

The IceCube Neutrino Observatory: Status, Initial Results and Future Prospects

Darren R. Grant Department of Physics, Centre for Particle Physics University of Alberta

High Energy Physics Seminar University of Toronto March 7, 2011

Cosmic Rays and the high energy Universe

• Victor Hess measures radiation of cosmic origin first in 1912

- Charged particles, so they don't point back to their sources
- Clues from spectrum, composition
- Astrophysical accelerators?
- How are they accelerated?

Victor Hess

March 7, 2011

Darren R. Grant - University of Alberta

- Charged particles, so they don't point back to their sources
- Clues from spectrum, composition
- Astrophysical accelerators?
- How are they accelerated?

compilation

by T. Gaisser

10⁰

All particle spectrum JACEE[11] Akeno[12]

n Shan[13] MSU[14]

*

* 1

The IceCube Neutrino Observatory

Very large scale "hybrid" observatory ~\$272M to construct (NSF, Sweden, Germany, Beglium)

IceCube:

- ~1 cubic-km instrumented volume
- 78 strings with 60 Digital Optical Modules (DOMs) per string
- Interstring spacing of 125 m, DOM spacing 17 m.
- Designed to detect neutrinos with energies between 200 GeV and 10 PeV.

Completed December 18, 2010

• DeepCore extension:

March 7, 2011

- 8 new strings ~\$6M addition.
- Dense instrumentation lowers the energy threshold to 10 GeV

• 4π detector using the IceCube array as an active veto. Access to southern hemisphere sources.

IceTop:

- Surface air shower detector array.
- Threshold approx. 300 TeV

Som Jestime Jestime

Here I show the primary astrophysics topics for which IceCube was designed to search.

You can of course do better- there is always room for improvement in these efforts. We are in a very exciting period right now for indirect searches- the first

You can of course do better- there is always room for improvement in these efforts. We are in a very exciting period right now for indirect searches- the first

The World's largest neutrino data set...

• Caveat: preliminary studies

- Full detector simulation of signal (only)
- Assume high suppression of atmospheric muons by veto trigger level
- Specialized reconstruction algorithms for low energy events needed, now under development
- Mainly using low level quantities, assumptions seem reasonable, but...

• Three possible measurements

- Muon neutrino disappearance
 Feasible
- Tau neutrino appearance
 Reasonable
- Neutrino mass hierarchy?
 Challenging

March 7, 2011 Darren R. Grant - University of Alberta

The basic idea for an indirect search – wimp capture is occurs mainly via spindependent scattering on protons (is the only significant cross-sections –this assumption gives us conservative limits). Self-annihilation of the wimps produces muon neutrinos at the end of the chain and we can detect these at the earth- assume that we achieve equilibrium between capture and annihilation.

The basic idea for an indirect search – wimp capture is occurs mainly via spindependent scattering on protons (is the only significant cross-sections –this assumption gives us conservative limits). Self-annihilation of the wimps produces muon neutrinos at the end of the chain and we can detect these at the earth- assume that we achieve equilibrium between capture and annihilation.

Now-lets consider the solar indirect wimp search: As you might expect, we utilize the data coincident with the Sun being below the horizon. For the datasets I show today that amounts to:... The data passes through a series of filter stages-

Summary

 The IceCube Observatory is now
COMPLETE and actively taking data with
79 strings. On track for full 86 string
observatory operation in March 2011.

• First results from the 22 and 40 string
detectors are now available. Analyses
underway on 59 and 79 string detector
configurations.

- Incredible discovery potential going forward - currently more than 1 cubic-km instrumented volume.
- Plans are developing for an large-scale particle physics program in the Antarctic with MC studies underway.

March 7, 2011

Darren R. Grant - University of Alberta

Summary

 The IceCube Observatory is now
COMPLETE and actively taking data with
79 strings. On track for full 86 string
observatory operation in March 2011.

• First results from the 22 and 40 string
detectors are now available. Analyses
underway on 59 and 79 string detector
configurations.

- Incredible discovery potential going forward - currently more than 1 cubic-km instrumented volume.
- Plans are developing for an large-scale particle physics program in the Antarctic with MC studies underway.

March 7, 2011

Darren R. Grant - University of Alberta