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Vx

Ix

Hall resistance RH =
Vy

Ix
=

B

ρec
classically

At integral and fractional ν =
ρφ0

B

• vanishing longitudinal resistance

• quantized Hall resistance

φ0 ≡ hc/e : flux quantum

ρ : two-dimensional electron density
Willett, Eisenstein, Stormer, Tsui, Gossard, English (1987)



2Composite Fermions [ Jain (1989)]

bound states of electrons and an even number (2p) of quantized vortices

2CF : + =

B∗ = B − 2pρφ0

ν =
ν∗

2pν∗ ± 1

Recall

ν =
ρφ0

B
, ν∗ =

ρφ0

B∗
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3Composite-Fermion Wave Function

ΨJ
ν = P ∏

j<k
(zj−zk)2p ·Φν∗

?

electrons at filling factor ν∗

︸ ︷︷ ︸

?

• attaches 2p vortices to each electron
• expands the system thereby reducing the filling factor

6

project into lowest Landau level

?

CFs at filling factor ν =
ν∗

2pν∗ + 1

strongly interacting electrons
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4Integral quantum Hall effect at ν = n

Φn:

n-filled Landau levels

0

1

n−1

n

Fractional quantum Hall effect at ν =
n

2pn+ 1

ΨJ
n/(2pn+1):

n-filled CF quasi-levels

1

n−1

0

n

CF theory explains

the FQHE as

the IQHE of

composite fermions

ν =
1

3
,
2

5
,
3

7
, . . . for p = 1



5Accuracy of Composite-Fermion Wave Function

relative errors are

smaller than 0.05%

Ground-state energy

ν N CF exact

2

5
6 −0.5003 −0.5004

8 −0.4802 −0.4802

10 −0.4693 −0.4695

3

7
9 −0.4991 −0.4992

12 −0.4825 −0.4826

Jain, Kamilla (1997)



6Topological binding of electrons and vortices

Composite-fermion wave functions at ν=n/(2pn+ 1)

Ψn/(2pn+1) = P
∏
j<k

(zj − zk)
2pΦn({zi})

binds 2p vortices

6

fills LLs

6

complex vortex structures

Simple situation at ν = 1/m because φ1 also has a simple vortex structure

Ψ(0) =
∏
j<k

(zj − zk)
me

−
∑
j |zj|2/4 (Laughlin)

: m vortices tied to each electron (m = 2p+ 1)



7Algebraic off-diagonal long-range order in a related bosonic wave function
[Girvin,MacDonald (1987)]

• gauge-transformed bosonic wave function ΨB

ΨB =
∏
j<k

(
|zj − zk|
zj − zk

)m
Ψ

• one-particle reduced density matrix

G(r, r′) ≡ 〈ΨB|c†(r)c(r′)|ΨB〉

• algebraic ODLRO for Ψ(0)
B

G(0)(r, r′) ∝ |r − r′|−m/2 for |r − r′| � ` ` ≡
√

~c/eB

cf.) no ODLRO for the fermionic FQHE wave function
〈ΨFermion|c†(r)c(r′)|ΨFermion〉 ∝ exp(−|r−r′|2/4)



8

• True ground state

Ψ =
∏
j<k

(zj − zk)FS[{zi}]e
−
∑
j |zj|2/4

FS[{zi}] : symmetric and analytic

Strictly speaking,

only one Pauli vortex is tied to each electron
i.e. bound vortex-antivortex pairs are produced
relative to Laughlin’s wave function

• Questions

1. Does algebraic ODLRO persist for Ψ?

2. If it does, what is the exponent?

Analogy to the KT transition might suggest a renormalization
[cf. Girvin and MacDonald (1987)]

pair correlation function
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9Improved Wave Functions at ν = 1/m

Ψ(0) : noninteracting composite fermions

Ψ′ : better wave functions
obtained by CF diagonalization

ν = 1/5

N |〈Ψ(0)|Ψ′〉|2 E(0) E′

17 0.73 13.693 13.683
18 0.72 15.066 15.055
19 0.68 16.487 16.475
20 0.69 17.952 17.940
21 0.71 19.465 19.452

N −1
0

n

1

2

l
0 1 2 3 4−2 −1

N −1
0

n

1

2

l
0 1 2 3 4−2 −1



10Edge Exponent

Gedge(r, r
′) = 〈Ψ|c†(r)c(r′)|Ψ〉 ∼

1

|r − r′|αedge

Ψ(0) Ψ′

their interpretation in terms of composite fermions have
both been established.

The calculations are performed for composite fermions
confined inside a disk [15,16]. There is a slight ambiguity
regarding which state corresponds to � � n=�2n� 1� for
n > 1. For example, for N � 30 composite fermions at
� � 2=5, we could take the configuration �15; 15�, �14; 16�,
or �16; 14�, where �N0; N1� refers to the state containing N0

composite fermions in the lowest composite-fermion
Landau level and N1 in the second. Fortunately, we have
found that the Green’s functions for these choices differ
only at short distances but not in the exponent describing
the long-distance behavior. Therefore, we confine our at-
tention to states that have equal numbers of composite
fermions in each composite-fermion Landau level. We
have considered fully polarized states at � � 1=3, 2=5,
and 3=7, with the lowest Landau level projection evaluated
in the standard manner [16]. Confinement to a disk is
achieved by fixing the total angular momentum, which
corresponds to a parabolic confinement potential. The
calculated Green’s functions, shown in Fig. 1(a), are con-
sistent with ��0� � 3. This was known for 1=3, but is
nontrivial for 2=5 and 3=7, for which the wave function

 �0� is rather complex. The prediction from the effective
theory thus correctly describes the edges of  �0�.

The wave functions  �0�
n=�2n�1� describe noninteracting

composite fermions, because �n is the ground state of
noninteracting electrons. These are known to be excellent
approximations for the actual ground states of interacting
electrons [16], but they are not exact; the interaction be-
tween composite fermions is weak but finite and leads to
slight corrections to  �0�. This is of no consequence to the
quantization of the Hall resistance, which remains unaf-
fected so long as there is a gap in the excitation spectrum;
that is why it is often valid to neglect the CF-CF interaction
in that context. We now ask if that is also the case for the
edge physics.

The effect of interaction between composite fermions is
to cause mixing with higher CF-LLs. (This ought to be
distinguished from mixing with higher electronic LLs,
which is neglected throughout this work.) To incorporate
the effect of CF-LL mixing, we diagonalize the Coulomb
Hamiltonian in the basis � �0�; f �0�p�hg�, where f �0�p�hg
denote states containing a single particle-hole pair of com-
posite fermions [7], and can be constructed explicitly from
the corresponding electronic wave functions at filling
factor n. Various inner products required for an orthonorm-
alization of the basis as well as the Coulomb matrix
elements are evaluated by Monte Carlo [7]. The ground
state thus obtained is denoted  �C� and the corresponding
exponent ��C�.

As seen in Fig. 1(b), ��C� is significantly smaller than
��0� � 3. The calculations are performed for finite sys-
tems, containing up to 40, 50, and 60 particles for 1=3,
2=5, and 3=7, and the possibility that the exponent may
change on the way to the thermodynamic limit cannot be
ruled out in principle, but several facts suggest that our
study captures the asymptotic physics: The maximum dis-
tance along the edge is 30 times the characteristic length,
namely, the magnetic length; the system is big enough to
produce a well defined exponent; the ‘‘expected’’ exponent
is obtained for  �0�; and finally, increasing the number of
particles from 30 to 50 for 2=5 and 30 to 60 for 3=7 does
not appreciably alter the exponent, while going from 30 to
40 particles at 1=3 reduces ��C� slightly [7].

Figure 2 shows a comparison between our theory and
experiment. The theoretical results for interacting compos-
ite fermions capture the qualitative behavior seen in ex-
periment. The systematic quantitative discrepancy between
theory and experiment can be ascribed to the neglect, in our
calculation, of certain experimental features that could
provide corrections, for example, disorder, the actual
form of the confinement potential, or the screening of the
interaction by the nearby gate. We note that the tunneling
experiments probe the time dependence of the Green’s
function, with the relevant correlation function being
Gedge�r; t; r; 0�; however, for TL liquids it is expected that
the asymptotic behaviors along the time and space direc-
tions are described by the same exponent.
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FIG. 1. The correlation function Gedge�jr� r
0j� �

Gedge�sin�=2� is plotted as a function of sin��=2� for 1=3, 2=5,
and 3=7 (from top to bottom, respectively, in each panel). The
points r and r

0 are chosen at the edge of the disk, at a distance of
R �

������������

2N=�
p

l from the center, where l is the magnetic length,
and � is the angle between r and r

0. The error bars indicate the
statistical uncertainty in Monte Carlo. The exponent � defined
by G��� � j sin��=2�j�� is shown for each case. For clarity,
some lines have been shifted vertically by an amount given in
parentheses on the left. Panel (a) gives the exponent for non-
interacting composite fermions ( �0�), panel (b) for interacting
composite fermions ( �C�), and panels (c) and (d) contain the
vortex correlation function, defined in text, for noninteracting
and interacting composite fermions. Systems with N � 40, 50,
and 60 composite fermions are used for 1=3, 2=5, and 3=7,
respectively.
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Ln| sin(θ/2)| Ln| sin(θ/2)|
Mandal,Jain(2002)

1/3

2/5

3/7

• αedge = 3 for Ψ(0).

• αedge changes for Ψ′.



11Ψ(0) at ν = 1/3 in the disk geometry

• for r � ` (but r < R)

G(r) ≡ G

(
−
r

2
x̂,
r

2
x̂

)
∝ r−α

results consistent with α = 3/2

R

r
2

r
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12Ψ′ at ν = 1/3 in the disk geometry
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13Ψ′ at ν = 1/3 in the disk geometry
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14Ψ′ at ν = 1/3 in the disk geometry
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15At ν = 1/5 in the disk geometry

Ψ(0)

�������
�����	�
������


�


����
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Ψ′
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������


�


����
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�������
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• Ψ(0) good power-law with α = 5/2

• Ψ′ large finite-size effects
but consistent with α = 5/2



16In the spherical geometry
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17Summary of Part I

• Our calculation confirms
an algebraic off-diagonal long-range order in bosonic wave functions
is robust for a wide class of FQHE wave functions at ν = 1/m.

• The exponents seem to be universal:

α = m/2 (ν = 1/m)

• As far as the long-distance behavior is concerned,
the 1/m FQHE states behave as if m vortices were bound to each electron.



18Other formulation of ODLRO at ν = 1/m

Destruction of an electron at point η from |Ψ(N+1)〉

|Ψ(N)
1 〉 ≡ ψ̂(η)|Ψ(N+1)〉

Creation of m vortices at η from |Ψ(N)〉

|Ψ(N)
2 〉 ≡

N∏
j=1

(zj − η)m|Ψ(N)〉

“local electron-vortex binding amplitude” B

B(N)
η =

〈Ψ(N)
1 |Ψ(N)

2 〉√
〈Ψ(N)

1 |Ψ(N)
1 〉〈Ψ(N)

2 |Ψ(N)
2 〉

cf.) For Laughlin wave function
m vortices are strictly bound to each electron
Bη = 1 for any η



19In spherical geometry Rezayi,Haldane(1988)

Incompressible state Compressible state

Similar quantity is finite only for incompressible state in bulk.



20Electron-vortex binding at the edge (ν=1/3, exact study)

• Disk geometry is useful for the
edge study.

• B decreases outside the edge.
(R0 ≡

√
2N/ν

: standard edge)
Note that B = 1 for Laughlin
wave function

• B shows rather slower decay
compared with the density

→

N=7

ν=1/3

R−R0

ρ/ρ0B

1.2

1

0.8

0.6

0.4

0.2

0

20151050-5

1.2

1

0.8

0.6

0.4

0.2

0



21Size-dependence (ν=1/3, exact study)
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8

7

6

N = 5

EXACT

ν=1/3

R−R0

B

20151050-5

1.2

1

0.8

0.6

0.4

0.2

0

B decreases gradually

with N outside the edge.

Question

Does B vanish,

in the thermodynamic limit,

beyond a certain crtical distance

outside the edge?

: A reliable estimate of the themodynamic behavior requires systems
larger than those accessible in exact studies.
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22CF(1) wave functions at ν = 1/m by CF diagonalization

Use basis functions with

up to one unit of “kinetic energy”

N −1
0

n

1

2

l
0 1 2 3 4−2 −1

N −1
0

n

1

2

l
0 1 2 3 4−2 −1 N −1

0
n

1

2

l
0 1 2 3 4−2 −1



23CF(1) wave functions at ν = 1/3

N Dex D
(1)
CF Eex E

(1)
CF 〈Ψex|Ψ(1)

CF〉 〈ΨL|Ψ
(1)
CF〉

5 192 17 2.0273 2.0273(05) 0.9998(1) 0.9842(1)

6 1206 28 2.8602 2.8606(02) 0.9992(3) 0.9830(1)

7 8033 43 3.7949 3.7953(06) 0.9978(4) 0.9603(2)

8 55974 65 4.8299 4.8310(09) 0.9976(3) 0.9659(2)

9 403016 95 5.9559 5.9575(06) 0.9965(11) 0.9732(2)

10 2977866 137 7.1671 7.1679(29) 0.9692(2)

11 22464381 193 8.4610(13) 0.9665(2)

12 172388026 270 9.8318(20) 0.9635(2)



24Electron-vortex binding at the edge (ν = 1/3,CF(1) study)

CF(1) results reproduce

exact behavior of B

both inside and outside

the edge.

CF(1)
Laughlin

exact

N=7

ν=1/3

R−R0

B

20151050-5

1.2

1

0.8

0.6

0.4

0.2

0



24Electron-vortex binding at the edge (ν = 1/3,CF(1) study)
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exact behavior of B
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B

20151050-5
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1

0.8
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9

8

7

N=6

CF(1)
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20151050-5
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25Thermodynamic limit of binding amplitude(ν = 1/3,CF(1) study)

Existence of a critical distance

≈ 7`

11

10

9

8

7

N=6

CF(1)

ν=1/3

R−R0

B

20151050-5

1.2

1

0.8

0.6

0.4

0.2

0

R−R0=16

R−R0=12

R−R0=8

R−R0=4

CF(1)

ν=1/3

1/N

B
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26Electron-vortex binding (ν = 1/5, CF(1) study)

7

6

N=5

CF(1)

ν=1/5

R−R0

B

20151050-5-10

1.2

1

0.8

0.6

0.4

0.2

0

R−R0=8.0

R−R0=4.0

CF(1)

ν=1/5

1/N

B

0.250.20.150.10.050

0.8

0.6

0.4

0.2

0

Larger fluctuations in B with N .

Stronger finite-size effect

Unbinding at a critical distance from the edge



27Summary of Part II

• Computation of local electron-vortex binding amplitude indicates that
electron and vortices are not bound beyond a certain critical distance
from the edge in the thermodynamic limit.

• A rough estimate of the critical distance at ν = 1/3 is 7 magnetic legnths.
It is notable that electron density is extremely small at that distance.



28Composite fermion crystal
Yi and Fertig (1998); Narevich, Murthy, and Fertig (2001)

Q. At very small ν (very large total angular momentum L), particles are far
from one another. Do we get a crystal of electrons? (The overlap between
neighboring wave packets is exp(−3.627/ν). For ν = 1/9, the overlap is
∼ 10−15.)

A. No. The ground state is an inherently quantum mechanical crystal of compos-
ite fermions.

Try the following wave functions:

• Hartree-Fock electron crystal : ψEC
L

• composite-fermion crystal : ψCF
L =

∏
j<k

(zj − zk)
2pψEC

L∗

L∗ = L− pN(N − 1)

L : total angular momentum

Determine the optimal CF crystal by minimizing the energy

with respect to the flavor (2p)



29Energy of crystals (N = 6)



30
Overlap

|〈Ψtrial|Ψexact〉|2/〈Ψtrial|Ψtrial〉〈Ψexact|Ψexact〉

L(ν) D
CF

crystal
electron
crystal Laughlin

75(1/5) 19858 0.891 0.645 0.701
105(1/7) 117788 0.994 0.723 0.504
135(1/9) 436140 0.988 0.740 0.442

Energy

L(ν) exact CF
crystal

electron
crystal Laughlin

75(1/5) 2.2019 2.2042(5) 2.2196 2.2093(2)
105(1/7) 1.8533 1.8536(2) 1.8622 1.8617(2)
135(1/9) 1.6305 1.6306(1) 1.6361 1.6388(1)

The energy of the CF crystal at ν=1/7 and 1/9 is off by 0.016% and
0.006%. (For N=6 at ν=1/3, the energy of Laughlin’s wave function
is off by 0.15% and its overlap with the exact state is 0.964.)



31Pair correlation functions (N=6, ν=1/7)
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32Summary of Part III

• From our finite N study we cannot say when a transition into crystal takes place.

• However, the crystal is a CF crystal, even deep inside the crystal phase (very
small ν).

• As ν decreases, the vorticity 2p goes on increasing.

• The CF crystal is expected to have qualitatively different properties than the elec-
tron crystal.
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