
High-Temperature Criticality in 
Strongly Constrained 

Quantum Systems

Claudio Chamon 

DMR 0305482

PRB 2006
Ann. of Phys. 2005, 2006

Collaborators:

Claudio Castelnovo - BU
Christopher Mudry - PSI, Switzerland
Pierre Pujol - ENS Lyon, France
	



Correlated Quantum Systems

Couplings in the quantum Hamiltonian

For a system to be in the quantum regime:

Kopp & Chakravarty, Nature Phys. 2006

T ! Γ, J, U

Ex.: transverse field Ising model
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QC
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How far does the QC regime extend?

T/J



Scaling of optical conductivity? 
van der Marel et al , Nature 2004

Not with single parameter scaling
Phillips & Chamon, PRL 2005

Quantum criticality here, there, everywhere? 

T

AF SC

QC

Look up, not down

Electrons interacting with a broad spectrum of bosons
Norman & Chubukov, PRB 2006

Anderson, cond-mat/0512471
Gutzwiller projection



Strongly Constrained Quantum Systems

If there is a dominant, very high energy scale in the problem that imposes 
a severe kinematic constraint in the system:

T ! Γ, J !U
then, we find that

A hierarchy of scales can open such that:

A) the constrained thermodynamics becomes classical even at low temperatures
B) the dynamics is quantum in origin
C) the system can display critical behavior at very high temperatures, which is
    unrelated to quantum criticality



Examples of constrained models



Source: Snyder et al, Nature (2001)

Dy2Ti2O7  (Ho2Ti2O7)Spin Ice
Snyder et al, Nature (2001)



Josephson junction arrays of T-breaking superconductors 

Moore & Lee, PRB (2004)
Castelnovo, Pujol, and Chamon, PRB (2004)

px ± ipySr2RuO4 

σi = ±1

Constrained Ising model

chirality

Φ
!
P = 2π/3

∑

i∈P

σi

= 2π/3 σ!
P

⇒ σ
!
P =

∑
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σi = ±6, 0

H = −J
∑

〈ij〉

σiσj with σ!
P = ±6, 0

px ± ipy



U ! |J |, |Γ| with [ĤU , ĤJ ] = 0 and [ĤU , ĤΓ] != 0

For             the system is effectively constrained to a restricted Hilbert space     
spanned by the eigenvectors of       .

T ! U HU

ĤU

is extensive in the system size is not extensive

HU

The correlations of the purely projected 
system are trivial (e.g., Hubbard model)

The non-interacting                  system
exhibits power-law correlations (criticality)
when restricted to        (e.g., dimer models, 
ice models, constrained Ising models)

Γ = J = 0

Generic constrained systems

Ĥ = −JĤJ − ΓĤΓ − UĤU

HU HU



blank lineA spin-1/2 example:
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with U " |J |, |Γ|, and for temperatures T # U the systems is mostly confined to a
superposition of GS eigenvectors of ĤU

⇔

The non-commuting ĤΓ term has a vanishing first-order contribution and
needs to be expanded in (degenerate) perturbation!
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Introducing the constraint in a quantum system: projection by a large energy coupling
U ! |J |, |Γ| onto its (highly-degenerate) ground states.
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(at temperatures much ⇓ smaller than U)

Ĥeff = −J
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Ĥ(n)
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on the restricted Hilbert space
≡

span of GS basis vectors of U term

First non-vanishing contributions of the (degenerate) perturbation theory appear only
at sixth order (third order if we used Heisenberg Hamiltonian instead of Ising Hamil-
tonian):

n = 6 =⇒ Γeff =
Γ6
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Different temperature regimes

A classical ordered phase can appear depending on the effects of 

T ! U                - all terms in the Hamiltonian become negligible, free-spin 
paramagectic phase

                    - “quantum regime”

                    - classical hard-constrained regime with infinitesimal 
perturbation     and quantum dynamics J

J

U

T

Γ

Hierarchy opens a large window
in which the 

thermodynamics is classical

Γeff ∼ Γ (Γ/U)n−1

T ! Γeff

T ! Γeff
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Three different temperature regimes

• T ! U – all terms in the Hamiltonian become negligible, free-spin paramagnetic
phase

• T " |J |, |Γeff| – “quantum” regime where the system generically sits in a short-
range correlated phase

• |J |, |Γeff| " T " U – classical hard-constrained regime with infinitesimal per-
turbation J and quantum dynamics (Γ):

consider coupling the system to a thermal bath, e.g., a la Caldeira-Leggett:

∑

i,λi

γ σ̂x
i

(
âλi

+ â†
λi

)
,

with

0 < γ (bath coupling) " |Γ| (kinetic energy)

Dynamics is still quantum: why?



blank line

Relaxation time for thermally activated processes (over the defect-creation barrier
∼ exp(U/T )):

τT = γ−1e(U/T )

Relaxation time for virtual processes (via quantum tunneling of at least 6-th order in
perturbation):

τQ = min(|Γ−1
eff |, γ−1

eff ),

where






γeff ∼ γ(γ/U)n−1 " γ

Γeff ∼ Γ(Γ/U)n−1

τQ " τT =⇒ phantom of quantum mechanics in the form of sporadic tunneling
events between which coherence is lost provides the fastest mechanism for the system
to reach classical thermodynamic equilibrium when |Γeff | " T " U .
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Effects of the constraint at the classical behavior

What are now the effects of                 in the constrained model? J, h, hs

The model is critical in the absence of interactions (Baxter), and its long distance behavior is 
captured by an                        Wess-Zumino-Novikov-Witten conformal field theorySU(3)|k=1

S =
∫

d2x
(π

2
||∇"h||2 + V ("h)

)

2 component height field

How does the constraint alters the Ising model?



g/T=0 g/T=
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Qualitative phase diagram

g = h or hs or J



2.2. The phase diagram in presence of local interactions

1) The (staggered/uniform) magnetic field case

From Monte Carlo simulations, Cluster Mean Field Method results, and Transfer
Matrix calculations of the free energy and magnetization of the system, as well as
analytical results in the staggered field case (Baxter, Kondev):

E = −
∑

i

hiσi

∑

i∈ hex

σi = ±6, 0

• The uniform magnetic field case exhibits an exotic first order phase transition
to the ferromagnetically ordered phase where the magnetization per spin jumps
discontinuously from 0 to 1

• The staggered magnetic field case exhibits an infinite order phase transition at
infinite temperature to the Néel phase
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Characteristic features:

• the criticality is robust in presence of a uniform magnetic field up to the first
order phase transition

• the SU(3) symmetry is preserved up to the first order transition (same central
charge c = 2 and same exponents)!
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2) The nearest-neighbor interaction case

From Monte Carlo simulations, Cluster Mean Field Method results, and Transfer
Matrix calculations of the free energy and magnetization of the system:

E = −J
∑

〈i,j〉

σiσj

∑

i∈ hex

σi = ±6, 0

• In the case of ferromagnetic interactions, the system undergoes an exotic first
order phase transition to the ferromagnetically ordered phase where the magne-
tization per spin jumps discontinuously from 0 to 1

• In the case of antiferromagnetic interactions, the system undergoes a “second
order” phase transition to the Néel phase

• Monte Carlo simulations are incapable of detecting the AF transition
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Characteristic features:

• criticality with c = 2 for a ferromagnetic coupling J until the first order phase
transition is reached (exp(−L/ξ) finite size correction close to the transition)

• criticality with a varying central charge on the antiferromagnetic side approxi-
mately from βJ = (βJ)c

AF (c ≈ 1.5) to βJ = 0 (c = 2)



2.3. HiTC (High-temperature criticality) in strongly constrained
quantum systems

blank

Static properties of the effective
Hamiltonian

Ĥeff = −J
∑

〈i,j〉

σ̂z
i σ̂

z
j − ΓeffĤ

eff
Γ/U

where Γeff = Γ6

U5 and Ĥeff
Γ/U is at

most of order 1 in Γ
U .

• U " T −→ classical paramagnetic phase (U relevant)

• |J |, |Γeff| " T " U −→ constraint fully enforced; classical phase equivalent
to classical constrained model with nearest-neighbor interaction J : universal
critical behavior at large enough temperature!

• T " |J |, |Γeff| −→ ordered phases that depend on the model-specific Hamiltonian
details

Large temperature universal scaling regime with no required underlying
critical point!

HiTc (High-temperature criticality) in 
strongly constrained quantum 

systems



More hard-constrained systems
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Z2 gauge theory

Constraint:

spin 1/2
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Classical correlation entropy of constrained systems
vs.

von Neumann entropy 

A:

B: the rest

SA = −trA (ρA ln ρA)

SB = −trB (ρB ln ρB)

ρA = trB ρ̂

ρB = trA ρ̂

where

The von Neumann entropy depends on the boundary for pure states,
but on the bulk as well for mixed states

Sboundary =
1
2

(SA + SB − SA∪B)To subtract the bulk term, we define

Smixed
boundary =

1
2

Spure
boundary

Non-trivial correlation entropy even at large T!



2.3. HiTC (High-temperature criticality) in strongly constrained
quantum systems
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Static properties of the effective
Hamiltonian

Ĥeff = −J
∑

〈i,j〉

σ̂z
i σ̂

z
j − ΓeffĤ

eff
Γ/U

where Γeff = Γ6

U5 and Ĥeff
Γ/U is at

most of order 1 in Γ
U .

• U " T −→ classical paramagnetic phase (U relevant)

• |J |, |Γeff| " T " U −→ constraint fully enforced; classical phase equivalent
to classical constrained model with nearest-neighbor interaction J : universal
critical behavior at large enough temperature!

• T " |J |, |Γeff| −→ ordered phases that depend on the model-specific Hamiltonian
details

Large temperature universal scaling regime with no required underlying
critical point!

HiTc (High-temperature criticality) in 
strongly constrained quantum 

systems

Summary


