Role of the Octahedra Rotation on the Electronic Structures of 4*d* Transition Metal Oxides

Changyoung Kim

Dept. Physics, Yonsei University

<u>B. J. Kim¹</u>, J. Yu¹, S. J. Oh¹, H. Koh², I. Nagai³, S. I. Ikeda³, Eun Jung Ko⁴, Hyung Joon Choi⁴

 ¹School of Physics and Center for Strongly Correlated Materials Research, Seoul National University, Seoul, Korea
 ²Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
 ³National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
 ⁴Department of Physics, Yonsei University

Outline

- Background $(Sr,Ca)_2RuO_4$
- ARPES data from Sr_2RhO_4 Missing d_{xy} Fermi Surface
- Comparison with Band Calculation
- Implication to (Sr,Ca)₂RuO₄
- (Sr,Ba)₂RhO₄ Band Structure Manipulation
- Summary

Sr₂RuO₄: spin-triplet superconductor

► Layered perovskite superconductor like La_2CuO_4 CuO_2 -plane $\longrightarrow RuO_2$ -plane

Y. Maeno et al., Nature 372, 532 (1994)

Phase diagram of Ca_{2-x}Sr_xRuO₄

S. Nakatsuji et al, Phys. Rev. Lett. 84, 2666 (2000).

Structural distortion of Ca_{2-x}Sr_xRuO₄

Various ground states are realized by structural distortions.

4d transition-metal oxide

Large spatial extent of 4*d* orbitals

→large bandwidth, large 10*Dq*.
→tends to be weakly-correlated.

Low-spin configuration is expected.

Rotation of Octahedra

Rotation brings about:

- Doubling of the unit cell
- Decrease of M-O-M bond angle

a in I4₁/acd a in I4/mmm O z = 1/8

Fig. 1. Structure diagram of the Sr_2RhO_4 with $I4_1/acd$ spi group showing the RhO_6 octahedra rotation at z = 1/8 and z3/8 in ref. 4. The dotted lines shows the structure of Sr_2Ru with I4/mmm space group.

which cause:

- Band folding
- Bandwidth narrowing

Unit cell doubling and band folding

Band width narrowing

Angle-resolved photoemission spectroscopy (ARPES)

k_x

From momentum/energy conservation rules:

$$k_{pe} = -k_{N-1}$$
$$hv - E_{pe} = E_{N-1} - E_N$$

ARPES data on Ca-doped SRO

ARPES is a powerful tool to study the electronic structure.

S.-C. Wang et al. PRL 93,177007 (2004)

 Sr_2RuO_4

 $\mathrm{Ca}_{1.5}\mathrm{Sr}_{0.5}\mathrm{RuO}_4$

However, the disorder effects introduced by doping have discomforting effects in ARPES: the signals are generally broad and weak.

Sr_2RhO_4

39	40	41	42	43	44	45	46	47	48
Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd

- Share same crystal structure with Sr₂RuO₄.
- 5 electrons in 4*d* orbitals.
- Rotation angle $\sim 10^{\circ}$.
- No supeconductivity.

Sr₂RhO₄ presents an opportunity to study the effect of rotation without disorder.

Electrical resistivity

Similar to $\rho(T)$ in Sr₂RuO₄

- Large anisotropy $\underline{\rho_c} / \rho_{ab} (3K) = 2400$
- *T*²- dependence

Fitting with $\rho = \rho_0 + AT^2$

$$\rho_{ab}(T) \begin{array}{l} \rho_0 = 8.6 \ \mu\Omega cm \\ A_{ab} = 6.26 \times 10^{-3} \ \mu\Omega cm/K^2 \end{array}$$

$$ρ_{c}(T) = \frac{ρ_{0} = 20.1 \text{ m}\Omega \text{cm}}{A_{c} = 10.55 \text{ m}\Omega \text{cm}/\text{K}^{2}}$$

• Below ~250 K, ρ_c decreases with lowering temperature.

because of suppression of thermal scattering between quasiparticles and phonon ?

• No superconducting transition was observed down to 36 mK.

Sr₂RhO₄ is a two-dimensional Fermi liquid.

Expected FS of Sr2RhO4

FS of Sr₂RuO₄

A. Damascelli et al. Phys. Rev. Lett. 85, 5194-5197 (2000)

C Bergemann et al, PRL 84, 2662 (2000)

By doping one electron: (rigid-band model)

Hase et al. J. of solid state chemistry 123,186 (1996)

We expect basically similar FS topology in Sr₂RhO₄

ARPES measurements

High energy ARPES

low energy ARPES

SSRL

- ALS BL 7
- Analyzer : Scienta 100
- Temperature : 40K
- Total Energy Resolution : 40 meV
- Angular Resolution : 0.25°
- Photon energy : 85 eV
- Sample cleaved in situ
- SSRL BL
- Analyzer : Scienta 2002
- Temperature : 20K
- Total Energy Resolution : 40 meV
- Angular Resolution : 0.25°
- Photon energy : 20 eV
- Sample cleaved in situ

FS of Sr₂RhO₄ (ALS ARPES)

Binding Energy (eV)

Fermi Surface Mapping

Missing *xy*-band(γ) FS in Sr₂RhO₄!

B.J. Kim et al., to be published in PRL

LDA calculation (I4/mmm)

Effects of the rotational distortion

LDA calculation shows disappearance of *xy*-band (γ) FS.

F. Baumberger et al., PRL 96, 246402 (2006)

Effects of the rotational distortion

Effects of the rotational distortion

FS of Sr₂RhO₄ (ARPES)

Observation of *xy*-band sunken under E_f

Effects of the rotational distortion

Complete filling of the *xy*-band \rightarrow transfer of electrons from the *yz/zx* band to *xy* band

Effects of the rotational distortion

Hybridization between the *xy* and x^2-y^2 band \rightarrow Increase in the orbital occupation of the x^2-y^2 state

Destabilizes the elongation of the octahedra along *c*-axis

Structural instability

HOWEVER,

Rh-O(1) contracts only by 0.2%

Rh-O(2) contracts by 0.26%

- Rotation of the octahedra leads to hybridization of xy and x^2-y^2 bands.
- Hybridization of *xy* and *x²-y²* bands results in:
 (1) transfer of electrons from *yz/zx* to *xy* band and
 (2) disappearance of the *xy* Fermi surface.
- e_g states play vital role in determining electronic structures near E_f , and therefore should be included in the theoretical models that deals with 4*d* TMOs.

- •Orbital-selective Mott-transition at x=0.5?
- •Magnetic ground state and origin of localized spin.
- \rightarrow depends critically on n_{xy} , $n_{yz/zx}$, and the crystal structure.

Band structure (Sr end)

Same physics apply here!

Experimental evidences

S.-C. Wang et al. PRL 93,177007 (2004)

FIG. 2 (color). 2D plots of intensity integrated over a small energy region of E_F ($\pm 20 \text{ meV}$) for (a) Sr_2RuO_4 in the rectangular box (I) shown in (c); (b) $\text{Ca}_{1.5}\text{Sr}_{0.5}\text{RuO}_4$ in the same box (I); (d) $\text{Ca}_{1.5}\text{Sr}_{0.5}\text{RuO}_4$ in the box (II). (c) Locations of measurement in the BZ.

FIG. 3 (color). Measured FS crossing points (blue circles) and derived Fermi surfaces (solid black lines) in $Ca_{1.5}Sr_{0.5}RuO_4$. For comparison, extracted FSs (red dashed lines) in Sr_2RuO_4 are also plotted. Note the folded image FSs are not plotted for clarity.

γ Sheet changes from electron-like to hole-like

Orbital-selective Mott transition?

Anisimov et al. Eur. Phys. J. B 25,191 (2002)

Contradicts with our finding!

Structural phase transition (x=0.2)

Strong hybridization with e_g states drives the structural phase transition and thus the Mott transition.

- Rotation of the octahedra leads to hybridization of xy and x^2-y^2 bands also in CSRO.
- Hybridization of xy and x^2-y^2 bands results in dramatic change in the Fermi surface topology.
- e_g states play vital role in determining electronic structures near E_f , and therefore should be included in the theoretical models that deals with 4*d* TMOs.