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Correlated Quantum Systems

For a system to be in the quantum regime:
v« T, J U

Couplings in the quantum Hamiltonian

Ex.: transverse field Ising model
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How far does the QC regime extend?
Kopp & Chakravarty, Nature Phys. 2006
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Quantum criticality here, there, everywhere!
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Scaling of optical conductivity?
van der Marel et al , Nature 2004

Not with single parameter scaling
Phillips & Chamon, PRL 2005
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Electrons interacting with a broad spectrum of bosons

Norman & Chubukov, PRB 2006

Anderson, cond-mat/051247 |
Gutzwiller projection



Strongly Constrained Quantum Systems

If there is a dominant, very high energy scale in the problem that imposes
a severe kinematic constraint in the system:

T < F’J<<

then, we find that

A hierarchy of scales can open such that:

A) the constrained thermodynamics becomes classical even at low temperatures
B) the dynamics is quantum in origin

C) the system can display critical behavior at very high temperatures, which is
unrelated to quantum criticality



Examples of constrained models
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Josephson junction arrays of T-breaking superconductors

Constrained Ising model
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Generic constrained systems

A

H=—JH,—THr — UHy U > |J|,|T| with [Hy,H;]=0 and [Hy,Hr]#0

For T" < U the system is effectively constrained to a restricted Hilbert space Hy
spanned by the eigenvectors of 77;; .

\
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Hyr is extensive in the system size Hy is not extensive
The non-interacting ' = J — ( system The correlatlf)r.\sI of theruI;'sly!IJrO]edctled
exhibits power-law correlations (criticality) system are trivial (e.g., Hubbard model)

when restricted to "y (e.g., dimer models,
ice models, constrained Ising models)



A spin-1/2 example:
H=-J) 676;—-T)» 67-U)Y cos|2r » 67/3
(i7) =1 hex 1€hex

with U > |J|, |I'|, and for temperatures T < U the systems is mostly confined to a
superposition of GS eigenvectors of H;
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The non-commuting ﬁr term has a vanishing first-order contribution and
needs to be expanded in (degenerate) perturbation!



Introducing the constraint in a quantum system: projection by a large energy coupling
U > |J|,|T'| onto its (highly-degenerate) ground states.
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(at temperatures much Uz smaller than U )

o on the restricted Hilbert space

eff - _JZOA-Z&Z_ZWHI(’T/L)U =

n=1 span of GS basis vectors of U term

First non-vanishing contributions of the (degenerate) perturbation theory appear only
at sixth order (third order if we used Heisenberg Hamiltonian instead of Ising Hamil-
tonian):



Different temperature regimes

e T'> U - all terms in the Hamiltonian become negligible, free-spin
paramagectic phase

o 'K I'eg - “quantum regime”

e T'> I'eg - classical hard-constrained regime with infinitesimal
perturbation J and quantum dynamics

A classical ordered phase can appear depending on the effects of J

Iy
U

Hierarchy opens a large window
in which the
thermodynamics is classical

e ~ T (I'/U) 1




Dynamics is still quantum: why?

consider coupling the system to a thermal bath, e.g., a la Caldeira-Leggett:

with




Relaxation time for thermally activated processes (over the defect-creation barrier
~ exp(U/T))

T = LeU/T)

Relaxation time for virtual processes (via quantum tunneling of at least 6-th order in
perturbation):

7o = min(|Teg |, v ),
where
Vet ~ V(YU <y
Log ~ (/U
To < Tp = phantom of quantum mechanics in the form of sporadic tunneling

events between which coherence is lost provides the fastest mechanism for the system
to reach classical thermodynamic equilibrium when |I' 4| < T < U.



Effects of the constraint at the classical behavior

N N
H=-J) 676;—> [h+(-1)'h,J67-TY 67 —U> cos <2w > &§/3>
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How does the constraint alters the Ising model?

e The model is critical in the absence of interactions (Baxter), and its long distance behavior is
captured by an SU(3)|x=1 Wess-Zumino-Novikov-Witten conformal field theory

S = /d% (CIVAIP + V()

\

2 component height field

e What are now the effects of J. 1, h in the constrained model?



Qualitative phase diagram

T/U= oo ‘
gT=0 T<_
. paramagnetic fixed point
disordered ‘
' phase . ‘
; classical ordered
constrained : fixed point
entropic | ; Yoo
fixed point {@h .
13 decreasing g/U ordered |
NS hase .
'\ /é/‘/ .............. p N
T/U=0 (/T) T/U=0 /T
g/T=0 ¢ g/T=co

A T/U
T/U=co
gT=0 o
" paramagnetic fixed point
+ disordered
' phase -
constrained | . 1
entropic i classical ordered
fixed point |} fixed point
o4 decreasing g/U . .
.\»\{\ \‘ \~~~~ phase \\\Ji
T/U=0 U0 g/T
g/TIO g/T: oo

g=hor hgorJ



1) The (staggered/uniform) magnetic field case

From Monte Carlo simulations, Cluster Mean Field Method results, and Transfer
Matrix calculations of the free energy and magnetization of the system, as well as
analytical results in the staggered field case (Baxter, Kondev):
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e The uniform magnetic field case exhibits an exotic first order phase transition
to the ferromagnetically ordered phase where the magnetization per spin jumps
discontinuously from 0 to 1

e The staggered magnetic field case exhibits an infinite order phase transition at
infinite temperature to the Néel phase
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Characteristic features:

e the criticality is robust in presence of a uniform magnetic field up to the first
order phase transition

e the SU(3) symmetry is preserved up to the first order transition (same central
charge ¢ = 2 and same exponents)!



2) The nearest-neighbor interaction case

From Monte Carlo simulations, Cluster Mean Field Method results, and Transfer
Matrix calculations of the free energy and magnetization of the system:
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e In the case of ferromagnetic interactions, the system undergoes an exotic first
order phase transition to the ferromagnetically ordered phase where the magne-
tization per spin jumps discontinuously from 0 to 1

e In the case of antiferromagnetic interactions, the system undergoes a “second
order” phase transition to the Néel phase

e Monte Carlo simulations are incapable of detecting the AF transition
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Characteristic features:

e criticality with ¢ = 2 for a ferromagnetic coupling J until the first order phase
transition is reached (exp(—L/£) finite size correction close to the transition)

e criticality with a varying central charge on the antiferromagnetic side approxi-
mately from GJ = (8J)%p (c = 1.5) to J =0 (c = 2)



HiTc (High-temperature criticality) in
strongly constrained quantum

Static properties of the effective
Hamiltonian
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e U < T — classical paramagnetic phase (U relevant)

o |J|,|l'eg| < T <« U — constraint fully enforced; classical phase equivalent
to classical constrained model with nearest-neighbor interaction J: universal
critical behavior at large enough temperature!

o T < |J|,|Tef| — ordered phases that depend on the model-specific Hamiltonian

details

Large temperature universal scaling regime with no required underlying

critical point!



More hard-constrained systems

A
T/t . Classical dimer model

B N
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ZQ gauge theory
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Classical correlation entropy of constrained systems
VS.
von Neumann entropy
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o o o o The von Neumann entropy depends on the boundary for pure states,

but on the bulk as well for mixed states

1
To subtract the bulk term, we define Sboundary = 5 (SA + S — SAUB)

Smixed _1 Spure
boundary — 9 boundary

Non-trivial correlation entropy even at large T!



Summary

HiTc (High-temperature criticality) in
strongly constrained quantum

systems
quantum regime T quantum glass
Static properties of the effective N T=oo
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e U < T — classical paramagnetic phase (U relevant)

o |J|,|l'eg| < T <« U — constraint fully enforced; classical phase equivalent
to classical constrained model with nearest-neighbor interaction J: universal
critical behavior at large enough temperature!

o T < |J|,|leg| — ordered phases that depend on the model-specific Hamiltonian
details

Large temperature universal scaling regime with no required underlying
critical point!



