Quantum Critical Behaviour Near the Nematic Instability of a Fermi Fluid

Michael J. Lawler

University of Illinois at Urbana-Champaign

In collaboration with: Daniel Barci, Victoria Fernandez, Eduardo Fradkin and Luis Oxman

(cf. Phys. Rev. B 73, 085101 (2006) and cond-mat/0605203)

Table of Contents

- Introduction to quantum anisotropic phases
- Theory of the nematic Fermi fluid
- The method of high dimensional bosonization
- Results at criticality and into the nematic phase
 - Quasi-particle properties
 - Heat capacity
- Conclusions and future directions

Introduction Why anisotropic fermion phases?

- Experimental evidence
 - Stripe phases / nematic phases in strongly correlated lattice systems
 - Quantum Hall anisotropic phases in the higher Landau levels
- Theoretical questions
 - Are these phases non-Fermi liquids?
 - How can one reliably describe them?
 - How can they be understood from microscopics?

Introduction The Freezing of Nematogens

- Gas / liquid phase (Isotropic)
- Nematic phase (Rotational symmetry breaking)
- Smectic phase (Translational symmetry breaking)

Introduction **''Freezing'' the Fermi Liquid**

Fermi liquid phase

Nematic Fermi fluid

Smectic Fermi fluid

Introduction Phase diagram for 2D fermions

Introduction Lattice nematic candidates?

 URu_2Si_2

Nematic Spin Nematic (Wu and Zhang 04, Varma and Zhu 05)

Introduction Quantum Hall Liquid Crystals

(Lilly et. al., Phys. Rev. Lett. 82, 394 (1999))

Introduction Quantum Hall Liquid Crystals

(Lilly et. al., Phys. Rev. Lett. 82, 394 (1999))

Introduction Quantum Hall Liquid Crystals

[110] direction. Taken at T = 50 mK.

(Cooper et. al., Phys. Rev. Lett. 90, 226803 (2003))

Theory of the nematic Fermi fluid Pomeranchuk Stability Criterion

Landau Energy Functional

• Stable for $F_{\ell} \equiv N(0)f_{\ell} > -1$

This is the Landau theory of phase transitions applied to the Landau Fermi liquid!

Theory of the nematic Fermi fluid The Nematic Instability (Oganesyan et. al. (2001))

A natural order parameter is the quadrupole density:

$$\hat{\mathbf{Q}}(\mathbf{r}) = -\frac{1}{k_F^2} \hat{\psi}^{\dagger}(\mathbf{r}) \begin{pmatrix} \partial_x^2 - \partial_y^2 & 2\partial_x \partial_y \\ 2\partial_x \partial_y & \partial_y^2 - \partial_x^2 \end{pmatrix} \hat{\psi}(\mathbf{r})$$

which measures quadrupolar distortions of the FS.A simple model is fermions interacting only via

$$\hat{\mathbf{V}} = \frac{1}{4} \int d^2 r d^2 r' F_2(|\mathbf{r} - \mathbf{r}'|) \mathbf{t} r \hat{\mathbf{Q}}(\mathbf{r}) \hat{\mathbf{Q}}(\mathbf{r}')$$

where we keep a finite length ($\sim \sqrt{\kappa}$) interaction:

$$F_2(q) = \frac{F_2}{1 + \kappa |F_2|q^2}$$

Theory of the nematic Fermi fluid Hertz's RPA Approach

- Find an order parameter theory, for example
 - Split up interactions (Û) using Hubbard-Stratonovich
 - Integrate out fermions and expand result.
- Consider $F_2(0) \rightarrow -1^+$, $\delta_2(q) \equiv 1 + F_2(q) \rightarrow \kappa q^2$
- Discover three d-wave modes:

$$\begin{aligned}
\omega_q^{(1)} &= (v_F/\sqrt{2})q & \propto q \\
\omega_q^{(2)} &= (v_F\sqrt{\delta_2(q)}/2)q & \propto q^2 \\
\omega_q^{(3)} &= i(v_F\delta_2(q)/2)q & \propto q^3
\end{aligned}$$

■ z = 3 and effective dimension $d_{eff} = 2 + 3 = 5$.

Phase Diagram near QCP

Theory of the nematic Fermi fluid **RPA+Hartree-Fock**

Compute the inverse lifetime $\Gamma(\omega) = -2\mathcal{I}m\Sigma(\omega)$

nodal qp

- Indicates a break down of the Fermi liquid.
- Find $\Gamma(\omega) \sim \omega^{2/3}$ at $F_2(0) = -1$
- Find $\Gamma(\omega) \sim |\sin 2\theta|^{4/3} \omega^{2/3}$ in nematic phase.
- At $\theta = \{0, \pm \pi/2, \pi\}$, $\Gamma(\omega) < \omega$ and we have nodal quasi-particles.

Our Method High Dimensional Bosonization

Fermion Operator

$$\psi(\mathbf{r}) = \sum_{S} \frac{1}{\sqrt{N}} \psi_{S}(\mathbf{r}) e^{i\mathbf{k}_{S}\cdot\mathbf{r}}$$
$$\psi_{S}(\mathbf{r}) = \sqrt{\frac{N}{L^{D}}} \sum_{q \in \mathcal{P}_{S}} c_{\mathbf{k}_{S}+\mathbf{q}} e^{i\mathbf{q}\cdot\mathbf{r}}$$

Expand the energy dispersion about k_S

$$\varepsilon_{\mathbf{k}_S+\mathbf{q}} - \mu = \mathbf{v}_S \cdot \mathbf{q} + q^2/2m$$

Our Method High Dimensional Bosonization

- Define the patch density: $\delta \hat{n}_S(\mathbf{r}) \equiv \hat{\psi}_S^{\dagger}(\mathbf{r}) \hat{\psi}_S(\mathbf{r})$
- These obey the uncertainty relation

$$\Delta k_S \Delta r \approx (\hbar \Lambda) \lambda^{-1} \ge \hbar$$

- They are naturally represented by coherent states
- In the low energy limit, they obey the linearized collisionless Boltzmann equation

$$\partial_t \delta \hat{n}_S(\mathbf{r}, t) + \mathbf{v}_S \cdot \nabla \delta \hat{n}_S(\mathbf{r}, t) + \mathbf{v}_S \cdot \nabla \sum_T \int d^2 r' F_{S-T}(r - r') \delta \hat{n}_S(\mathbf{r}', t) = 0$$

Our Method Reproduce Known Results

Within high dimensional bosonization

- Specific heat is linear in T.
- Bosonization reproduces RPA in the spinless case with linearized energy dispersion. Why?
 - Both are exact in low energy, long wavelength limit.
 - this is therefore an important check.
- Pomeranchuk's argument is recovered at mean field
- *In the Fermi liquid phase*, quasi-particles are long lived.
- The fermion residue is 0 < Z < 1 and Green functions have no anomalous dimensions.

Hence, bosonization nicely describes Fermi liquid theory!

Our Results Order parameter theory

Introduce the order parameter in terms of the densities δn_S :

$$Q(\mathbf{r}) = \sum_{S} \frac{1}{N} e^{i2\theta_S} \delta n_S(\mathbf{r})$$

- This is the $\ell = 2$, d-wave case.
- Integrate out all other angular momentum channels
- Recover the order parameter theory of Oganesyan et. al.
- Bosonization agree's with the Hertz-Millis approach when applied to the nematic quantum critical point.

Our Results Fermion Correlations

Within bosonization, the fermion operator is

$$\hat{\psi}_S(\mathbf{r}) = \eta_S(\mathbf{r}_t) \sqrt{N(0) v_F \lambda} : e^{-i\hat{\varphi}_S(\mathbf{r})/\hbar}:$$

So the fermion Green function is of the form

$$G_{F(S)}(\mathbf{r},t) \equiv -i\langle\psi_S(\mathbf{x},t)\psi_S^{\dagger}(\mathbf{0},0)\rangle = G_{F(S)}^0(\mathbf{r},t)e^{iG_{B(S)}^I(\mathbf{r},t)}$$

• Expanding in powers of G_B^I gives:

where the interaction is the RPA interaction.

Our Results The Fermion Green Function

At equal Times

• Fermi Liquid
$$G_F(\mathbf{x}, 0) = \frac{Z}{|\mathbf{x}|^{3/2}} + reg(\mathbf{x})$$

• Nematic QCP
$$G_F(\mathbf{x}, 0) = \frac{C}{|\mathbf{x}|^{3/2}} e^{-A|\mathbf{x}|^{1/3}}$$

Nematic Phase
$$G_F(\mathbf{x}, 0) = \frac{C}{|\mathbf{x}|^{3/2}} e^{-A|\sin 2\theta_x|^{4/3} |\mathbf{x}|^{1/3}}$$

Our Results Fermion Residue

Near the nematic quantum critical point

In the nematic phase, residue vanishes except along the principal axes.

Our Results The Fermion Green Function

At equal positions

• Fermi Liquid $G_F(0,t) = \frac{C}{t} + reg(t)$

• Nematic QCP $G_F(0,t) = \frac{C}{t}e^{-A} \frac{\ln t}{|t|^{2/3}}$

• Nematic Phase
$$G_F(0,t) = \frac{C}{t} \left\langle e^{-A|\sin 2\theta|^{4/3}} \frac{\ln t}{|t|^{2/3}} \right\rangle_{\theta}$$

1

1

Our Results Fermion Density of States

Local Quantum Critical Behavior

"Above" the quantum critical point: (At $F_2 = -1$, $T_F \gg T \gg T_{\kappa}$)

- Order parameter fluctuates on scale of $\xi \gg a$
- Fermion correlations ultra local in space:

$$G_F(x,0) = \frac{1}{|\mathbf{x}|^{3/2}} \exp\left(-ATx^2 \ln\left(\frac{\xi}{x}\right)\right)$$

But well behaved in time:

$$G_F(0,t) = finite \text{ as } \xi \to \infty$$

- In nematic phase, $\xi = \infty$ protected by symmetry!
- Similar to the quantum Lifshitz model!

(see Ghaemi, Vishwanath and Sentil PRB 72 024420 (2005))

Our Results Heat Capacity

At the nematic quantum critical point ($F_2 = -1$)

•
$$C_V = C_V^0 + C_V^I$$

• $C_V^0 = 2\zeta(2) (N(0)L^2k_BT)k_B$ as expected ($\zeta(2) = \pi^2/6$)
• and C_V^I is

$$C_V^I = \frac{1}{3} (2 - \frac{1}{3}) \Gamma(2 - \frac{1}{3}) \zeta(2 - \frac{1}{3}) \frac{N(0)L^2}{\sqrt{\kappa}k_F} k_B T \left(\frac{\hbar v_F/\sqrt{\kappa}}{k_B T}\right)^{1/3} k_B$$

Heat Capacity goes like
$$\sim T^{2/3}$$

Conclusions In Summary

- We have investigated the Fermi liquid-to-nematic QCP and the nematic phase non-perturbatively.
- The theory of bosons
 - naturally describes Pomeranchuk instabilities.
 - recovers Hertz's order parameter theory directly.
 - gives a $T^{2/3}$ heat capacity in the nematic phase and the nematic QCP.
- Results:
 - demonstrates that the nematic QCP and the nematic phase is a theoretically accessible non-Fermi liquid.
 - Local quantum criticality: Fermion correlations are ultra short ranged at the quantum critical point and into the nematic phase.