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Interest to isotropic models of fermions interacting
with low-energy, long-wavelength bosons 

• Fermions with

• Landau-overdamped bosons with

• Residual spin-fermion coupling g
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The most known example –
a ferromagnetic quantum-critical point



The case of a ferromagnetic (Stoner) 
instability  for itinerant electron system

Fermi liquid
Ferromagnetic phase

What is the critical theory?
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Other examples:  interaction with gauge fields, 
an instability towards nematic ordering,  quarks
interacting with gluons, ….. P.A. Lee, Nagaosa, Wen;

Ioffe & Larkin, Kee & Kim,
Lawler & Fradkin, A.C. & 
Schmalian…

The problem is particularly interesting in D =2



Three issues:

• What happens with fermions near criticality?
(fluctuations are strong and destroy a Fermi liquid 

behavior. What replaces a Fermi liquid?)   

• Whether the Landau-overdamped form of the
bosonic propagator                            survives?

(is a second order continuous transition protected
against fluctuations?)

q
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• Is there a superconductivity near a QCP?



• What happens with fermions near criticality?
(fluctuations are strong and destroy a Fermi liquid 

behavior. What replaces a Fermi liquid?)   

Not an academic issue:

Essential for the calculation of the specific heat
near a quantum-critical point    

T m  (T)C *
FL ∝

m* diverges at QCP



• Whether the Landau-overdamped form of the
bosonic propagator                            survives?

(is a second order continuous transition protected
against fluctuations?)
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Ferromagnetic transition is often 1st order

ZrZn2

Ferromagnetic
phase

1st order

pressure



• Is there a superconductivity near a QCP?

UGe2



Eliashberg-type theory  (D=2)
Fermions at QCP

Altshuler, Ioffe,
Millis, Kopietz;
Metzner et al; 
Morr, A.C., …

)(  ) (k, ωω Σ=Σ + no vertex corrections
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Issue of (still) current interest:

Is the Eliashberg theory  with                      stable?2/3 ~ )( ωωΣ

Altshuler, Ioffe, Millis,
Metzner, A.C. …

Earlier  perturbative calculations – yes

Recent calculations based on bosonization – no
(argued that Eliashberg theory is broken below some        )minω

Fradkin, Lawler…

Our results:

• For a charge QCP, Eliashberg theory survives, but 
controllable calculations are only possible  if one extends   
the model to a large number of fermionic flavors N 

• For SU(2) symmetric spin case,  Eliashberg theory of a
ferromagnetic QCP is internally unstable 



A conventional reasoning for  the Eliashberg theory:
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Then, for the same frequency,

2/3
F  ~ k-k ω fermions are much

faster than bosons
typical fermionic momenta

1/3 ~ q ωtypical bosonic momenta (much larger)

Quite generally, in this situation, 
Migdal theorem must be valid
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If               vertex corrections and k-dependent self-energy are small  1, <<α

Static vertex in the limit of vanishing momentum

= O(       )2/1α



This is not enough.

The theory must satisfy Ward identities, associated with the 
conservation of the total number of particles, and the total spin
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Finite momentum, zero frequency

vertex corrections
are small= O(       )2/1αQ, 0

Finite frequency, zero momentum

0,  Ω vertex corrections
are large
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As a result, the theory is NOT under control:
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Another powerful way to do calculations is bosonization.
Lawler &
Fradkin

The bosonization result in 2D:                                          is consistent

with divergent  series for the self-energy (i.e.,             does not survive)2/3ω
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One detail – bosonization assumes that the 
curvature of the Fermi surface is irrelevant



The  curvature of the Fermi surface is crucial to the physics in 2D

• one can extend the theory to N fermionic flavors Altshuler et al,
Rech et al
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The factor 1/N comes from the curvature of the Fermi surface

)(  ~ )( 12 ωω ΣΣWithout the curvature,  we would still have , even at N >>1



One can improve bosonization to include the curvature

Khveshchenko & A.C. 
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(perturbation theory does not diverge)



Intermediate conclusion

For 2D fermions,  interacting with a given

q
   q  ) (q, 21 Ω
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3/2)(  )( ωω ∝Σ is very likely the exact solution.

This was the effect from bosons on fermions.

What about the opposite effect?

Does the bosonic propagator  preserve its form when
one includes the corrections due to fermions? 



A conventinal answer – fermions only account for
Landau damping of bosons

Then, once the fermions are integrated out,
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Z=3,  Dcr =1 (Dcr + Z =4)

Bosonic propagator is not affected
by fluctuations in D >1



In reality, ferromagnetic transition is 1st order

ZrZn2

pressure

1st order

Ferromagnetic
phase

pressure
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Verify this

Apply a magnetic field and use   the exact formula for the 

thermodynamic  potential in the Eliashberg theory
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Diagrams for               in the Eliashberg theory(q) χ

1/2
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pin p Q 0.25 -  (Q) =sδχ

Comes from processes in which bosons are vibrating at fermionic frequencies
(opposite to Migdal processes)



Corrections:  go outside Eliashberg theory
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Physics  -- Landau damping

|q|
   ) (q, 1 Ω

∝Ω−χ Long-range dynamic interaction 
between  fermions/rΩ

A magnetic field changes         into               , i.e. restores analyticity|q|
Ω

22 (iH)  q +

Ω

As a result, the derivative with respect to H is singular

For the charge susceptibility,          measures the response to the 
change of the chemical potential.              survives this change,
hence the charge susceptibility should be regular.

χ
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Charge susceptibility
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Back to the static spin susceptibility
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Internal instability of z=3  QC theory in D=2



Another way to see the instability of a ferromagnetic QCP
is to calculate the q=0 susceptibility at a finite T

T
T log 

T
T -   T) 0,(q 0

0

1 ==−χ

Or calculate the thermodynamic potential at a finite magnetization

 M a - M b  (M) 34=Ξ

Maslov & A.C.,
Belitz, Kirkpatrick & Vojta



What can happen?

a transition into a spiral state 

Belitz, Kirkpatrick, Vojta,
Maslov and A.C., Rech, Pepin, A.C. 
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Both scenarios are possible



The instability of the Ferromagnetic QCP can be also understood
in  the frameworks of the Hertz-Millis-Morya theory

How one obtains Hertz theory

Stage one:  obtain the spin-fermion model 
(fermions, collective spin fluctuations, and interacton)

(integrate out high energy fermions)

spin channel
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static collective 
spin fluctuations

low-energy
fermions

spin-fermion
interaction



Stage two:  obtain the theory for collective modes 
(integrate out  low energy fermions)

q
  Ω= Landau damping
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fermions produce long-range dynamic interaction 
between collective modes

This dynamic interactions fits back into        term
in the static susceptibility
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The non-analyticity of the spin susceptibility is 
NOT specific to a ferromagnetic quantum criticality

The same effect is already seen
in weak coupling perturbation 
theory, the only difference is that 

is replaced by |q| as the
effect of fermionic self-energy is 
weak  at small  coupling.
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Why only U(2pF) matters? 

In perturbation theory, only bubbles with the same spin 
projection are present.  The 2kF bubble is singular and 

is affected by the magnetic field
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For a constant, but arbitrary interaction U
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What would happen if  T) (q, sδχ was positive ?

Self-consistent calculations:
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Marginal Fermi liquid in D=2



Conclusions

The QCP towards charge (e.g., nematic) ordering is stable in 2D. The
fermionic self-energy is                ,  , and the theory is controllable at N >>1.2/3 ~ )( ωωΣ

A ferromagnetic Hertz-Millis  critical theory is internally unstable in D=2

(and also in D = 3)

• static spin propagator is negative at QCP up to Q~ pF

• free energy has an              term3M

Either an incommensurate ordering, 
or 1st order transition to a ferromagnet
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