y

ta
k
in

g
th

e
se

c-
on

d
d
er
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at

iv
e

of
th

e
w

al
l-
w

al
l

in
te

ra
ct

io
n

p
ot

en
ti

al
at

d

⇤,
m

b
r

⇠
m
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�
4
⇡

2
2
n

f
/
g

2

.
T

h
e

b
re

at
h
er

m
o
d
e

m
as

s
m

b
r

is
a

n
ew
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al

e
on

th
e

st
ri

n
g

w
or

ld
sh

ee
t,

w
el

l
b
el

ow
th

e
“g

lu
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al
l”

—
th

e
b
u
lk

m
as

s
ga

p
m

fo
r

ga
u
ge

fl
u
ct

u
at

io
n
s.

T
h
e
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ct

th
at

th
e

st
ri

n
gs

ar
e

co
m

p
os

ed
ou

t
of

d
om

ai
n

w
al

ls
(D

W
)

–
a

si
tu

at
io

n
op

p
os

it
e

to
w

h
at

w
as

su
gg

es
te

d
in

[2
5]

–
h
as

d
ra

st
ic

im
p
li
ca

ti
on

s
on

h
ow

th
e

fu
n
d
am

en
-

ta
l
q
u
ar

k
s

in
te

ra
ct

w
it

h
D

W
s.

F
or

S
U

(2
)

th
er

e
ar

e
tw

o
ty

p
es

of
D

W
s,

w
h
ic

h
w

e
la

b
el

B
P

S
1

an
d

B
P

S
2

,
an

d
th

ei
r

an
ti

-w
al

ls
.

T
h
e

d
is

ti
n
ct

io
n

is
in

th
e

el
ec

tr
ic

fl
u
x
es

w
h
ic

h
th

ey
ca

rr
y,

b
u
t

th
ey

b
ot

h
sa

ti
sf

y
th

e
sa

m
e

B
P

S
eq

u
a-

ti
on

,
e.

g.
[2

6]
.

T
h
e

fu
n
d
am

en
ta

l
st

ri
n
g

is
m

ad
e

ou
t

of

2
)

1
)

3
)

F
IG

.
3
:

A
sk
et
ch

o
f
h
ow

a
qq̄

p
a
ir

ca
n

fu
se

in
to

th
e
D
W

(f
ro
m

le
ft

to
ri
g
h
t)
.
T
h
e
sh
a
d
ed

a
n
d
w
h
it
e
re
g
io
n
s
re
p
re
se
n
t

d
is
ti
n
ct

va
cu

a
o
f
th
e
th
eo
ry
.
T
h
e
so
li
d
b
la
ck

li
n
e
re
p
re
se
n
ts

th
e
B
P
S
1
D
W

,
w
h
il
e
th
e
d
a
sh
ed

li
n
e
re
p
re
se
n
ts

th
e
a
n
ti
-B

P
S
2

D
W

,
w
h
il
e
th
e
a
rr
ow

s
re
p
re
se
n
t
th
ei
r
el
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ic

fl
u
x
es
.

T
h
e

b
la
ck

d
o
ts

a
re

th
e
q
u
a
rk

a
n
d

th
e
a
n
ti
-q
u
a
rk
.

T
h
e
in
la
y
in

th
e
u
p
p
er

le
ft

co
rn
er

sh
ow

s
a
fu
n
d
a
m
en
ta
l
st
ri
n
g
en

d
in
g
o
n
a

D
W

.

th
e

B
P

S
1

an
d

an
an

ti
-B

P
S

2

,
w

h
er

e
ea

ch
ca

rr
ie

s
1/

2
of

th
e

fu
n
d
am

en
ta

l
el

ec
tr

ic
fl
u
x
.

If
a

q
u
ar

k
an
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-q

u
ar

k
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q̄
)

p
ai

r
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in
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e
v
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y
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e
D

W
,
h
ow

ev
er

,
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e
D

W
fl
u
x
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n

ca
n
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l
p
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t
of

th
e

fl
u
x
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a

q
q̄

p
ai

r,
an

d
ab

so
rb

it
in
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it

s
w
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ld
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ee
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e
F
ig

.
3.

T
h
e

q
q̄

p
ai

r
on

th
e

D
W

w
ou

ld
th

en
b
e

li
b
er

at
ed

,
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al
l
th

e
te

n
si

on
of

th
e

p
ai

r
h
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b
ee

n
ab

so
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ed
in

to
th

e
D

W
te

n
si
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.

T
h
is

le
ad

s
to

d
e-
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n
fi
n
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en
t

in
th

e
D

W
w

or
ld

sh
ee
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T

h
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m
in
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n
t
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th

e
D

W
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,
w

h
er

e
a
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e

D
W

w
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t
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C
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lo

m
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h
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q
u
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b
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7]

.
W

e
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so
n
ot

e
th

at
in

a
ce
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ai

n
H

ig
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va
cu

u
m
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4d

th
eo

ri
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,
m
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e–
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e
p
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h
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e
su

p
p
or

t
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st
ab
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n
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b
el
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ri

n
gs

[2
8,

29
].

D
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fi
n
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t
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q
u
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k
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on
th

e
D

W
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im

p
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es

th
at

st
ri

n
gs

ca
n

en
d

on
D

W
s

(s
ee
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la

y
of

F
ig

.
3)

.
In

M
Q

C
D

,
S
Y

M
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ri
n
gs

h
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e
b
ee

n
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en

d
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D
W

s
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d
a

h
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p
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n
at
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n

b
y

S
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R
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0]

,
u
si

n
g
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e
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u
u
m
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u
re
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d
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s
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n
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n
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n
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T
h
e

p
h
en
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w
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b
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q
u
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y

ex
p
lo
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d

fr
om

m
o
d
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e↵
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e
P
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u
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d
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.
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w
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r
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b
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p
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h
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e
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n
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n
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g
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u
n
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O
u
r

d
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n
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n
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g
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ri
n
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Q
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d
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n
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-
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e
h
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h
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k
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W
e
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l
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s
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b
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�
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d
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t
d
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ee
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c
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b
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in
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It
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�
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u
d
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e
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W
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,
�
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=
e
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�
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,
w

it
h

~

�
—

a
w
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gh

t
of

R
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U
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)N
c
�

1

el
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tr
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ar

ge
s)

,
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th
e

tr
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e
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e

W
il
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n
lo

op
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ob
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b
y
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m

m
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g
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l
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R
.

A
s
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(1

),
se

m
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al

ly
hW

(C
,
�
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⇠
e

�
S

c
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s
s
[
�̄
(
C

)
]

,
w

it
h

th
e

m
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n
et

ic
b
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n
p
ot

en
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al

L
b
i
o
n

=
�

m

2

M

N

c X i
=

1
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s
h (~↵

⇤
i

�
~
↵

⇤
i
+

1
(
m

o
d

N

c
)

)
·~�
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(3

)

3

b
ac

kg
ro

u
n
d
,

w
it

h
ex

p
on

en
ti

al
fa

ll
o↵

aw
ay

fr
om

th
e

w
al

l.
B

ec
au

se
of

th
e

ga
p

m
in

th
e

b
u
lk

,
th

e
fe

rm
io

n
in

d
u
ce

d
w

al
l-
w

al
l
in

te
ra

ct
io

n
is

ex
p
ec

te
d

to
b
e

ex
p
on

en
-

ti
al

ly
su

p
p
re

ss
ed

,
⇠

m

2

e

�
c
m

d

,
c
�

1
(a

ca
lc

u
la

ti
on

of
th

e
d
et

er
m

in
an

t,
re

qu
ir

in
g

so
m

e
m

il
d

b
ac

kg
ro

u
n
d

m
od

el
in

g
ev

en
fo

r
p
ar

al
le

l
w

al
ls

,
yi

el
d
s

at
tr

ac
ti

on
w

it
h

c
>

1)
.

T
h
e

fe
rm

io
n
-i
n
d
u
ce

d
ex

p
on

en
ti

al
in

te
ra

ct
io

n
at

la
rg

e
d

is
fu

r-
th

er
ac

co
m

p
an

ie
d

by
an

“~
”⇠

m

M

lo
op

su
p
p
re

ss
io

n
fa

ct
or

,
h
en

ce
th

e
cl

as
si

ca
l

b
os

on
ic

re
p
u
ls

io
n

b
et

w
ee

n
th

e
w

al
ls

⇠
M

m
e

�
m

d

d
om

in
at

es
.

T
hu

s,
in

S
Y

M
th

e
lo

ga
ri

th
m

ic
gr

ow
th

of
th

e
tr

an
sv

er
se

st
ri

n
g

si
ze

is
n
ot

a↵
ec

te
d

by
th

e
fe

rm
io

n
s.

T
h
e

lo
g

R
gr

ow
th

of
th

e
st

ri
n
g

tr
an

sv
er

se
si

ze
is

re
m

in
is

ce
nt

of
th

e
b
eh

av
io

r
of

m
ag

n
et

ic
st

ri
n
gs

(A
N

O
vo

rt
ic

es
)
w

h
ic

h
co

n
fi
n
e

m
on

op
ol

es
on

th
e

H
ig

gs
b
ra

n
ch

of
N

=
2

S
Q

C
D

[2
4]

.
H

ow
ev

er
,
th

e
u
n
d
er

ly
in

g
se

m
ic

la
ss

ic
al

p
hy

si
cs

is
d
i↵

er
en

t;
in

p
ar

ti
cu

la
r,
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op

p
os

ed
to

[2
4]

,
ou

r
st

ri
n
gs

ob
ey

th
e

u
su

al
ar

ea
la

w
w

it
h

te
n
si

on
⇠

M
m

.

In
co

nt
ra

st
to

S
Y

M
,
in

n
on

-s
u
p
er

sy
m

m
et

ri
c

Q
C

D
(a

d
j)

w
it

h
n

f

>
1

th
e

C
ar

ta
n

co
m

p
on

en
ts

of
th

e
n

f

W
ey

l
ad

-
jo

in
ts

ar
e

m
as

sl
es

s,
d
u
e

to
th

e
u
nb

ro
ke

n
S

U
(n

f

)
ch
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al

sy
m

m
et
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.

T
hu

s,
d
es

p
it

e
th

e
fa

ct
th

at
th

ei
r

in
te

ra
ct

io
n

w
it

h
th

e
w

al
l
in

(2
)

is
h
ig

h
ly

su
p
p
re

ss
ed

,
th

ey
in

d
u
ce

a
p
ow

er
-l
aw

fo
rc

e
co

m
p
et

in
g

w
it

h
th

e
ex

p
on

en
ti

al
re

p
u
l-

si
on

at
la

rg
e

d
.

T
h
e

le
ad

in
g

e↵
ec

t
of

th
e

fe
rm

io
n
s
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-

cu
rs

at
2n

f

�
1

lo
op

or
d
er

;
it

s
ca

lc
u
la

ti
on

,
of

w
h
ic

h
w

e
ju

st
gi

ve
th

e
re

su
lt

,
is

si
m

il
ar

in
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ir
it

to
C

as
im

ir
en

-
er
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ca

lc
u
la

ti
on

s.
F
er

m
io

n
lo

op
s

ar
e

fo
u
n
d

to
ge

n
er

at
e

a
w

al
l-
w

al
l

at
tr

ac
ti

on
at

la
rg

e
d
.

P
er

u
n
it

vo
lu

m
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it
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⇠
�

m

2

� m

M
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4
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f
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4

,
d
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in
at

in
g
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e

b
os
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u
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⇠
M

m
e

�
m

d
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rg
e

d
.

T
h
e

ex
p
re

ss
io

n
fo

r
th

e
ac

ti
on
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ou

r
to

y
m

od
el

,w
it

h
fe

rm
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n
at

tr
ac

ti
on
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u
d
ed

,

is
S

=
R

(T
+

d
)M

m
+

R
T

M
m

e

�
m

d

�
R

T
m

2

� m

M

� 4n f
/

(m
d
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f
�
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.
T

h
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u
m
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n
d
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n
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o

w
h
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h
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d
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s
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b
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e
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)
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n
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�
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⇠
e

�
4
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4
n
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)
/
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�
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.
A

t
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l

g

2

,
w

e
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u
s

h
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e
m
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⇡
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/
g

2

,
a

st
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le
w
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l-
w

al
l

se
p
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at
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n
p
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y
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e
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m
p
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n
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d
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N

u
m
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n
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at
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n
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e
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tr
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e
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⇤
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n
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n
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b
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at
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th
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n
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n
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d
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n
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ol
d
st

on
e

m
od

e,
th
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e
tw

o
w

al
ls

,
is

n
ow

ga
p
p
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e
on

th
e

st
ri

n
g

w
or

ld
sh

ee
t,

w
el

l
b
el

ow
th

e
“g

lu
eb

al
l”

—
th

e
b
u
lk

m
as

s
ga

p
m

fo
r

ga
u
ge

fl
u
ct

u
at

io
n
s.

T
h
e

fa
ct

th
at

th
e

st
ri

n
gs

ar
e

co
m

p
os

ed
ou

t
of

d
om

ai
n

w
al

ls
(D

W
)

–
a

si
tu

at
io

n
op

p
os

it
e

to
w

h
at

w
as

su
gg

es
te

d
in

[2
5]

–
h
as

d
ra

st
ic

im
p
li
ca

ti
on

s
on

h
ow

th
e

fu
n
d
am

en
-

ta
l
qu

ar
ks

in
te

ra
ct

w
it

h
D

W
s.

F
or

S
U

(2
)

th
er

e
ar

e
tw

o
ty

p
es

of
D

W
s,

w
h
ic

h
w

e
la

b
el

B
P

S
1

an
d

B
P

S
2

,
an

d
th

ei
r

an
ti

-w
al

ls
.

T
h
e

d
is

ti
n
ct

io
n

is
in

th
e

el
ec

tr
ic

fl
u
xe

s
w

h
ic

h
th

ey
ca

rr
y,

b
u
t

th
ey

b
ot

h
sa

ti
sf

y
th

e
sa

m
e

B
P

S
eq

u
a-

ti
on

,
e.

g.
[2

6]
.

T
h
e

fu
n
d
am

en
ta

l
st

ri
n
g

is
m

ad
e

ou
t

of

2
)

1
)

3
)

F
IG

.
3
:

A
sk
et
ch

o
f
h
ow

a
qq̄

p
a
ir

ca
n

fu
se

in
to

th
e
D
W

(f
ro
m

le
ft

to
ri
g
h
t)
.
T
h
e
sh
a
d
ed

a
n
d
w
h
it
e
re
g
io
n
s
re
p
re
se
n
t

d
is
ti
n
ct

va
cu

a
o
f
th
e
th
eo
ry
.
T
h
e
so
li
d
b
la
ck

li
n
e
re
p
re
se
n
ts

th
e
B
P
S
1
D
W

,
w
h
il
e
th
e
d
a
sh
ed

li
n
e
re
p
re
se
n
ts

th
e
a
n
ti
-B

P
S
2

D
W

,
w
h
il
e
th
e
a
rr
ow

s
re
p
re
se
n
t
th
ei
r
el
ec
tr
ic

fl
u
x
es
.

T
h
e

b
la
ck

d
o
ts

a
re

th
e
q
u
a
rk

a
n
d

th
e
a
n
ti
-q
u
a
rk
.

T
h
e
in
la
y
in

th
e
u
p
p
er

le
ft

co
rn
er

sh
ow

s
a
fu
n
d
a
m
en
ta
l
st
ri
n
g
en

d
in
g
o
n
a

D
W

.

th
e

B
P

S
1

an
d

an
an

ti
-B

P
S

2

,
w

h
er

e
ea

ch
ca

rr
ie

s
1/

2
of

th
e

fu
n
d
am

en
ta

l
el

ec
tr

ic
fl
u
x.

If
a

qu
ar

k
an

ti
-q

u
ar

k
(q

q̄
)

p
ai

r
is

in
th

e
vi

ci
n
it
y

of
th

e
D

W
,
h
ow

ev
er

,
th

e
D

W
fl
u
x

ca
n

ca
n
ce

l
p
ar

t
of

th
e

fl
u
x

of
a

q
q̄

p
ai

r,
an

d
ab

so
rb

it
in

to
it

s
w

or
ld

sh
ee

t,
se

e
F
ig

.
3.

T
h
e

q
q̄

p
ai

r
on

th
e

D
W

w
ou

ld
th

en
b
e

li
b
er

at
ed

,
as

al
l
th

e
te

n
si

on
of

th
e

p
ai

r
h
as

b
ee

n
ab

so
rb

ed
in

to
th

e
D

W
te

n
si

on
.

T
h
is

le
ad

s
to

d
e-

co
n
fi
n
em

en
t

in
th

e
D

W
w

or
ld

sh
ee

t.
T

h
is

is
re

m
in

is
ce

nt
of

th
e

D
W

lo
ca

li
za

ti
on

,
w

h
er

e
a

th
eo

ry
in

th
e

D
W

w
or

ld
-

sh
ee

t
is

in
C

ou
lo

m
b

p
h
as

e,
so

th
at

qu
ar

ks
ar

e
li
b
er

at
ed

[2
7]

.
W

e
al

so
n
ot

e
th

at
in

a
ce

rt
ai

n
H

ig
gs

va
cu

u
m

of
4d

th
eo

ri
es

,
m

on
op

ol
e–

an
ti

-m
on

op
ol

e
p
ai

rs
h
av

e
su

p
p
or

t
on

st
ab

le
n
on

-a
b
el

ia
n

st
ri

n
gs

[2
8,

29
].

D
ec

on
fi
n
em

en
t

of
qu

ar
ks

on
th

e
D

W
al

so
im

p
li
es

th
at

st
ri

n
gs

ca
n

en
d

on
D

W
s

(s
ee

in
la

y
of

F
ig

.
3)

.
In

M
Q

C
D

,
S
Y

M
st

ri
n
gs

h
av

e
b
ee

n
ar

gu
ed

to
en

d
on

D
W

s
an

d
a

h
eu

ri
st

ic
ex

p
la

n
at

io
n

by
S
.-
J.

R
ey

[3
0]

,
u
si

n
g

th
e

va
c-

u
u
m

st
ru

ct
u
re

an
d

id
ea

s
ab

ou
t

co
n
fi
n
em

en
t,

is
gi

ve
n

in
[3

1]
.

T
h
e

p
h
en

om
en

on
w

as
su

b
se

qu
en

tl
y

ex
p
lo

re
d

fr
om

m
od

el
in

g
th

e
e↵

ec
ti

ve
ac

ti
on

s
of

th
e

P
ol

ya
ko

v
lo

op
an

d
ga

u
gi

n
o

co
n
d
en

sa
te

s
[3

2]
.

H
er

e,
w

e
fo

u
n
d
—

fo
r

th
e

fi
rs

t
ti

m
e,

to
th

e
b
es

t
of

ou
r

kn
ow

le
d
ge

—
an

ex
p
li
ci

t
re

al
iz

a-
ti

on
of

th
is

p
h
en

om
en

on
in

a
fi
el

d
th

eo
ry

se
tt

in
g

w
h
er

e
th

e
co

n
fi
n
in

g
d
yn

am
ic

s
is

u
n
d
er

st
oo

d
.

O
u
r

d
is

cu
ss

io
n

of
co

n
fi
n
in

g
st

ri
n
gs

in
Q

C
D

(a
d
j)

ge
n
er

-
al

iz
es

to
th

e
h
ig

h
er

-r
an

k
ca

se
.

W
e

sh
al

l
fo

cu
s

on
ly

on
a

fe
w

sa
li
en

t
p
oi

nt
s.

A
ll

fi
el

d
s

in
(1

)
b
ec

om
e

N

c

�
1

d
im

en
-

si
on

al
ve

ct
or

s,
d
es

cr
ib

in
g

th
e

li
gh

t
d
eg

re
es

of
fr

ee
d
om

le
ft

af
te

r
S

U
(N

c

)!
U

(1
)N

c
�

1

b
re

ak
in

g.
It

su
�

ce
s

to
st

u
d
y

th
e

op
er

at
or

W
(C

,
�
)

=
e

i

~

�
·H C

~

A

(
3
)

,w
it

h
~

�
—

a
w

ei
gh

t
of

R
(a

ve
ct

or
of

U
(1

)N
c
�

1

el
ec

tr
ic

ch
ar

ge
s)

,
as

th
e

tr
ac

e
of

th
e

W
il
so

n
lo

op
is

ob
ta

in
ed

by
su

m
m

in
g

ov
er

al
l
w

ei
gh

ts
of

R
.

A
s

in
(1

),
se

m
ic

la
ss

ic
al

ly
hW

(C
,
�
)i

⇠
e

�
S

c
la

s
s
[
�̄
(
C

)
]

,
w

it
h

th
e

m
ag

n
et

ic
b
io

n
p
ot

en
ti

al

L b
i
o
n

=
�

m

2

M

N

c X i
=

1

co
s
h (~↵

⇤ i

�
~
↵

⇤ i
+

1
(
m

o
d

N

c
)

)
·~�

i ,
(3

)

3

b
ac

k
gr

ou
n
d
,

w
it

h
ex

p
on

en
ti

al
fa

ll
o↵

aw
ay

fr
om

th
e

w
al

l.
B

ec
au

se
of

th
e

ga
p

m
in

th
e

b
u
lk

,
th

e
fe

rm
io

n
in

d
u
ce

d
w

al
l-
w

al
l
in

te
ra

ct
io

n
is

ex
p
ec

te
d

to
b
e

ex
p
on

en
-

ti
al

ly
su

p
p
re

ss
ed

,
⇠

m

2

e

�
c
m

d

,
c
�

1
(a

ca
lc

u
la

ti
on

of
th

e
d
et

er
m

in
an

t,
re

q
u
ir

in
g

so
m

e
m

il
d

b
ac

k
gr

ou
n
d

m
o
d
el

in
g

ev
en

fo
r

p
ar

al
le

l
w

al
ls

,
y
ie

ld
s

at
tr

ac
ti

on
w

it
h

c
>

1)
.

T
h
e

fe
rm

io
n
-i
n
d
u
ce

d
ex

p
on

en
ti

al
in

te
ra

ct
io

n
at

la
rg

e
d

is
fu

r-
th

er
ac

co
m

p
an

ie
d

b
y

an
“~

”⇠
m

M

lo
op

su
p
p
re

ss
io

n
fa

ct
or

,
h
en

ce
th

e
cl

as
si

ca
l

b
os

on
ic

re
p
u
ls

io
n

b
et

w
ee

n
th

e
w

al
ls

⇠
M

m
e

�
m

d

d
om

in
at

es
.

T
h
u
s,

in
S
Y

M
th

e
lo

ga
ri

th
m

ic
gr

ow
th

of
th

e
tr

an
sv

er
se

st
ri

n
g

si
ze

is
n
ot

a↵
ec

te
d

b
y

th
e

fe
rm

io
n
s.

T
h
e

lo
g

R
gr

ow
th

of
th

e
st

ri
n
g

tr
an

sv
er

se
si

ze
is

re
m

in
is

ce
n
t

of
th

e
b
eh

av
io

r
of

m
ag

n
et

ic
st

ri
n
gs

(A
N

O
vo

rt
ic

es
)
w

h
ic

h
co

n
fi
n
e

m
on

op
ol

es
on

th
e

H
ig

gs
b
ra

n
ch

of
N

=
2

S
Q

C
D

[2
4]

.
H

ow
ev

er
,
th

e
u
n
d
er

ly
in

g
se

m
ic

la
ss

ic
al

p
h
y
si

cs
is

d
i↵

er
en

t;
in

p
ar

ti
cu

la
r,

as
op

p
os

ed
to

[2
4]

,
ou

r
st

ri
n
gs

ob
ey

th
e

u
su

al
ar

ea
la

w
w

it
h

te
n
si

on
⇠

M
m

.

In
co

n
tr

as
t

to
S
Y

M
,
in

n
on

-s
u
p
er

sy
m

m
et

ri
c

Q
C

D
(a

d
j)

w
it

h
n

f

>
1

th
e

C
ar

ta
n

co
m

p
on

en
ts

of
th

e
n

f

W
ey

l
ad

-
jo

in
ts

ar
e

m
as

sl
es

s,
d
u
e

to
th

e
u
n
b
ro

ke
n

S
U

(n
f

)
ch

ir
al

sy
m

m
et

ry
.

T
h
u
s,

d
es

p
it

e
th

e
fa

ct
th

at
th

ei
r

in
te

ra
ct

io
n

w
it

h
th

e
w

al
l
in

(2
)

is
h
ig

h
ly

su
p
p
re

ss
ed

,
th

ey
in

d
u
ce

a
p
ow

er
-l
aw

fo
rc

e
co

m
p
et

in
g

w
it

h
th

e
ex

p
on

en
ti

al
re

p
u
l-

si
on

at
la

rg
e

d
.

T
h
e

le
ad

in
g

e↵
ec

t
of

th
e

fe
rm

io
n
s

o
c-

cu
rs

at
2n

f

�
1

lo
op

or
d
er

;
it

s
ca

lc
u
la

ti
on

,
of

w
h
ic

h
w

e
ju

st
gi

ve
th

e
re

su
lt

,
is

si
m

il
ar

in
sp

ir
it

to
C

as
im

ir
en

-
er

gy
ca

lc
u
la

ti
on

s.
F
er

m
io

n
lo

op
s

ar
e

fo
u
n
d

to
ge

n
er

at
e

a
w

al
l-
w

al
l

at
tr

ac
ti

on
at

la
rg

e
d
.

P
er

u
n
it

vo
lu

m
e,

it
is

⇠
�

m

2

� m M

� 4n f
(m

d
)�

4
n

f
+

4

,
d
om

in
at

in
g

th
e

b
os

on
ic

re
-

p
u
ls

io
n

⇠
M

m
e

�
m

d

at
la

rg
e

d
.

T
h
e

ex
p
re

ss
io

n
fo

r
th

e
ac

ti
on

of
ou

r
to

y
m

o
d
el

,
w

it
h

fe
rm

io
n

at
tr

ac
ti

on
in

cl
u
d
ed

,

is
S

=
R

(T
+

d
)M

m
+

R
T

M
m

e

�
m

d

�
R

T
m

2

� m M

� 4n f
/

(m
d
)4

n

f
�

4

.
T

h
e

ex
tr

em
u
m

co
n
d
it

io
n

(t
o

w
h
ic

h
th

e
ar

ea
te

rm
d
o
es

n
ot

co
n
tr

ib
u
te

fo
r

la
rg

e
T

)
is

n
ow

e

�
m

d

⇠
e

�
4
⇡

2
(
4
n

f
+

1
)
/
g

2

/
(m

d
)4

n

f
�

3

.
A

t
sm

al
l

g

2

,
w

e
th

u
s

h
av

e
m

d

⇤
⇡

4⇡
2

(4
n

f

+
1)

/
g

2

,
a

st
ab

le
w

al
l-
w

al
l

se
p
ar

at
io

n
p
ar

am
et

ri
ca

ll
y

la
rg

e
co

m
p
ar

ed
to

th
e

si
n
gl

e
d
om

ai
n

w
al

l
w

id
th

.
N

u
m

er
ic

al
co

n
fi
rm

at
io

n
of

th
e

st
ab

il
iz

ed
tr

an
s-

ve
rs

e
si

ze
d

⇤
of

th
e

st
ri

n
g

is
ch

al
le

n
gi

n
g,

b
u
t
ou

r
es

ti
m

at
e

of
th

e
si

ze
st

ab
il
iz

at
io

n
is

re
li
ab

le
at

sm
al

l
g

an
d

la
rg

e
R

.

A
s
a

co
n
se

q
u
en

ce
of

th
e

st
ab

il
iz

ed
tr

an
sv

er
se

si
ze

of
th

e
co

n
fi
n
in

g
st

ri
n
g

in
n

f

>
1

Q
C

D
(a

d
j)

,
th

e
se

co
n
d

tr
an

sl
a-

ti
on

al
G

ol
d
st

on
e

m
o
d
e,

th
e

“b
re

at
h
er

”
m

o
d
e

of
th

e
tw

o
w

al
ls

,
is

n
ow

ga
p
p
ed

ev
en

at
in

fi
n
it

e
R

.
T

h
e

ga
p

fo
r

th
is

m
o
d
e,

m

b
r

,
ca

n
b
e

es
ti

m
at

ed
b
y

ta
k
in

g
th

e
se

c-
on

d
d
er

iv
at

iv
e

of
th

e
w

al
l-
w

al
l

in
te

ra
ct

io
n

p
ot

en
ti

al
at

d

⇤,
m

b
r

⇠
m

e

�
4
⇡

2
2
n

f
/
g

2

.
T

h
e

b
re

at
h
er

m
o
d
e

m
as

s
m

b
r

is
a

n
ew

sc
al

e
on

th
e

st
ri

n
g

w
or

ld
sh

ee
t,

w
el

l
b
el

ow
th

e
“g

lu
eb

al
l”

—
th

e
b
u
lk

m
as

s
ga

p
m

fo
r

ga
u
ge

fl
u
ct

u
at

io
n
s.

T
h
e

fa
ct

th
at

th
e

st
ri

n
gs

ar
e

co
m

p
os

ed
ou

t
of

d
om

ai
n

w
al

ls
(D

W
)

–
a

si
tu

at
io

n
op

p
os

it
e

to
w

h
at

w
as

su
gg

es
te

d
in

[2
5]

–
h
as

d
ra

st
ic

im
p
li
ca

ti
on

s
on

h
ow

th
e

fu
n
d
am

en
-

ta
l
q
u
ar

k
s

in
te

ra
ct

w
it

h
D

W
s.

F
or

S
U

(2
)

th
er

e
ar

e
tw

o
ty

p
es

of
D

W
s,

w
h
ic

h
w

e
la

b
el

B
P

S
1

an
d

B
P

S
2

,
an

d
th

ei
r

an
ti

-w
al

ls
.

T
h
e

d
is

ti
n
ct

io
n

is
in

th
e

el
ec

tr
ic

fl
u
x
es

w
h
ic

h
th
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QQ* pair
fuses with 
wall 

Q’s deconfined 
on DWs

DW

string ends 
on DW

Q

an electric example of strings and branes “from flesh and blood” (Shifman-Yung all magnetic) 

pull Q* to 
infinity

2 large-N SYM:  BPS wall tension ~ N, not N , so “D-brane like” (think g_string ~1/N)

here: pure QFT, no large-N, no SUSY/BPS (small-L instead), explicit, not heuristic, picture

S.-J. Rey/Witten 1997/  

3 oblique confinement (heuristic!): wall supports free quarks so confining strings can end on it 

1 MQCD: string (M2) ends on DW (some wrapped M5)
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1I. confining strings in QCD(adj) and dYM:

The story is even more fun in SU(N). Here, we don’t know the solutions 
for single DWs (for SU(2), DWs 1 and 2 are explicitly known, SYM or QCD(adj)). 

Recall,  the crucial - for strings - property 
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i.e. confining string tensions for quarks with weights in the same Z_N 
Weyl orbit are the same, both for QCD(adj) and dYM. 
Since P permutes the N weights of the fundamental, all strings 
confining fundamental quarks have the same tension. 

o



1I. confining strings in QCD(adj) and dYM:

Without details [can explain], in QCD(adj)/SYM,  elementary DWs have 
monodromy              (the Weyl vector/N)

4
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m
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W

-pairs

}

}

}

FIG. 4: A sketch of the abelian string spectrum, correspond-
ing to the tower of WW -bosons pairs attached to the double
string, and the breather mode excitations mbr.

replacing the one in (1). Here ~↵

⇤
i

label the simple (i<N

c

),
a�ne (i=N

c

) coroots (|~↵⇤
i

|2=2); M and m are, up to

irrelevant factors, as in (1). The fields ~

� are set to their

vev ~

�=0; the full Eq. (3) is in [8] for n

f

>1 and [33] for
SYM (to get back (1), use ↵

⇤
1

=�↵

⇤
2

=
p

2, �=1/

p
2 and

redefine m, M, �). Clearly, a string between quarks with

charges ~

� should have 2⇡

~

� monodromy of ~� around C.

An important fact, with crucial consequences for the
string spectrum, is that, due to the existence of the
twisted (a�ne) monopole-instanton [2] and the preserved
center symmetry, a Z

Nc subgroup of the Weyl group,
cyclically permuting the N

c

roots in (3), is unbroken in
QCD(adj). Denoting by P the generator of the cyclic
Weyl group, using an N

c

-dimensional basis for the roots
(one linear combination of the N

c

�

k

’s decouples [8]), its
action is: P�

k

=�

k+1(modNc)
, or P ~↵

k

=~↵

k+1(modNc)
. The

P symmetry ensures that strings confining quarks in R
of SU(N

c

) have equal tension for all weights of R that lie
in the same orbit of the cyclic Weyl subgroup. Since P

permutes the N

c

weights of the fundamental representa-
tion, strings confining any component of the fundamental
quarks have equal tension. This is di↵erent from Seiberg-
Witten theory where the Weyl group is completely bro-
ken [34]. Still, the multiplicity of meson Regge trajec-
tories in the calculable regime of QCD(adj) is di↵erent
from that expected in the full nonabelian theory with
unbroken Weyl group. Further, for higher N -ality repre-
sentations, there are di↵erent “P -orbits” of “k-strings”
(both previous statements hold without accounting for
screening by heavy “W bosons”).

We leave a full taxonomy of “k-strings” in QCD(adj)
for the future and briefly study strings between funda-
mental quarks. From the P symmetry, it su�ces to take
~� monodromy 2⇡ ~w

1

, appropriate to the highest weight
of the fundamental (the N

c

�1 fundamental weights ~w

k

obey ~↵
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kp

, p=1,...,N
c

�1). We shall argue that
these strings are also composed of two domain walls.
To this end, recall [8] that SU(N
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, related by the broken
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k

is
the Weyl vector and the dual photons’ periodicity is
~�'~� +2⇡ ~w

k

. An “elementary” domain wall between the

k-th and (k+1)-th vacua then has monodromy 2⇡

Nc
~⇢. To

construct a configuration of 2⇡ ~w

1

monodromy, we notice
the identity 2⇡ ~w

1

= 2⇡

Nc
~⇢ � 2⇡

Nc
P ~⇢. A ~� monodromy 2⇡ ~w

1

can now be engineered from an elementary domain wall
and a P -transformed anti-domain wall, as in Fig. 1. A nu-
merical minimization of (3) confirms that, indeed, this is
the string configuration in nonsupersymmetric QCD(adj)
with N

c

=3, 4 (the action density plot is similar to Fig. 2).
We also note that, contrary to Seiberg-Witten theory

where only linear baryons exist [35], in QCD(adj) baryons
in “Y” or “�” configurations arise naturally. The a�ne
monopole-instanton and the unbroken part of the Weyl
symmetry are, again, crucial for this. The combinatorics
of such a construction follows from the above string pic-
ture. We shall not discuss the energetics determining the
preferred configuration here.

For N

c

>2 SYM, the challenge is to include the now rel-
evant ~

�-~� coupling (� and � decouple only in SU(2) at
g⌧1 [33]); for now, we note that candidate string config-
urations with the right monodromies can be engineered
from appropriate BPS and anti-BPS walls.

A very interesting question is how our QCD(adj)
strings behave upon decompactification to R4. In SYM,
no phase transition occurs and the transition to R4

should be smooth. For n

f

>1, the SU(n
f

) chiral sym-
metry is expected to break, at least for su�ciently small
n

f

[36] (since fermions play crucial role in both mag-
netic bion formation and in stabilizing the string size, one
might expect interesting interplay between chiral symme-
try breaking and confinement here).

On R4, not much is known about strings in SYM or
QCD(adj) from field theory alone. An exception is softly-
broken Seiberg-Witten theory [34] (not pure SYM). In
MQCD, the transition from softly-broken Seiberg-Witten
theory to pure SYM was studied in [35]. It was found
that pure SYM strings on R4 conform, at least in the
MQCD regime, to the behavior expected from nonabelian
strings, with fully unbroken Weyl group and N -ality-only
dependent tensions. The transition from the di↵erent
abelian behaviors, found here and in [34], to the non-
abelian one should clearly involve the W -bosons (as they
become light upon increasing L). Their inclusion can
modify both the vacuum configurations and the confin-
ing strings themselves (a pure YM theory scenario, re-
lating monopoles, W -bosons, and center vortices is in
Ch. 8 of [37]). The di�culty in pursuing this transition
is, not surprisingly, the loss of theoretical control upon
de-abelianization.

It is, however, tempting to speculate, at least in SYM
where continuity is guaranteed, that the gapped modes
due to the double string will be responsible for the truly
non-abelian structure of the string in the decompacti-
fication limit. In the abelian regime the “non-abelian”
excitation spectrum would correspond to the exponen-
tially small breather mode m

br

, and a tower of W -bosons.
Then, upon decompactification it is reasonable to expect
the abelian string-spectrum to go into the non-abelian
spectrum (see Fig. 4).

at the same time, the highest weight of the fundamental is 

thus a string confining quarks (in the 0 
vacuum) with charges 
can be made of a wall and an P-antiwall 
(this generalizes the SU(2) construction)
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FIG. 4: A sketch of the abelian string spectrum, correspond-
ing to the tower of WW -bosons pairs attached to the double
string, and the breather mode excitations mbr.
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Witten theory where the Weyl group is completely bro-
ken [34]. Still, the multiplicity of meson Regge trajec-
tories in the calculable regime of QCD(adj) is di↵erent
from that expected in the full nonabelian theory with
unbroken Weyl group. Further, for higher N -ality repre-
sentations, there are di↵erent “P -orbits” of “k-strings”
(both previous statements hold without accounting for
screening by heavy “W bosons”).

We leave a full taxonomy of “k-strings” in QCD(adj)
for the future and briefly study strings between funda-
mental quarks. From the P symmetry, it su�ces to take
~� monodromy 2⇡ ~w

1

, appropriate to the highest weight
of the fundamental (the N

c

�1 fundamental weights ~w

k

obey ~↵

⇤
p

·~w
k

=�

kp

, p=1,...,N
c

�1). We shall argue that
these strings are also composed of two domain walls.
To this end, recall [8] that SU(N

c

) QCD(adj)/SYM has
N

c

vacua, h~�i= 2⇡k

Nc
~⇢, k=1,...N

c

, related by the broken

Z
Nc(⇢Z

2Ncnf ) chiral symmetry. Here, ~⇢=
P

Nc�1

k=1

~w

k

is
the Weyl vector and the dual photons’ periodicity is
~�'~� +2⇡ ~w

k

. An “elementary” domain wall between the

k-th and (k+1)-th vacua then has monodromy 2⇡

Nc
~⇢. To

construct a configuration of 2⇡ ~w

1

monodromy, we notice
the identity 2⇡ ~w

1

= 2⇡

Nc
~⇢ � 2⇡

Nc
P ~⇢. A ~� monodromy 2⇡ ~w

1

can now be engineered from an elementary domain wall
and a P -transformed anti-domain wall, as in Fig. 1. A nu-
merical minimization of (3) confirms that, indeed, this is
the string configuration in nonsupersymmetric QCD(adj)
with N

c

=3, 4 (the action density plot is similar to Fig. 2).
We also note that, contrary to Seiberg-Witten theory

where only linear baryons exist [35], in QCD(adj) baryons
in “Y” or “�” configurations arise naturally. The a�ne
monopole-instanton and the unbroken part of the Weyl
symmetry are, again, crucial for this. The combinatorics
of such a construction follows from the above string pic-
ture. We shall not discuss the energetics determining the
preferred configuration here.

For N

c

>2 SYM, the challenge is to include the now rel-
evant ~

�-~� coupling (� and � decouple only in SU(2) at
g⌧1 [33]); for now, we note that candidate string config-
urations with the right monodromies can be engineered
from appropriate BPS and anti-BPS walls.

A very interesting question is how our QCD(adj)
strings behave upon decompactification to R4. In SYM,
no phase transition occurs and the transition to R4

should be smooth. For n

f

>1, the SU(n
f

) chiral sym-
metry is expected to break, at least for su�ciently small
n

f

[36] (since fermions play crucial role in both mag-
netic bion formation and in stabilizing the string size, one
might expect interesting interplay between chiral symme-
try breaking and confinement here).

On R4, not much is known about strings in SYM or
QCD(adj) from field theory alone. An exception is softly-
broken Seiberg-Witten theory [34] (not pure SYM). In
MQCD, the transition from softly-broken Seiberg-Witten
theory to pure SYM was studied in [35]. It was found
that pure SYM strings on R4 conform, at least in the
MQCD regime, to the behavior expected from nonabelian
strings, with fully unbroken Weyl group and N -ality-only
dependent tensions. The transition from the di↵erent
abelian behaviors, found here and in [34], to the non-
abelian one should clearly involve the W -bosons (as they
become light upon increasing L). Their inclusion can
modify both the vacuum configurations and the confin-
ing strings themselves (a pure YM theory scenario, re-
lating monopoles, W -bosons, and center vortices is in
Ch. 8 of [37]). The di�culty in pursuing this transition
is, not surprisingly, the loss of theoretical control upon
de-abelianization.

It is, however, tempting to speculate, at least in SYM
where continuity is guaranteed, that the gapped modes
due to the double string will be responsible for the truly
non-abelian structure of the string in the decompacti-
fication limit. In the abelian regime the “non-abelian”
excitation spectrum would correspond to the exponen-
tially small breather mode m

br

, and a tower of W -bosons.
Then, upon decompactification it is reasonable to expect
the abelian string-spectrum to go into the non-abelian
spectrum (see Fig. 4).

Strings confining the other two weights of the SU(3) fundamental are 
similarly constructed:
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FIG. 4: A sketch of the abelian string spectrum, correspond-
ing to the tower of WW -bosons pairs attached to the double
string, and the breather mode excitations mbr.
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mesons -

- baryon
with nl = δll0, l0 = 1, ..., N for N elementary strings forming the “baryon.”
The monopoles carry the SU(N) magnetic fluxes given in Eq. (4.5.1) and,
therefore, can be located at the corners of the polygon in Fig. 12a.

ba

Figure 12: a). A schematic picture of the “baryon” formed by monopoles and
strings for N = 6; b). The “baryon” acquires the shape of a star once the neigh-
boring strings form non-BPS bound states.

In highly quantum regime, at m̃l = 0, both strings and monopoles carry
no average SU(N) magnetic flux, see (4.9.1). The confined monopoles are
seen as kinks interpolating between the “neighboring” quantum vacua of the
CP(N − 1) model (a.k.a. strings) in the closed necklace configuration in
Fig. 12a.

As was mentioned, the monopoles/kinks acquire flavor global quantum
numbers. They become fundamentals in SU(N)C+F . Thus, the “baryon” is
in the

N
∏

1

(N)

representation of SU(N)C+F . Note that both quarks and monopoles do not
carry baryon numbers. Therefore, our “baryon” has no baryon number too.
The reason for this is that the U(1) baryon current is coupled to a gauge boson
in the U(N) gauge theory that we consider here. This means, in particular,
that the “baryons” can decay into the monopole “mesons” or gauge/quark
multiplets.

We mentioned that the “neighboring” elementary strings can form a non-
BPS bound state, a composite string. It is plausible then that in practice the
monopole “baryon” actually resembles a configuration shown in Fig. 12b.

Let us emphasize that all states seen in the physical spectrum of the
theory are gauge singlets. This goes without saying. While color charges
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seen as kinks interpolating between the “neighboring” quantum vacua of the
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cf the dual ones from 1st page

for fun, let’s compare with Seiberg-Witten

- nondegenerate 
   mesons 

only linear baryons 
(more dramatic for N>3)

 (k-th component of fundamental bound by k-string and an anti k-1-string) 

1.  in SW there are N-1 condensing objects, in QCD(adj)/dYM there are N                 
     “condensing” monopole instantons
2.   in SW Weyl group totally broken, in QCD(adj)/dYM a Z  subgroup exact,         
    due to center stability

qualitative difference because:

(our one crude attempt at 
 constructing baryons)
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N

[for SU(3), SW has two dual ANO strings]



1II. comparisons with other abelian and nonabelian confining strings...

In dYM, we have “DWs” with flux w , w , ... w         [the fundamental weights].

The vacuum is unique and these “DWs” are, in fact, confining strings. 

For fundamental quarks, we also have Z    degeneracy of strings:

also, “Y”-baryons exist, since
the sum of the N fluxes vanishes: 

One can speculate about “integrating in” W-bosons, as entire heavy spectrum known- cf SW

N

To be sure, just like in SW and QCD(adj), these are still abelian strings - 
distinct (if degenerate) meson Regge trajectories.  

1 2  N-1 



1II. comparisons with other abelian and nonabelian confining strings...

One can speculate about “integrating in” W-bosons...[qualitatively similar in QCD(adj)/dYM]

a string confining i-th 
component of fundamental 

a degenerate anti-string 
confining i+1-th 
component of fundamental 

flux is exactly absorbed by W boson (no tension imbalance)
- off-diagonal massive gauge boson - “nearest-neighbor” W’s 
are the lightest, stable, and there are N degenerate species

Thus - like quarks on DWs in QCD(adj) - W-bosons in QCD(adj) and dYM are 
not confined on strings (at scales larger than the Debye screening length, 1/m):

Almost free monopole

<<Λ

ξ
−1/2

<m < ξ
1/2

Confined monopole,
quasiclassical regime

Λ
−1

m 0

Confined monopole,
highly quantum regime

>> ξ
1/2m

ξ
−1/2

Figure 6: Evolution of the confined monopoles.

of the monopole grows, and, classically, it would explode. This is where quantum

effects in the world-sheet theory take over. This domain presents the regime of highly

quantum world-sheet dynamics. While the thickness of the string (in the trans-

verse direction) is ∼ ξ−1/2, the z-direction size of the kink representing the confined

monopole in the highly quantum regime is much larger, ∼ Λ−1, see the lower right

corner in Fig. 6. In passing from m ≫ Λ to m ≪ Λ we, in fact, cross a line of the

phase transition from Abelian to non-Abelian strings. This is discussed in Sect. 7.

7 Abelian to non-Abelian string phase transition

In this section we will restrict ourselves to the choice of the mass parameters presented

in Eq. (49). Correspondingly, the potential of the massive CP N−1 model describing

the quasimoduli has the form (53).

At large m, m ≫ Λ, the model is at weak coupling, so the quasiclassical analysis

is applicable. N quasiclassical vacua are presented in Eq. (55). The invariance of

VCP (N−1) under the cyclic permutations (54) implies a ZN symmetry of the world-sheet

theory of the quasimoduli. In each given vacuum the ZN symmetry is spontaneously

broken. N vacua have strictly degenerate vacuum energies, which, as we already
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1II. comparisons with other abelian and nonabelian confining strings...

One can speculate about “integrating in” W-bosons...[qualitatively similar in QCD(adj)/dYM]

W-W* pairs on the string are massive (order M) excitations on the worldsheet

W is a “bead” on the string converting an i-string to an i+1 anti-string

On the Euclidean worldsheet, virtual  W worldlines on the string look like 
boundaries (DWs?!) separating regions with an i-string flux to an i+1 anti-string flux

time

space along worldsheet

> >i+1 
anti-string

i 
string

i 
string

W W*

as S^1size increases, approach 
nonabelian regime. W-flux should 
“melt” on the worldsheet, restoring 
correct N-ality-only dependence 
of string tensions

the abelian-regime picture is thus quite 
different from SW theory (also, here 
the effects of heavy Ws are calculable 
in principle…)

nonabelian strings only characterized by Z_N center flux: how does this crossover proceed? 



IV. future...

Taxonomy and properties of k-strings in this setup? 

We’ve seen that even abelian confinement can be quite rich and diverse. 

Interesting doable questions: 

^̂

pk

The picture of strings and DWs in dYM and QCD(adj) can be used to elucidate
the recently discovered distinct  global structure - discrete theta angles “p” 

Aharony Seiberg Tachikawa, Kapustin Seiberg -of  [SU(N)/Z  ]   theories in a physical manner. 
2013-2014

(in (slow) progress w/ students)

 already published in Anber, EP: 1508.00910… (another story)



IV. future...

Can the “double strings” in SYM be seen on the lattice? 
          perhaps less of a fantasy goal then massless QCD(adj) - e.g. Bergner,Piemonte 2014

How do the “double strings” in SYM morph into the ones in SW theory? 

Is there a phase transition/crossover on the worldsheet upon transition from 
abelian to non-abelian regime? [only known study is of Hanany, Strassler, Zaffaroni within MQCD 

Seiberg-Witten: decays, otherwise same strings…] How would lattice look for one? 

How is this abelian picture related to the center-vortex picture and how do the 
confining strings appear there?

We’ve seen that even abelian confinement can be quite rich and diverse. 

Interesting hard questions: 

 asked before in 3d Polyakov model by Greensite, Ambjorn…  

(somewhat of a) fantasy: a time slice of SU(2) monopole gas
with magnetic flux collimated into center vortices 
- these disorder Wilson loop and give area law, N-ality good!
  but, gauge fixing needed to see these in SU(2) phase!   

Fig. 8.3 Vortex field strength before gauge fixing. The arrows indicate direction in color space

Fig. 8.4 Vortex field strength after maximal abelian gauge fixing. Vortex strength is mainly in
the ± r3 direction

Fig. 8.5 Vortex field after abelian projection
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Fig. 8.6 Hypothetical collimation of monopole/antimonopole flux into center vortex tubes on
the abelian-projected lattice

120 8 Monopoles, Calorons, and Dual Superconductivity

it is not known (to me, at lest) how confining strings with Nambu-Goto like 
spectrum, as well seen in simulations, arise from center-vortex picture 


