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Sr2RuO4: spin-triplet superconductor

Y. Maeno et al., Nature 372, 532 (1994)
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Phase diagram of Ca2-xSrxRuO4

S. Nakatsuji et al, Phys. Rev. Lett. 84, 2666 (2000).

Mott transition

Orbital Selective Mott Transition (OSMT)?



Structural distortion of Ca2-xSrxRuO4

Various ground states are realized by structural distortions.



4d transition-metal oxide

•Large spatial extent of 4d orbitals
→large bandwidth, large 10Dq.
→tends to be weakly-correlated.

•Low-spin configuration is expected. 
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Rotation of Octahedra

• Doubling of the unit cell

• Decrease of M-O-M bond angle

Rotation brings about:

which cause:

• Band folding

• Bandwidth narrowing



Unit cell doubling and band folding
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Band width narrowing

Decrease of M-O-M bond angle

Octahedra rotation

Decrease in hopping energy t

Increase in U/t

Metal, small U/W

Insulator, large U/W
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ARPES data on Ca-doped SRO

ARPES is a powerful tool to study the electronic structure.

However, the disorder effects introduced by doping have discomforting  
effects in ARPES: the signals are generally broad and weak.

S.-C. Wang et al. PRL 93,177007 (2004)

Sr2RuO4 Ca1.5Sr0.5RuO4



Sr2RhO4

• Share same crystal structure with Sr2RuO4. 
• 5 electrons in 4d orbitals.
• Rotation angle ~ 10º.
• No supeconductivity.

Sr2RhO4 presents an opportunity to study 
the effect of rotation without disorder.



ρ c/ ρ ab (3K) = 2400

Fitting with ρ = ρ 0+AT  2

ρ 0 = 8.6 µΩcm
Aab = 6.26×10-3 µΩcm/K2

ρ 0 = 20.1 mΩcm
Ac = 10.55 mΩcm/K2

Sr2RhO4

Electrical resistivity

・Large anisotropy

・T 2- dependence 

・Below ~250 K,  ρ c decreases with 
lowering temperature.

ρ ab(T )

ρ c(T )

because of suppression of thermal 
scattering between quasiparticles
and phonon ?

・No superconducting transition was 
observed down to 36 mK.

Similar to ρ(T) in Sr2RuO4
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Sr2RhO4 is a two-dimensional Fermi liquid.



Expected FS of Sr2RhO4

FS of Sr2RuO4

A. Damascelli et al. Phys. Rev. Lett. 85, 5194-5197 (2000)
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By doping one electron: (rigid-band model)

We expect basically similar FS topology in Sr2RhO4

Hase et al. J. of solid state chemistry 123,186 (1996) 

Sr2RuO4 Sr2RhO4

C Bergemann et al, PRL 84, 2662 (2000)



ARPES measurements

• ALS BL 7 

• Analyzer : Scienta 100

• Temperature : 40K

• Total Energy Resolution : 40 meV

• Angular Resolution : 0.25o

• Photon energy : 85 eV

• Sample cleaved in situ

• SSRL BL 

• Analyzer : Scienta 2002

• Temperature : 20K

• Total Energy Resolution : 40 meV

• Angular Resolution : 0.25o

• Photon energy : 20 eV

• Sample cleaved in situ

High energy ARPES

low energy ARPES



FS of Sr2RhO4 (ALS ARPES)

Missing xy-band(γ)
FS in Sr2RhO4!
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LDA calculation  (I4/mmm)

a hole pocket formed by 
xz/yz orbital band. (α)

two electron pockets formed by 
xy (γ) and yz,zx band (β)

an electron pocket formed by x2-y2

orbital band. (δ)

WITHOUT distortion (rotation of octahedra)

α 94.8%
β 66.8%
γ 72.5%
δ 7.1%

Occupation :



Effects of the rotational distortion

undistorted undistorted
+band folding

distorted exp and calc.

LDA calculation shows disappearance of xy-band (γ) FS.



F. Baumberger et al., PRL 96, 246402 (2006)



Effects of the rotational distortion



Effects of the rotational distortion



FS of Sr2RhO4 (ARPES)

Observation of  xy-band sunken under Ef
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Effects of the rotational distortion

Complete filling of the xy-band 
→ transfer of electrons from the yz/zx band to xy band

α 94.8%
β 66.8%
γ 72.5%
δ 7.1%

α 96.2%
β 51.5%
γ 100%
δ 0%

Electron occupation

xy

yz, zx



Effects of the rotational distortion

Hybridization between the xy and x2-y2 band 
→ Increase in the orbital occupation of the x2-y2 state

x2-y2

3z2-r2

xy

yz, zx

Strongly hybridized

Destabilizes the elongation of the octahedra along c-axis 



Structural instability

rotation angle increases

a-axis 
contracts 
by 0.35%

c-axis 
expands 
by 0.08%

As temperature is lowered:

HOWEVER, O(1)

O(2)
Rh-O(2) 
contracts
by 0.26%

Rh-O(1) 
contracts 
only by 
0.2%



Summary – Sr2RhO4

• Rotation of the octahedra leads to hybridization of xy and x2-y2

bands.

• Hybridization of xy and x2-y2 bands results in:
(1) transfer of electrons from yz/zx to xy band and
(2) disappearance of the xy Fermi surface.

• eg states play vital role in determining electronic structures near Ef, 
and therefore should be included in the theoretical models that 
deals with 4d TMOs.



Implications to CSRO system

•Orbital-selective Mott-transition at x=0.5?

•Magnetic ground state and origin of localized spin.

→depends critically on nxy,nyz/zx ,and the crystal structure.



Band structure (Sr end)

Same physics apply here!



Experimental evidences

γ Sheet changes from electron-like to hole-like

S.-C. Wang et al. PRL 93,177007 (2004)



Orbital-selective Mott transition?

Region III (2>x>0.5)Region II (0.5>x>0.2)Region I (0.2>x>0)

xy

yz, zx xy
yz, zx

xy
yz, zx

Contradicts with our finding!

Anisimov et al. Eur. Phys. J. B 25,191 (2002)
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Structural phase transition (x=0.2)

xy

yz, zx

Flattening of octahedra at x=0.2

xy
yz, zx

x2-y2

3z2-r2 x2-y2
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Strong hybridization with  eg states drives the structural phase 
transition and thus the Mott transition.

Unstable!



Summary

• Rotation of the octahedra leads to hybridization of xy and x2-y2

bands also in CSRO.

• Hybridization of xy and x2-y2 bands results in dramatic change in 
the Fermi surface topology.

• eg states play vital role in determining electronic structures near Ef, 
and therefore should be included in the theoretical models that 
deals with 4d TMOs.


