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Introduction

Why anisotropic fermion phases?

Experimental evidence
Stripe phases / nematic phases in
strongly correlated lattice systems
Quantum Hall anisotropic phases in the
higher Landau levels

Theoretical questions
Are these phases non-Fermi liquids?
How can one reliably describe them?
How can they be understood from
microscopics?
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Introduction

The Freezing of Nematogens

T

Gas / liquid phase
(Isotropic)

Nematic phase
(Rotational
symmetry breaking)

Smectic phase
(Translational
symmetry breaking)
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Introduction

“Freezing” the Fermi Liquid

�

Fermi liquid phase

Nematic Fermi fluid

BZ Smectic Fermi fluid
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Introduction

Phase diagram for 2D fermions

Kivelson, Fradkin and Emery, nature, 393, 550 (1998)
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Quantum Critical Behaviour Near the Nematic Instabilityof a Fermi Fluid – p. 6/2



Introduction

Lattice nematic candidates?
Sr3Ru2O7 URu2Si2

2D Nematic
(MacKenzie and Co, 2004)

Nematic Spin Nematic
(Wu and Zhang 04,
Varma and Zhu 05)
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Introduction

Quantum Hall Liquid Crystals
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(Lilly et. al., Phys. Rev. Lett. 82, 394 (1999))
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Introduction

Quantum Hall Liquid Crystals

1.5 2 2.5 3 3.5
0

250

500

750

1000

B  (Tesla)

ρ xx
  (
Ω

)

N=1N=2N=3...

15/2
13/2

11/2

9/2

7/2

25 100
0

1000

T  (mK)

ρ xx

(Lilly et. al., Phys. Rev. Lett. 82, 394 (1999))

Quantum Critical Behaviour Near the Nematic Instabilityof a Fermi Fluid – p. 9/2



Introduction

Quantum Hall Liquid Crystals
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Longitudinal resistances in ultra-clean samples.
Solid line in the [110] direction, dashed line in the
[11̄0] direction. Taken at T = 50mK.

(Cooper et. al., Phys. Rev. Lett. 90, 226803 (2003))
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Theory of the nematic Fermi fluid

Pomeranchuk Stability Criterion

PF (θ)

Landau Energy Functional

E[δnp] =
∑

p

εpδnp+
1

2

∑
p,p′

fp,p′δnpδnp′

Let np = 1 for |p| < |PF (θ)| and
zero otherwise

E[P �
F ] ∝

∑
�,m

|P �
F |2(1 + N(0)f�)

Stable for F� ≡ N(0)f� > −1

This is the Landau theory of phase transitions applied to the
Landau Fermi liquid!
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Theory of the nematic Fermi fluid

The Nematic Instability (Oganesyan et. al. (2001))

A natural order parameter is the quadrupole density:

Q̂(r) = − 1

k2
F

ψ̂†(r)

(
∂2

x − ∂2
y 2∂x∂y

2∂x∂y ∂2
y − ∂2

x

)
ψ̂(r)

which measures quadrupolar distortions of the FS.

A simple model is fermions interacting only via

V̂ =
1

4

∫
d2rd2r′F2(|r − r′|)trQ̂(r)Q̂(r′)

where we keep a finite length (∼ √
κ) interaction:

F2(q) =
F2

1 + κ|F2|q2
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Theory of the nematic Fermi fluid

Hertz’s RPA Approach

Find an order parameter theory, for example

Split up interactions (V̂) using
Hubbard-Stratonovich
Integrate out fermions and expand result.

Consider F2(0) → −1+, δ2(q) ≡ 1 + F2(q) → κq2

Discover three d-wave modes:

ω
(1)
q = (vF /

√
2)q ∝ q

ω
(2)
q = (vF

√
δ2(q)/2)q ∝ q2

ω
(3)
q = i(vF δ2(q)/2)q ∝ q3

z = 3 and effective dimension deff = 2 + 3 = 5.
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Phase Diagram near QCP

d = 2, z = 3

Nematic

Fermi Fluid

T

δδc
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Quantum Critical
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Ginzburg
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KT
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Theory of the nematic Fermi fluid

RPA+Hartree-Fock
Compute the inverse lifetime Γ(ω) = −2ImΣ(ω)

nodal qp
Indicates a break down of the
Fermi liquid.

Find Γ(ω) ∼ ω2/3 at F2(0) = −1

Find Γ(ω) ∼ | sin 2θ|4/3ω2/3 in
nematic phase.

At θ={0,±π/2, π}, Γ(ω) < ω and
we have nodal quasi-particles.
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Our Method

High Dimensional Bosonization

Fermion Operator

ψ(r) =
∑
S

1√
N

ψS(r)eikS·r

ψS(r) =

√
N

LD

∑
q∈PS

ckS+qeiq·r

Expand the energy
dispersion about kS

εkS+q−µ = vS ·q+ q2/2m

λ

Λ

kS
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Our Method

High Dimensional Bosonization

Define the patch density: δn̂S(r) ≡ ψ̂†
S(r)ψ̂S(r)

These obey the uncertainty relation

∆kS∆r ≈ (�Λ)λ−1 ≥ �

They are naturally represented by coherent states

In the low energy limit, they obey the linearized
collisionless Boltzmann equation

∂tδn̂S(r, t) + vS · ∇δn̂S(r, t)+

vS · ∇
∑
T

∫
d2r′FS−T (r − r′)δn̂S(r′, t) = 0
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Our Method

Reproduce Known Results

Within high dimensional bosonization

Specific heat is linear in T .

Bosonization reproduces RPA in the spinless case with
linearized energy dispersion. Why?

Both are exact in low energy, long wavelength limit.
this is therefore an important check.

Pomeranchuk’s argument is recovered at mean field

In the Fermi liquid phase, quasi-particles are long lived.

The fermion residue is 0 < Z < 1 and Green functions
have no anomalous dimensions.

Hence, bosonization nicely describes Fermi liquid theory!
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Our Results

Order parameter theory

Introduce the order parameter in terms of
the densities δnS:

Q(r) =
∑
S

1

N
ei2θSδnS(r)

This is the � = 2, d-wave case.

Integrate out all other angular momentum
channels

Recover the order parameter theory of
Oganesyan et. al.

Bosonization agree’s with the Hertz-Millis
approach when applied to the nematic quan-
tum critical point.
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Our Results

Fermion Correlations

Within bosonization, the fermion operator is

ψ̂S(r) = ηS(rt)
√

N(0)vFλ :e−iϕ̂S(r)/� :

So the fermion Green function is of the form

GF (S)(r, t) ≡ −i〈ψS(x, t)ψ†
S(0, 0)〉 = G0

F (S)(r, t)e
iGI

B(S)(r,t)

Expanding in powers of GI
B gives:

+ +

+ . . .+

where the interaction is the RPA interaction.
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Our Results

The Fermion Green Function
At equal Times

Fermi Liquid GF (x, 0) =
Z

|x|3/2
+ reg(x)

Nematic QCP GF (x, 0) =
C

|x|3/2
e−A|x|1/3

Nematic Phase GF (x, 0) =
C

|x|3/2
e−A| sin 2θx|4/3|x|1/3
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Our Results

Fermion Residue
Near the nematic quantum critical point

0 0.002 0.004 0.006 0.008 0.01
0

0.5

1

Z
q

q
√

κ

e
− A√

|1+F2|

Migdal (1957): Zq ≡ nkF−q − nkF +q

In the nematic phase, residue vanishes except along
the principal axes.

Quantum Critical Behaviour Near the Nematic Instabilityof a Fermi Fluid – p. 22/2



Our Results

The Fermion Green Function
At equal positions

Fermi Liquid GF (0, t) =
C

t
+ reg(t)

Nematic QCP
GF (0, t) =

C

t
e
−A

ln t

|t|2/3

Nematic Phase GF (0, t) =
C

t

〈
e
−A| sin 2θ|4/3

ln t

|t|2/3
〉

θ
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Our Results

Fermion Density of States

N(ω) ≡ − 1

π
ImGF (x, x, ω)

0.02 0.06 0.1

0.5

1

N(ω)

ω

∼ ω2/3 ln ω

∂N(ω)

∂ω

∣∣∣∣
ω→0

→ ∞
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Local Quantum Critical Behavior

“Above” the quantum critical point :
(At F2 = −1, TF � T � Tκ)

T

F2
N

Order parameter fluctuates on scale of ξ � a

Fermion correlations ultra local in space:

GF (x, 0) = 1
|x|3/2 exp

(
−ATx2 ln

(
ξ

x

))
But well behaved in time:

GF (0, t) = finite as ξ → ∞
In nematic phase, ξ = ∞ protected by symmetry!

Similar to the quantum Lifshitz model!
(see Ghaemi, Vishwanath and Sentil PRB 72 024420 (2005))
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Our Results

Heat Capacity

At the nematic quantum critical point (F2 = −1)

CV = C0
V + CI

V

C0
V = 2ζ(2)

(
N(0)L2kBT

)
kB as expected (ζ(2) = π2/6)

and CI
V is

CI
V = 1

3(2 − 1
3)Γ(2 − 1

3)ζ(2 − 1
3)

N(0)L2

√
κkF

kBT

(
�vF /

√
κ

kBT

)1/3

kB

Heat Capacity goes like ∼ T 2/3
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Conclusions

In Summary

We have investigated the Fermi liquid-to-nematic QCP
and the nematic phase non-perturbatively.

The theory of bosons
naturally describes Pomeranchuk instabilities.
recovers Hertz’s order parameter theory directly.

gives a T 2/3 heat capacity in the nematic phase and
the nematic QCP.

Results:
demonstrates that the nematic QCP and the nematic
phase is a theoretically accessible non-Fermi liquid.
Local quantum criticality: Fermion correlations are
ultra short ranged at the quantum critical point and
into the nematic phase.

Quantum Critical Behaviour Near the Nematic Instabilityof a Fermi Fluid – p. 27/2


