In Search of Fractional Statistics: Anyon There?

Eun-Ah Kim

Stanford University

Thanks to...

Michael Lawler, Smitha Vishveshwara, Eduardo Fradkin (UIUC), Moty Heilblum (Weizmann), Claudio Chamon (BU), Duncan Haldane (Princeton), Eddy Ardonne (KITP) Steven Kivelson (Stanford), VI adimir Goldman (Stony Brook)

Contents

- Getting ready
 - Statistics: boson v.s. fermion
 - Fractional quasiparticles: anyons
 - The fractional quantum Hall effect
 - Edge states
- Cross current noise in T-junction
- Quantum Hall interferometer
- Summary

• Black body radiation

Bose-Einstein statistics of photon

Black body radiation

Bose-Einstein statistics of photon

• Periodic table

Fermi-Dirac statistics of electrons

Black body radiation

Bose-Einstein statistics of photon

• Superfluid He^4

• Periodic table

Fermi-Dirac statistics of electrons

Black body radiation

Bose-Einstein statistics of photon

• Superfluid He^4

• Periodic table

Fermi-Dirac statistics of electrons

• Normal fluid He^3

• Fractional charge e^*

- Fractional charge e^*
- Fractional statistics

- Fractional charge e^*
- Fractional statistics
 - Braiding statistics (Wilczek, 1982):

$$\Psi({m r_1},{m r_2}) = e^{i heta} \Psi({m r_2},{m r_1})$$

 $0 \le \theta \le \pi$

An adiabatic process.

- Fractional charge e^*
- Fractional statistics
 - Braiding statistics (Wilczek, 1982):

$$\Psi(\boldsymbol{r_1}, \boldsymbol{r_2}) = e^{i\theta} \Psi(\boldsymbol{r_2}, \boldsymbol{r_1})$$

 $0 \le \theta \le \pi$

 ϕ_0 ϕ_0 e^* e^*

An adiabatic process.

- Generalized exclusion statistics (Haldane, 1991):

$$\Delta d_{\alpha} = -\sum_{\beta} g_{\alpha\beta} \Delta N_{\beta}$$

 $g_{\alpha\beta}=0$ for boson, $g_{\alpha\beta}=\delta_{\alpha\beta}$ for fermion

- Fractional charge e^*
- Fractional statistics
 - Braiding statistics (Wilczek, 1982):

$$\Psi(\boldsymbol{r_1}, \boldsymbol{r_2}) = e^{i\theta} \Psi(\boldsymbol{r_2}, \boldsymbol{r_1})$$

 $0 \le \theta \le \pi$

 $\phi_0 \qquad \phi_0$ $e^* \qquad e^*$

An adiabatic process.

- Generalized exclusion statistics (Haldane, 1991):

$$\Delta d_{\alpha} = -\sum_{\beta} g_{\alpha\beta} \Delta N_{\beta}$$

 $g_{\alpha\beta}=0$ for boson, $g_{\alpha\beta}=\delta_{\alpha\beta}$ for fermion

The Fractional Quantum Hall Effect (Tsui et. al., 1982):

a quantization of Hall conductance ($\sigma_H = \nu e^2/h$) when the filling factor $\nu \equiv \rho h/eB$ (ρ is the surface density) is in the vicinity of a hierarchy of rational fractions.

A quantum Hall bar

In Search of Fractional Statistics: Anyon There? - p.6/21

The Fractional Quantum Hall Effect (Tsui et. al., 1982):

a quantization of Hall conductance ($\sigma_H = \nu e^2/h$) when the filling factor $\nu \equiv \rho h/eB$ (ρ is the surface density) is in the vicinity of a hierarchy of rational fractions.

Quantum Hall plateau (taken from Eisenstein and Stormer, 1990)

Edge States

• The surface wave of edge distortions is the only gapless excitation.

The Landau levels of confined 2DEG.

Edge States

- The surface wave of edge distortions is the only gapless excitation.
- Hydrodynamic picture: dissipationless chiral Luttinger liquid. (Wen, 1990; Stone 1991)

The Landau levels of confined 2DEG.

The edge mode is dissipationless.

Edge States

- The surface wave of edge distortions is the only gapless excitation.
- Hydrodynamic picture: dissipationless chiral Luttinger liquid. (Wen, 1990; Stone 1991)
- 1D density ripple $J(x) = \rho h(x)$ is related to chiral boson ϕ_+ through bosonization

$$J_{+}(x) \equiv -\frac{\sqrt{\nu}}{2\pi} \partial_{x} \phi_{+} , \ \psi_{+}^{\dagger} = \frac{1}{\sqrt{2\pi}} e^{\frac{i}{\nu} \phi_{+}}$$

$$\mathcal{L} = \frac{1}{4\pi} \partial_x \phi_+ (\partial_t - \nu \partial_x) \phi_+$$

The Landau levels of confined 2DEG.

Contents

- Getting ready
- Cross current noise in T-junction
 - T-junction in Jain states
 - $S = \mathcal{A} + \cos \theta \mathcal{B}$
 - Anatomy of the phase factor
 - Frequency spectrum
 - Quantum Hall interferometer
 - Summary

Fractional statistics in QH Jain States

Pantry of Particles (since '84)						
	Boson	$ u = rac{1}{odd} $ (Laughlin)	$ u\!=\!rac{p}{2np+1}$ (Jain)	Fermion		
phase	$1 = e^0$	$e^{i u\pi}$	$e^{i\theta}(\tfrac{\theta}{\pi} = \tfrac{2n}{2np+1} + 1)$	$-1 = e^{i\pi}$		
charge		νe	$Q = \frac{-e}{2np+1}$	-e		
2 Il of otto ob o d flux over to						

2n = # of attached flux quanta p = effective filling factor

Fractional statistics in QH Jain States

• Pantry of Particles (since '84)

	Boson	$ u = \frac{1}{\text{odd}} $ (Laughlin)	$ u = rac{p}{2np+1}$ (Jain)	Fermion
phase	$1 = e^0$	$e^{i u\pi}$	$e^{i\theta}(\frac{\theta}{\pi} = \frac{2n}{2np+1} + 1)$	$-1 = e^{i\pi}$
charge		νe	$Q = \frac{-e}{2np+1}$	-e

2n = # of attached flux quanta p = effective filling factor

Hanbury-Brown & Twiss (1956): Photon

Intensity-intensity correlation \implies Bunching

Cross correlations

$$S(t) = \langle \Delta I_1(t) \Delta I_2(0) \rangle$$

Cross correlations

 $S(t) = \langle \Delta I_1(t) \Delta I_2(0) \rangle$

⇒ Non-equilibrium $(V_1 - V_0 = V_2 - V_0 = V)$, finite *T*, perturbative calculation (Related works on Laughlin states at T = 0by I. Safi et. al., S. Vishveshwara)

• Cross correlations

 $S(t) = \langle \Delta I_1(t) \Delta I_2(0) \rangle$

⇒ Non-equilibrium $(V_1 - V_0 = V_2 - V_0 = V)$, finite *T*, perturbative calculation (Related works on Laughlin states at T = 0by I. Safi et. al., S. Vishveshwara)

Tunneling Hamiltonian

$$\mathcal{L}_{int,l}(t) = \sum_{\epsilon=\pm} -\Gamma_l e^{i\epsilon\omega_0 t} V_l^{(\epsilon)}(t),$$
$$V_l^{(\epsilon)}(t) = (F_0 F_l^{-1})^{\epsilon} e^{i\epsilon\varphi_0(t)} e^{-i\epsilon\varphi_l(t)}$$

Cross correlations

 $S(t) = \langle \Delta I_1(t) \Delta I_2(0) \rangle$

⇒ Non-equilibrium $(V_1 - V_0 = V_2 - V_0 = V)$, finite *T*, perturbative calculation (Related works on Laughlin states at T = 0by I. Safi et. al., S. Vishveshwara)

Tunneling Hamiltonian

$$\mathcal{L}_{int,l}(t) = \sum_{\epsilon=\pm} -\Gamma_l e^{i\epsilon\omega_0 t} V_l^{(\epsilon)}(t),$$
$$V_l^{(\epsilon)}(t) = (F_0 F_l^{-1})^{\epsilon} e^{i\epsilon\varphi_0(t)} e^{-i\epsilon\varphi_l(t)}$$

- $\omega_0 = e^* V/\hbar$: Josephson frequency

Tunneling Hamiltonian

$$\mathcal{L}_{int,l}(t) = \sum_{\epsilon=\pm} -\Gamma_l e^{i\epsilon\omega_0 t} V_l^{(\epsilon)}(t),$$
$$V_l^{(\epsilon)}(t) = (F_0 F_l^{-1})^{\epsilon} e^{i\epsilon\varphi_0(t)} e^{-i\epsilon\varphi_l(t)}$$

- $\omega_0 = e^* V / \hbar$: Josephson frequency

Cross correlations

$$S(t) = \langle \Delta I_1(t) \Delta I_2(0) \rangle$$

⇒ Non-equilibrium $(V_1 - V_0 = V_2 - V_0 = V)$, finite *T*, perturbative calculation (Related works on Laughlin states at T = 0by I. Safi et. al., S. Vishveshwara)

• q.p. for edge *l* with unitary Klein factors *F*_l

 $\psi_l^{\dagger} \propto F_l e^{i\varphi_l},$ $F_l F_m = e^{-i\alpha_{lm}} F_m F_l$

$$\alpha_{02} = \alpha_{21} = \alpha_{01} = \theta, \ \alpha_{lm} = -\alpha_{ml}$$

Edge states for primary Jain sequence

• Chiral boson Lagrangian (charge mode ϕ_c , topological modes ϕ_N) (Lopez and Fradkin, 99)

$$\mathcal{L}_0 = \frac{1}{4\pi\nu} \partial_x \phi_c (-\partial_t \phi_c - \partial_x \phi_c) + \frac{1}{4\pi} (\partial_x \phi_N \partial_t \phi_N)$$

Edge states for primary Jain sequence

• Chiral boson Lagrangian (charge mode ϕ_c , topological modes ϕ_N) (Lopez and Fradkin, 99)

$$\mathcal{L}_0 = \frac{1}{4\pi\nu} \partial_x \phi_c (-\partial_t \phi_c - \partial_x \phi_c) + \frac{1}{4\pi} (\partial_x \phi_N \partial_t \phi_N)$$

• Quasi particle at x = 0: $\psi^{\dagger}(t) \propto e^{i(\frac{1}{p}\phi_c + \sqrt{1 + \frac{1}{p}}\phi_N)} \equiv e^{i\varphi(t)}$

$$\langle \psi(t)\psi^{\dagger}(0)\rangle = e^{\langle \varphi(t)\varphi(0)\rangle} = C(t)e^{-i\frac{\theta}{2}\mathsf{sgn}(t)}, \quad C(t) \equiv \left|\frac{\frac{\pi\tau_0}{\beta}}{\sinh(\frac{\pi}{\beta}t)}\right|^K$$

$$\frac{K}{2} = \frac{1}{2p(2np+1)}$$
 : scaling dimension, $\beta = 1/k_BT$

• $S^{\tilde{\epsilon}}(t)$ to lowest nontrivial order

$$\propto \tilde{\epsilon} \int dt_i^2 \cos[\omega_0(t-t_1-\tilde{\epsilon}t_2)] (C(t-t_1)C(t_2))^2 \left\{ \left(\frac{C(t-t_2)C(t_1)}{C(t)C(t_1-t_2)} \right)^{\tilde{\epsilon}} \sum_{\eta_1,\eta_2} \chi(\theta) - 1 \right\}$$

• $S^{\tilde{\epsilon}}(t)$ to lowest nontrivial order

$$\propto \tilde{\epsilon} \int dt_i^2 \cos[\omega_0(t-t_1-\tilde{\epsilon}t_2)] (C(t-t_1)C(t_2))^2 \left\{ \left(\frac{C(t-t_2)C(t_1)}{C(t)C(t_1-t_2)} \right)^{\tilde{\epsilon}} \sum_{\eta_1,\eta_2} \chi(\theta) - 1 \right\}$$

 $\eta = +/-:$ forward/backward Keldysh time contour $\tilde{\epsilon} = +/-:$ relative tunneling orientation

• $S^{\tilde{\epsilon}}(t)$ to lowest nontrivial order

$$\propto \tilde{\epsilon} \int dt_i^2 \cos[\omega_0(t-t_1-\tilde{\epsilon}t_2)] (C(t-t_1)C(t_2))^2 \left\{ \left(\frac{C(t-t_2)C(t_1)}{C(t)C(t_1-t_2)} \right)^{\tilde{\epsilon}} \sum_{\eta_1,\eta_2} \chi(\theta) - 1 \right\}$$

 $\eta = +/-:$ forward/backward Keldysh time contour $\tilde{\epsilon} = +/-:$ relative tunneling orientation

- The phase sum $\sum_{\eta_1,\eta_2} \chi(\theta) = \sum_{\eta_1,\eta_2} \eta_1 \eta_2 e^{i\Phi_{\tilde{\epsilon}}^{\eta_1,\eta_2}[R_{\zeta}]}$
 - 1) comes from contour ordering
 - 2) carries the information of statistics

• $S^{\tilde{\epsilon}}(t)$ to lowest nontrivial order

$$\propto \tilde{\epsilon} \int dt_i^2 \cos[\omega_0(t-t_1-\tilde{\epsilon}t_2)] (C(t-t_1)C(t_2))^2 \left\{ \left(\frac{C(t-t_2)C(t_1)}{C(t)C(t_1-t_2)} \right)^{\tilde{\epsilon}} \sum_{\eta_1,\eta_2} \chi(\theta) - 1 \right\}$$

 $\eta = +/-:$ forward/backward Keldysh time contour $\tilde{\epsilon} = +/-:$ relative tunneling orientation

• The phase sum $\sum_{\eta_1,\eta_2} \chi(\theta) = \sum_{\eta_1,\eta_2} \eta_1 \eta_2 e^{i\Phi_{\tilde{\epsilon}}^{\eta_1,\eta_2}[R_{\zeta}]}$

1) comes from contour ordering

2) carries the information of statistics

 $\Rightarrow S(t) = \mathcal{A}(\omega_0 t; T/T_0, K) + \cos \theta \mathcal{B}(\omega_0 t; T/T_0, K)$

• $R_1(t_1 < t_2 < 0)$ and $R_2(t_2 < t_1 < 0)$ allow virtual exchanges.

virtual exchange of qp's $\Rightarrow \chi[R_2;\eta] = e^{i\theta\eta}\chi[R_1;\eta]$

• $R_1(t_1 < t_2 < 0)$ and $R_2(t_2 < t_1 < 0)$ allow virtual exchanges.

virtual exchange of qp's $\Rightarrow \chi[R_2;\eta] = e^{i\theta\eta}\chi[R_1;\eta]$

virtual exchange of p-h's $\Rightarrow \chi[R_2;\eta] = e^{-i\theta\eta}\chi[R_1;\eta]$

• $R_1(t_1 < t_2 < 0)$ and $R_2(t_2 < t_1 < 0)$ allow virtual exchanges.

virtual exchange of qp's

 $\Rightarrow \chi[R_2;\eta] = e^{i\theta\eta} \chi[R_1;\eta]$

- virtual exchange of p-h's $\Rightarrow \chi[R_2;\eta] = e^{-i\theta\eta}\chi[R_1;\eta]$
- Phase factor sum in R_1 and R_2

• $R_1(t_1 < t_2 < 0)$ and $R_2(t_2 < t_1 < 0)$ allow virtual exchanges.

virtual exchange of qp's $\Rightarrow \chi[R_2;\eta] = e^{i\theta\eta}\chi[R_1;\eta]$ virtual exchange of p-h's $\Rightarrow \chi[R_2;\eta] = e^{-i\theta\eta}\chi[R_1;\eta]$

• Phase factor sum in R_1 and R_2

$$\sum_{\eta=\pm} \chi[R_1;\eta] (= e^{i\theta\eta}) \propto \sin\theta$$
$$\sum_{\eta=\pm} \chi[R_2;\eta] (= e^{i(\theta+\theta)\eta}) \propto \sin\theta \cos\theta$$

• $R_1(t_1 < t_2 < 0)$ and $R_2(t_2 < t_1 < 0)$ allow virtual exchanges.

virtual exchange of qp's $\Rightarrow \chi[R_2;\eta] = e^{i\theta\eta}\chi[R_1;\eta]$

virtual exchange of p-h's $\Rightarrow \chi[R_2;\eta] = e^{-i\theta\eta}\chi[R_1;\eta]$

 $\sum_{\eta=\pm} \chi[R_1;\eta] (= e^{i\theta\eta}) \propto \sin\theta$ $\sum_{\eta=\pm} \chi[R_2;\eta] (= e^{i(\theta+\theta)\eta}) \propto \sin\theta \cos\theta$

• Phase factor sum in R_1 and R_2

$$\sum_{\eta=\pm} \chi[R_1;\eta] (= \eta e^{i\theta\eta}) \propto \sin\theta$$
$$\sum_{\eta=\pm} \chi[R_2;\eta] (= \eta e^{i(\theta-\theta)\eta}) = 0$$

- $\widetilde{S}(\omega/\omega_0;T) = \widetilde{A} + \cos\theta \ \widetilde{B}$.
- "Bunching" Laughlin qp ($\theta < \pi/2$) v.s."anti-bunching" non-Laughlin qp ($\theta > \pi/2$).

Contents

- Getting ready
- Cross current Noise in T-junction
- Quantum Hall Interferometer
 - Superperiodic Aharonov-Bohm effect
 - Interference conditions
 - Temperature dependence
- Summary

Superperiod Aharonov-Bohm effect (Goldman, 05)

Four terminal measurements.

Superperiod Aharonov-Bohm effect (Goldman, 05)

Four terminal measurements.

Superperiod oscillation with $\Delta \Phi = 5\phi_0$.

Superperiod Aharonov-Bohm effect (Goldman, 05)

Four terminal measurements.

Superperiod oscillation with $\Delta \Phi = 5\phi_0.$

Is this REALLY a measure of fractional statistics?

Our model

• Double point contact interferometer (Related works E.-A. Kim et al, PRL 03; Chamon et al, PRB 97)

Our model

• Double point contact interferometer (Related works E.-A. Kim et al, PRL 03; Chamon et al, PRB 97)

- Assumptions:
 - No direct tunneling between outer edge and the inner puddle.
 - \circ Coherent propagation of 1/3 qp along outer edge.
 - \circ Incompressibility of 2/5 puddle.
 - Fractional statistics between 1/3 qp's with $\theta = \pi/3$.

• Hierarchical picture:

1/3 qp's condense to form a puddle of 2/5 state

• Hierarchical picture:

 $1/3~{\rm qp}{\rm 's}$ condense to form a puddle of $2/5~{\rm state}$

• Incompressibility of 2/5 state \Rightarrow flux superquantization

• Hierarchical picture:

 $1/3~{\rm qp}{\rm 's}$ condense to form a puddle of $2/5~{\rm state}$

• Incompressibility of 2/5 state \Rightarrow flux superquantization

$$\sim rac{(ext{total charge of puddle } Q)/e}{Bs/\phi_0} =
u_{2/5}$$

◦ B ↑ require Q ↑ :N extra 1/3 qp condense to the puddle of area s

$$\nu_{1/3} \frac{Bs}{\phi_0} + \frac{1}{3}N = \nu_{2/5} \frac{Bs}{\phi_0}$$

(Jain, Kivelson, Thouless, 1993)

• Hierarchical picture:

 $1/3~{\rm qp}{\rm 's}$ condense to form a puddle of $2/5~{\rm state}$

• Incompressibility of 2/5 state \Rightarrow flux superquantization

$$\sim rac{(ext{total charge of puddle } Q)/e}{Bs/\phi_0} =
u_{2/5}$$

• $B \Uparrow \text{require } Q \Uparrow :N \text{ extra } 1/3 \text{ qp condense to the puddle of area } s$

$$N = \left[\frac{|B|s}{5\phi_0}\right]$$

(E.-A. Kim, in preparation)

Interference conditions

- Two independent periods:
 - (1) Ahranov-Bohm phase due to flux through the area S $2\pi \frac{e^*}{e} \frac{|B|S}{\phi_0} = 2\pi \frac{1}{3} \frac{|B|S}{\phi_0}$
 - (2) Statistical phase due to *N* qp's in the puddle of area *s*

$$-2\theta N = -\frac{2\pi}{3}N = -\frac{2\pi}{3}\left[\frac{|B|s}{5\phi_0}\right]$$

Interference conditions

- Two independent periods:
 - (1) Ahranov-Bohm phase due to flux through the area S $2\pi \frac{e^*}{e} \frac{|B|S}{\phi_0} = 2\pi \frac{1}{3} \frac{|B|S}{\phi_0}$
 - (2) Statistical phase due to N qp's in the puddle of area s

$$-2\theta N = -\frac{2\pi}{3}N = -\frac{2\pi}{3}\left[\frac{|B|s}{5\phi_0}\right]$$

• Interference condition (E.-A. Kim, in preparation):

$$\circ \ \Delta \frac{\gamma}{2\pi} = \left(5\frac{e^*}{e}\frac{S}{s} - \frac{\theta}{2\pi}\right) \Delta \left[\frac{|B|s}{5\phi_0}\right] = \left(\frac{5}{3}\frac{S}{s} - \frac{1}{3}\right) \Delta \left[\frac{|B|s}{5\phi_0}\right] = \text{integentiation}$$

Interference conditions

- Two independent periods:
 - (1) Ahranov-Bohm phase due to flux through the area S $2\pi \frac{e^*}{e} \frac{|B|S}{\phi_0} = 2\pi \frac{1}{3} \frac{|B|S}{\phi_0}$
 - (2) Statistical phase due to N qp's in the puddle of area s

$$-2\theta N = -\frac{2\pi}{3}N = -\frac{2\pi}{3}\left[\frac{|B|s}{5\phi_0}\right]$$

• Interference condition (E.-A. Kim, in preparation):

•
$$\Delta \frac{\gamma}{2\pi} = \left(5\frac{e^*}{e}\frac{S}{s} - \frac{\theta}{2\pi}\right) \Delta \left[\frac{|B|s}{5\phi_0}\right] = \left(\frac{5}{3}\frac{S}{s} - \frac{1}{3}\right) \Delta \left[\frac{|B|s}{5\phi_0}\right] = \text{integer}$$

• $S/s = 1.43 \sim 7/5 \Rightarrow \Delta |B|s = 5\phi_0$:
consistent with the experiment

• Perturbative calculation to leading order in Γ

$$\begin{split} H_t &= \frac{\Gamma_1}{2} e^{-i\omega_J t} \psi_{R,1}^{\dagger} \psi_{L,1} \\ &+ e^{i\gamma} \frac{\Gamma_2^*}{2} e^{i\omega_J t} \psi_{L,2}^{\dagger} \psi_{R,2} + h.c. \end{split}$$

• Perturbative calculation to leading order in Γ

• The conductance; data v.s. theory $G(\omega_0, v/R, T) = \overline{G}(\omega_0/T) + \cos \gamma \ \delta G(\omega_0, v/R, T), \ \omega_0 = e^* V/\hbar$

• Perturbative calculation to leading order in Γ

• The conductance; data v.s. theory $G(\omega_0, v/R, T) = \overline{G}(\omega_0/T) + \cos \gamma \ \delta G(\omega_0, v/R, T), \ \omega_0 = e^* V/\hbar$

• Perturbative calculation to leading order in Γ

• The conductance; data v.s. theory $G(\omega_0, v/R, T) = \overline{G}(\omega_0/T) + \cos \gamma \ \delta G(\omega_0, v/R, T), \ \omega_0 = e^* V/\hbar$

• T-junction proposal: the cross current noise $S(\omega)$

• T-junction proposal: the cross current noise $S(\omega)$

• Quantum Hall interferometer (E.-A. Kim, in preparation) $\delta G(T)/\delta G(T = 11mK)$

• T-junction proposal: the cross current noise $S(\omega)$

• Quantum Hall interferometer (E.-A. Kim, in preparation) $\delta G(T)/\delta G(T = 11mK)$

If they are there, we can now manipulate them!

References

- E.-A. Kim, M. Lawler, S. Vishveshwara and E. Fradkin, "A Proposal for Measuring Fractional Charge and Statistics in Fractional Quantum Hall States in Noise experiments", PRL 95, 176402 (2005)
- Physical Review Focus Story 14, 2 Nov 2005
- E.-A. Kim, M. Lawler, S. Vishveshwara, E. Fradkin, "Cross Current Noise in a Fractional quantum Hall T-junction", in preparation.
- E.-A. Kim, "Superperiodic interference effects and fractional statistics", in preparation.