Electron-Vortex Binding and Inter-Composite-Fermion Interaction in the Fractional Quantum Hall States

Gun Sang Jeon

Seoul National University

KIAS Workshop on
Emergent Quantum Phases in Strongly Correlated Electron Systems
October 2005

in collaboration with J.K. Jain(PSU), M.R. Peterson(UC Santa Cruz)
Jeon,Peterson,Jain, PRB (2005); Jain,Jeon, PRB(R) (in press) ; Chang,Jeon,Jain, PRL (2005)

$$
\begin{aligned}
& \text { longitudinal resistance } R_{L} \equiv \frac{V_{x}}{I_{x}} \\
& \text { Hall resistance } R_{H}=\frac{V_{y}}{I_{x}}=\frac{B}{\rho e c} \text { classically }
\end{aligned}
$$

longitudinal resistance $R_{L} \equiv \frac{V_{x}}{I_{x}}$
Hall resistance $R_{H}=\frac{V_{y}}{I_{x}}=\frac{B}{\rho e c}$ classically

At integral and fractional $\nu=\frac{\rho \phi_{0}}{B}$

- vanishing longitudinal resistance
- quantized Hall resistance
$\phi_{0} \equiv h c / e$: flux quantum
ρ : two-dimensional electron density

Willett, Eisenstein, Stormer, Tsui, Gossard, English (1987)

Composite Fermions [Jain (1989)]
bound states of electrons and an even number ($2 p$) of quantized vortices

Composite-Fermion Wave Function

$$
\Psi_{\nu}^{J}=\mathcal{P} \prod_{j<k}\left(z_{j}-z_{k}\right)^{2 p} \cdot \Phi_{\nu^{*}}
$$

Composite-Fermion Wave Function

$$
\psi_{\nu}^{J}=\mathcal{P} \prod_{j<k}\left(z_{j}-z_{k}\right)^{2 p} . \Phi_{\nu^{*}}
$$

electrons at filling factor ν^{*}

$$
\Psi_{\nu}^{J}=\mathcal{P} \prod_{j<k} \underbrace{\left(z_{j}-z_{k}\right)^{2 p}}_{\text {electrons at filling factor } \nu^{*}} \cdot \Phi_{\nu^{*}}
$$

- attaches $2 p$ vortices to each electron
- expands the system thereby reducing the filling factor

- attaches $2 p$ vortices to each electron
- expands the system thereby reducing the filling factor

- attaches $2 p$ vortices to each electron
- expands the system thereby reducing the filling factor

Composite-Fermion Wave Function

project into lowest Landau level

- attaches $2 p$ vortices to each electron
- expands the system thereby reducing the filling factor
strongly interacting electrons

Integral quantum Hall effect at $\nu=n$

Integral quantum Hall effect at $\nu=n$

Fractional quantum Hall effect at $\nu=\frac{n}{2 p n+1}$

Integral quantum Hall effect at $\nu=n$

CF theory explains

 the FQHE as the IQHE ofcomposite fermions
Fractional quantum Hall effect at $\nu=\frac{n}{2 p n+1}$

$$
\nu=\frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \ldots \text { for } p=1
$$

Ground-state energy

ν	N	CF	exact

relative errors are
smaller than 0.05\%

Jain, Kamilla (1997)

Topological binding of electrons and vortices
Composite-fermion wave functions at $\nu=n /(2 p n+1)$

$$
\begin{array}{r}
\Psi_{n /(2 p n+1)}=\mathcal{P} \prod_{j<k}\left(z_{j}-z_{k}\right)^{2 p} \Phi_{n}\left(\left\{z_{i}\right\}\right) \\
\text { binds } 2 p \text { vortices fills LLs } \\
\text { complex vortex structures }
\end{array}
$$

Simple situation at $\nu=1 / m$ because ϕ_{1} also has a simple vortex structure

$$
\Psi^{(0)}=\prod_{j<k}\left(z_{j}-z_{k}\right)^{m} e^{-\sum_{j}\left|z_{j}\right|^{2} / 4} \quad \text { (Laughlin) }
$$

: m vortices tied to each electron $(m=2 p+1)$

Algebraic off-diagonal long-range order in a related bosonic wave functio \bar{h}

- gauge-transformed bosonic wave function Ψ_{B}

$$
\psi_{B}=\prod_{j<k}\left(\frac{\left|z_{j}-z_{k}\right|}{z_{j}-z_{k}}\right)^{m} \psi
$$

- one-particle reduced density matrix

$$
G\left(r, r^{\prime}\right) \equiv\left\langle\Psi_{B}\right| c^{\dagger}(r) c\left(r^{\prime}\right)\left|\Psi_{B}\right\rangle
$$

- algebraic ODLRO for $\Psi_{B}^{(0)}$

$$
G^{(0)}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \propto\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{-m / 2} \quad \text { for }\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right| \gg \ell \quad \ell \equiv \sqrt{\hbar c / e B}
$$

cf.) no ODLRO for the fermionic FQHE wave function

$$
\left\langle\Psi_{\text {Fermion }}\right| c^{\dagger}(\boldsymbol{r}) c\left(\boldsymbol{r}^{\prime}\right)\left|\Psi_{\text {Fermion }}\right\rangle \propto \exp \left(-\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{2} / 4\right)
$$

- True ground state

$$
\Psi=\prod_{j<k}\left(z_{j}-z_{k}\right) F_{S}\left[\left\{z_{i}\right\}\right] e^{-\sum_{j}\left|z_{j}\right|^{2} / 4}
$$

$F_{S}\left[\left\{z_{i}\right\}\right]$: symmetric and analytic

Strictly speaking,

only one Pauli vortex is tied to each electron
i.e. bound vortex-antivortex pairs are produced relative to Laughlin's wave function

- Questions

1. Does algebraic ODLRO persist for ψ ?

2. If it does, what is the exponent?

Analogy to the KT transition might suggest a renormalization [cf. Girvin and MacDonald (1987)]
$\psi^{(0)}$: noninteracting composite fermions
ψ^{\prime} : better wave functions
obtained by CF diagonalization

$$
\nu=1 / 5
$$

N	$\left\|\left\langle\Psi^{(0)} \mid \Psi^{\prime}\right\rangle\right\|^{2}$	$E^{(0)}$	E^{\prime}
17	0.73	13.693	13.683
18	0.72	15.066	15.055
19	0.68	16.487	16.475
20	0.69	17.952	17.940
21	0.71	19.465	19.452

Edge Exponent

$$
G_{\mathrm{edge}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\langle\Psi| c^{\dagger}(\boldsymbol{r}) c\left(\boldsymbol{r}^{\prime}\right)|\Psi\rangle \sim \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{\alpha \mathrm{edge}}}
$$

- $\alpha_{\text {edge }}=3$ for $\Psi^{(0)}$.
- $\alpha_{\text {edge }}$ changes for Ψ^{\prime}.
$\psi(0)$ at $\nu=1 / 3$ in the disk geometry
- for $r \gg \ell$ (but $r<R$)

$$
G(r) \equiv G\left(-\frac{r}{2} \widehat{x}, \frac{r}{2} \widehat{x}\right) \propto r^{-\alpha}
$$

results consistent with $\alpha=3 / 2$

Ψ^{\prime} at $\nu=1 / 3$ in the disk geometry

Ψ^{\prime} at $\nu=1 / 3$ in the disk geometry

ψ^{\prime} at $\nu=1 / 3$ in the disk geometry

$$
\begin{aligned}
& ? \\
& \alpha>
\end{aligned}=3 / 2
$$

ψ^{\prime} at $\nu=1 / 3$ in the disk geometry

ψ^{\prime} at $\nu=1 / 3$ in the disk geometry

α appears to approach 3/2

At $\nu=1 / 5$ in the disk geometry

- $\Psi^{(0)} \operatorname{good}$ power-law with $\alpha=5 / 2$
- Ψ^{\prime} large finite-size effects but consistent with $\alpha=5 / 2$

In the spherical geometry

- Our calculation confirms an algebraic off-diagonal long-range order in bosonic wave functions is robust for a wide class of FQHE wave functions at $\nu=1 / \mathrm{m}$.
- The exponents seem to be universal:

$$
\alpha=m / 2 \quad(\nu=1 / m)
$$

- As far as the long-distance behavior is concerned, the $1 / m$ FQHE states behave as if m vortices were bound to each electron.

Destruction of an electron at point η from $\left|\Psi^{(N+1)}\right\rangle$

$$
\left|\Psi_{1}^{(N)}\right\rangle \equiv \widehat{\psi}(\eta)\left|\Psi^{(N+1)}\right\rangle
$$

Creation of m vortices at η from $\left|\Psi^{(N)}\right\rangle$

$$
\left|\Psi_{2}^{(N)}\right\rangle \equiv \prod_{j=1}^{N}\left(z_{j}-\eta\right)^{m}\left|\Psi^{(N)}\right\rangle
$$

"local electron-vortex binding amplitude" \mathcal{B}

$$
\mathcal{B}_{\eta}^{(N)}=\frac{\left\langle\Psi_{1}^{(N)} \mid \Psi_{2}^{(N)}\right\rangle}{\sqrt{\left\langle\Psi_{1}^{(N)} \mid \Psi_{1}^{(N)}\right\rangle\left\langle\Psi_{2}^{(N)} \mid \Psi_{2}^{(N)}\right\rangle}}
$$

cf.) For Laughlin wave function
m vortices are strictly bound to each electron $\mathcal{B}_{\eta}=1$ for any η

Incompressible state

Compressible state

Similar quantity is finite only for incompressible state in bulk.

Electron-vortex binding at the edge ($\nu=1 / 3$, exact study)

- Disk geometry is useful for the edge study.
- \mathcal{B} decreases outside the edge.

$$
\begin{aligned}
\left(R_{0} \equiv\right. & \sqrt{2 N / \nu} \\
& : \text { standard edge })
\end{aligned}
$$

Note that $\mathcal{B}=1$ for Laughlin wave function

- \mathcal{B} shows rather slower decay compared with the density

Size-dependence ($\nu=1 / 3$, exact study)

\mathcal{B} decreases gradually with N outside the edge.

Size-dependence ($\nu=1 / 3$, exact study)

\mathcal{B} decreases gradually with N outside the edge.

Question
Does \mathcal{B} vanish, in the thermodynamic limit, beyond a certain crtical distance outside the edge?

Size-dependence ($\nu=1 / 3$, exact study)

\mathcal{B} decreases gradually with N outside the edge.

Question
Does \mathcal{B} vanish, in the thermodynamic limit, beyond a certain crtical distance outside the edge?
: A reliable estimate of the themodynamic behavior requires systems larger than those accessible in exact studies.
$\mathrm{CF}^{(1)}$ wave functions at $\nu=1 / m$ by CF diagonalization

Use basis functions with
up to one unit of "kinetic energy"
$\mathrm{CF}^{(1)}$ wave functions at $\nu=1 / m$ by CF diagonalization

Use basis functions with
up to one unit of "kinetic energy"

$\mathrm{CF}^{(1)}$ wave functions at $\nu=1 / m$ by CF diagonalization

Use basis functions with up to one unit of "kinetic energy"

$\mathrm{CF}^{(1)}$ wave functions at $\nu=1 / m$ by CF diagonalization

Use basis functions with up to one unit of "kinetic energy"

$\mathrm{CF}^{(1)}$ wave functions at $\nu=1 / 3$

N	$D_{\text {ex }}$	$D_{\text {CF }}^{(1)}$	$E_{\text {ex }}$	$E_{\text {CF }}^{(1)}$	$\left\langle\Psi_{\text {ex }} \mid \Psi_{\text {CF }}^{(1)}\right\rangle$	$\left\langle\Psi_{\mathrm{L}} \mid \Psi_{\mathrm{CF}}^{(1)}\right\rangle$
5	192	17	2.0273	$2.0273(05)$	$0.9998(1)$	$0.9842(1)$
6	1206	28	2.8602	$2.8606(02)$	$0.9992(3)$	$0.9830(1)$
7	8033	43	3.7949	$3.7953(06)$	$0.9978(4)$	$0.9603(2)$
8	55974	65	4.8299	$4.8310(09)$	$0.9976(3)$	$0.9659(2)$
9	403016	95	5.9559	$5.9575(06)$	$0.9965(11)$	$0.9732(2)$
10	2977866	137	7.1671	$7.1679(29)$		$0.9692(2)$
11	22464381	193		$8.4610(13)$		$0.9665(2)$
12	172388026	270		$9.8318(20)$		$0.9635(2)$

Electron-vortex binding at the edge ($\nu=1 / 3, C F^{(1)}$ study)
$C F^{(1)}$ results reproduce exact behavior of \mathcal{B} both inside and outside the edge.

Electron-vortex binding at the edge ($\nu=1 / 3, C F^{(1)}$ study $)$
$C F^{(1)}$ results reproduce exact behavior of \mathcal{B} both inside and outside the edge.

Thermodynamic limit of binding amplitude $\left(\nu=1 / 3, \mathrm{CF}^{(1)}\right.$ study $)$

Existence of a critical distance
$\approx 7 \ell$

Electron-vortex binding ($\nu=1 / 5, \mathrm{CF}^{(1)}$ study)

Larger fluctuations in \mathcal{B} with N.
Stronger finite-size effect
Unbinding at a critical distance from the edge

- Computation of local electron-vortex binding amplitude indicates that electron and vortices are not bound beyond a certain critical distance from the edge in the thermodynamic limit.
- A rough estimate of the critical distance at $\nu=1 / 3$ is 7 magnetic legnths. It is notable that electron density is extremely small at that distance.
Q. At very small ν (very large total angular momentum L), particles are far from one another. Do we get a crystal of electrons? (The overlap between neighboring wave packets is $\exp (-3.627 / \nu)$. For $\nu=1 / 9$, the overlap is $\sim 10^{-15}$.)
A. No. The ground state is an inherently quantum mechanical crystal of composite fermions.

Try the following wave functions:

- Hartree-Fock electron crystal :

$$
\begin{gathered}
\psi_{L}^{\mathrm{EC}} \\
\psi_{L}^{\mathrm{CF}}=\prod_{j<k}\left(z_{j}-z_{k}\right)^{2 p} \psi_{L^{*}}^{\mathrm{E}} \\
L^{*}=L-p N(N-1) \\
L: \text { total angular momentum }
\end{gathered}
$$

Determine the optimal CF crystal by minimizing the energy
with respect to the flavor $(2 p)$

Energy of crystals ($N=6$)

Overlap
$\left|\left\langle\Psi^{\text {trial }} \mid \Psi^{\text {exact }}\right\rangle\right|^{2} /\left\langle\Psi^{\text {trial }} \mid \Psi^{\text {trial }}\right\rangle\left\langle\Psi^{\text {exact }} \mid \Psi^{\text {exact }}\right\rangle$

$L(\nu)$	D	CF Crystal	electron crystal	Laughlin
$75(1 / 5)$	19858	0.891	0.645	0.701
$105(1 / 7)$	117788	0.994	0.723	0.504
$135(1 / 9)$	436140	0.988	0.740	0.442

Energy

$L(\nu)$	exact	CF crystal	electron crystal	Laughlin
$75(1 / 5)$	2.2019	$2.2042(5)$	2.2196	$2.2093(2)$
$105(1 / 7)$	1.8533	$1.8536(2)$	1.8622	$1.8617(2)$
$135(1 / 9)$	1.6305	$1.6306(1)$	1.6361	$1.6388(1)$

The energy of the CF crystal at $\nu=1 / 7$ and $1 / 9$ is off by 0.016% and 0.006%. (For $N=6$ at $\nu=1 / 3$, the energy of Laughlin's wave function is off by 0.15% and its overlap with the exact state is 0.964 .)

Pair correlation functions ($N=6, \nu=1 / 7$)

- From our finite N study we cannot say when a transition into crystal takes place.
- However, the crystal is a CF crystal, even deep inside the crystal phase (very small ν).
- As ν decreases, the vorticity $2 p$ goes on increasing.
- The CF crystal is expected to have qualitatively different properties than the electron crystal.

Acknowledgements

- National Science Foundation
- High Performance Computing Group (Penn State Univ.)

