Magnetic avalanches in MgB₂ thin films

Sung-Ik Lee

Department of Physics, Pohang University of Science and Technology

Collaborators

 Eun-Mi Choi, Hyun-Sook Lee, Byeongwon Kang, Won Nam Kang, H-G Lee and Sung-Ik Lee, Department of Physics, POSTECH

 Vitaliy V. Yurchenko, Å. A. F. Olsen, D. V. Shantsev, and T. H. Johansen
 Department of Physics, University of Oslo

Outlines

- Research objects
- Superconductivity of MgB₂
- What is Vortex avalanche?

Introduction to the Magneto Optical imaging

- What has been studied?
- Magnetic avalanches MgB₂ thin films

Au coating effect

Size Effect

Ring pattern: Vortex and Anti-vortex recombination with gold rim (width 100, 300, and 750//m)

• Conclusions

Research objects

- The Critical Current Densities is anomalously high 10⁷ A/cm² orders for the MgB₂ thin film:
 - But vortex avalanche appears at low field and at low Temperature
- How to solve this problem?

 Let's understand the origin of vortex avalanche! Thermo-magnetic instability?

MgB₂ – the overlooked superconductor Synthesized 50 years ago Commonly used in Chemistry Department Superconductivity measured by Akimitsu, Japan

Crystal structures of MgB₂

Binary System

Is phonon mechanism the origin of Superconductivity-Yes

Isotope-effect : $Mg(^{11}B)_2$: $T_c=39 \text{ K} Mg(^{10}B)_2$: $T_c=40 \text{ K}$ no indication of magnetic interactions High T_c is understandable

$$T_c = 1.13\omega_c e^{-1/VN(0)}$$

Do we understand superconductivity of this materials? No! New Phenomena-Two gap superconductivity

Electronic and Gap structure

Figure 35. Energy gap dependence on temperature obtained from point contact spectroscopy (PCS), high-resolution photoemission spectroscopy (HRPS), scanning tunneling spectroscopy (STS), tunneling (T), far-infrared transmission (FIRT), Raman spectroscopy (RS) experiments. Data are taken from references [Szabo], [Tsuda], [Giubileo (b)], [Karapetrov], [Plecenik (a)], [Jung (d)], [Takahashi], [Laube], [Gonnelli (b)], [Quilty].

Two gaps? All of the superconducting properties are affected by this two gap nature. These include Static and Dynamic Properties.

Example of two-gap nature

Iavarone +Sung-Ik Lee. PRL. **89**, 187002 (2002)

Photoemission. Tsuda et al. PRL 91, 127001 (2003)

STM measurements with field in c-axis direction

 $H_{c2}^{c}(T = 0 \text{K}) = 3.1\text{T} \Rightarrow \xi \approx 10 \text{nm}$ Size of the vortex core: $\xi \approx 50 \text{nm}$

H_{c2} - clean limit

Argonne National Lab + Postech

$$H_{c2}^{\perp}(0) \approx 3.5 \text{ T}$$

 $H_{c2}^{\parallel}(0) \approx 15 \text{ T}$

π band is important here

Full BCS Calculation Assuming Single Gap

Lemberger & Sung-Ik Lee

$$\frac{\lambda^{-2}(T)}{\lambda^{-2}(0)} = 1 - 2 \int_{\Delta}^{\infty} \bigg(-\frac{\partial f}{\partial E} \bigg) D(E) dE$$

D(E): quasiparticle density of states f: Fermi function

Full BCS Calculation Assuming Double Gap

Lemberger & Sung-Ik Lee

$$\frac{\lambda^{-2}(T)}{\lambda^{-2}(0)} = 1 - 2 \left[c_1 \int_{\Delta_S}^{\infty} \left(-\frac{\partial f}{\partial E} \right) D_S(E) dE + c_2 \int_{\Delta_L}^{\infty} \left(-\frac{\partial f}{\partial E} \right) D_L(E) dE \right]$$

 $c_1(c_2)$: contribution of small (large) gap to r_s

Dept of Physics POSTECH

Fabrication of MgB₂ thin films

Growth of the precursor B films by PLD

MgB₂ thin films with T_c of 39 K

- $T_{c} = 39 \text{ K}$
- $J_c \sim 20 \text{ MA/cm}^2$ @ 15 K and 0 T
- Critical Current Density-World Record
- Highly c-axis oriented thin films
- Science 292, 1521 (2001), PRL 87, 087002 (2001) POSTECH

Critical current density

For single crystal at 500 Oe Jc ~ 1.5 × 10⁵A/cm² at 5 K For thin film at H = 0 T $Jc \sim 40$ MA/cm² at 5 K 16 MA/cm² at 15 K 0.1 MA/cm² at 37 K

Problems for Critical Current Densities

Flux jumps or Flux noise in *M*-H loop

vortex avalanche phenomenon

Page V

Vortex Avalanche in MgB₂ Thin Film

- Why thin film of MgB₂?
- Low Thermal Conductivity, Low Specific Heat, High Critical density, Thin film
- How to cure?

Increase the thermal conductivity by gold deposition on MgB_2 thin film

Reduce the size of thin film

Vortex avalanches in MgB₂ thin film

MO images

Magnetic Hysteresis (M-H) Loop

Field increases from zero up to 35 mT, 3K http://www.fys.uio.no/super/movies.html

Magneto Optics Image of the vortex Penetration U of Oslo & Postech

Current-induced dendritic magnetic instability inMgB2 filmsU of Oslo & Postech

FIG. 1. Magneto-optical images of the flux distribution in a rectangular strip of MgB_2 thin film at 3.5 K. The image brightness represents the magnitude of the local flux density.

Homepage : http://www.fys.uio.no/super/mo/index.html#obcrstate

Resolving of individual vortices

Homepage : http://www.fys.uio.no/super/mo/#mo-principle

Square pattern of MgB₂ thin film At 3.4K, decreasing applied field

Remnant state

Dept of Physics POSTECH

Simulation of Vortex avalanche Maxwell equation coupled to heat diffusion

PRL. 28(2005) 037002 I. S. Aranson et. al.

$$C\partial_{t}T = \nabla \kappa \nabla T - (T - T_{0})h/d + \mathbf{JE}(J,T), \quad (1)$$
$$\partial_{t}\mathbf{B} = -\nabla \times \mathbf{E}(J,T), \quad \nabla \times \mathbf{H} = \mathbf{J}\delta(z), \quad (2)$$

A thin film strip: width *w*, length *L*, thickness $d \ll w$, H_0 : *xy* plane perpendicular to the magnetic filed

 $\mathbf{B}(\mathbf{r},t)$: Magnetic induction

 $T(\mathbf{r},t)$: Temperature

C(T): Heat capacity $\kappa(T)$: Thermal conductivity $h(T,T_0)$: Heat transfer coefficient to the coolant or substrate $\mathbf{E} = \mathbf{J}E(J,T)/J$: Electric field

$$E = (J - J_c)\rho_F \quad \text{for } J > J_c$$

$$E = E_C \exp(J - J_C) / J_1 \quad \text{for } J < J_C$$

Experiment

Magnetic avalanches in MgB₂ thin films with and without a deposited Au layer

Measurements of vortex avalanche

- The Magneto Optical Imaging (MOI) temperature : 3.8 K field sweep rate : 2 mT/sec
- The Magnetization Measurements measuring *M-H* loop using SQUID

Profiles of Flux density

0 µm

2.55 µm

Experiment

Magnetic avalanches in MgB₂ thin films with different width

Sample preparation and Measurements

- Sample Preparation using photo lithography
- The Magneto Optical Imaging (MOI) temperature : 3.8 K
 field sweep rate : 2 mT/sec

Threshold magnetic field of the dendritic instability in MgB₂ thin film

Symbol : experimental data

$$H_{th} = \frac{j_c d}{\pi} \operatorname{arccosh}(\frac{w}{w - l^*})$$
$$l^* = \frac{\pi}{2} \sqrt{\frac{\kappa}{|j'_c|E}} \left(1 - \sqrt{\frac{2h_0}{nd|j'_c|E}}\right)^{-1}$$
$$j_c = j_{c0}(1 - T/T_c), n = \tilde{n}(T_c/T - 1)$$

- *j*'_c : temperature derivative of the critical current density
- *k* : thermal conductivity
- h_0 : coefficient of heat transfer to the substrate
- *l**: threshold flux penetration depth n: dimensionless quantity

Theoretical dependence of the threshold temperature (T_{th}) on the MgB₂ film width

Saturation of $T_{th}(w)$ dependence

threshold temperature for wide MgB₂ films : around 10K

Experiment

Magnetic avalanches in MgB₂ thin films ring patterned

Why ring patterned samples?

- Vortex Profiles for various type configuration
- Will be used in
 SQUID (Ring-type Pattern)
 Magnetic bearings,
 High-field permanent magnets

Dendrites of opposite polarity in MgB₂ ring

(a) and (b) : ring 1(c) and (d) : ring 2

Generation of a strong filed in opposite direction at the inner edge: : Super current is flowing to generate the stray field

Mechanism of formation of anti-dendrites

- 1) When a bright dendrite come close to the inner edge, the negative field there is locally enhanced
- 2) Heat dissipation associated with the bright dendrite tip, which facilities the growth of an anti-dendrites

Experiment

Magnetic avalanches in MgB₂ thin films with gold rim (width 100, 300, and 750 µm)

The thickness of film : 400nm Film fabrication : two-step method using PLD Pattern : using photolithography

Conclusions I

- Observe Vortex Avalanche in MgB₂
- Suppress the vortex avalanche by gold deposition on MgB₂- Restore the superconducting critical current density
- Avoid the dendritic instability by reduce the size of thin film
- The dendritic instability is from thermo-magnetic origin
- Observe the dendrites of anti-vortices in the ring patterned MgB_2 thin film.

Conclusions II

• Study the vortex avalanche in MgB_2 thin films with gold rim

- a substantial increase of the threshold field H_{th} , i.e. the field of the first dendrite

- Suppression of dendritic instabilities inside the golden rims, i. e. the dendrites nucleate on the inner edge of the gold rims

Different dendrites grown in three parts of the sample shows different thermo magnetic instabilities

Dendritic and uniform flux jumps in superconducting films

PRB. 73(2006) 014512 D. V. Denisov et. al.

Model and basic equation

 $C\partial_{t}T = \nabla^{2}T + \mathbf{JE}(J,T)$ $\partial_{t}\mathbf{B} = -\nabla \times \mathbf{E}(J,T), \quad \nabla \times \mathbf{H} = \mathbf{J} \quad (\nabla \times \mathbf{B} = \mu_{0}\mathbf{J})$ $\mathbf{J} = J_{c}(T)g(E)(\mathbf{E}/E) \rightarrow J \approx J_{c}(T)$ $\mathbf{B} : \text{determined in the region } 0 < \mathbf{x} < l$ Dimensionless parameters $n(E) \equiv \partial \ln E / \partial \ln J \approx J_{c} / \sigma E >> 1$ $(\sigma(E) \equiv \partial J / \partial E) \rightarrow E \propto J^{n}$ $\tau \equiv \mu_{0}\kappa\sigma/C$

 τ : the ratio of thermal and magnetic diffusion coefficients

- smaller —slower heat diffuse
 - →more unstable superconductor
 - ____formation of instability-induced nonuniform structures

Dendritic and uniform flux jumps in superconducting films

PRB. 73(2006) 014512 D. V. Denisov et. al.

• Perturbation analysis

 $d \leq \lambda_L \ll \sqrt{dw}, \ \lambda_{eff} \ll l \ll w \ (\lambda_{eff} = \lambda_L^2 / d)$ - Assumptions : - Linearized dimensionless equations $T + \delta T(x, y, z, t), \mathbf{E} + \delta \mathbf{E}(x, y, z, t), \mathbf{J} + \delta \mathbf{J}(x, y, z, t)$ $\delta \mathbf{J} = \left(\frac{\partial j_c}{\partial T} \delta T + \sigma \delta E_y\right) \frac{\mathbf{E}}{E} + J_c \frac{\partial \mathbf{E}_x}{E} \quad \left\{ \begin{array}{c} \Theta, \mathcal{E}, \text{ and } i: \text{ z-dependent} \\ \mathbf{I}: \mathbf{I} \in \mathcal{I} \\ \mathbf{I}: \mathbf{I}: \mathbf{I} \in \mathcal{I$ dimensionless Fourier amplitude $\delta T = T^* \theta \exp(\lambda t / t_0 + ik_x \xi + ik_y \eta) \qquad \xi = x / a, \ \eta = y / a, \ \varsigma = z / a$ $\delta E_{x,y} = E \varepsilon_{x,y} \exp(\lambda t / t_0 + ik_x \xi + ik_y \eta)$ $a = (\sqrt{CT^*} / \mu_0 dd)$ abatic length $\delta J_{x,y} = J_c i_{x,y} \exp(\lambda t / t_0 + ik_x \xi + ik_y \eta)$ $T^* = -(\partial \ln J_c / \partial T)^{-1}$ $t_0 = \sigma C T^* / J_c^2 = \mu_0 \sigma a^2$ magnetic diffusion time $i_x = \varepsilon_x, \ i_y = -\theta + n^{-1}\varepsilon_y, \ \mathbf{k} \times [\mathbf{k} \times \varepsilon] = \lambda n\mathbf{i}, \ \lambda \theta = \tau (-k_y^2 \theta + \frac{\partial^2 \theta}{\partial \varepsilon^2}) + (i_y + \varepsilon_y)/n$

Dept of Physics POSTECH

Dendritic and uniform flux jumps in superconducting films

PRB. 73(2006) 014512 D. V. Denisov et. al.

Perturbation analysis

- Boundary condition

assumptions : heat exchange follows the Newton cooling law $\kappa \nabla (T + \delta T) = -h_0 (T + \delta T - T_0)$

 Θ, ε and **i** : perturbations averaged over the film thickness at the film edge (ξ =0) : $\delta I_x = 0, \ \delta E_x = 0$ at the flux front (ξ =l/a) : $\delta I_y = \delta E_y = \delta T = 0$

→ Fourier expansions for x and y components of electric field perturbation contain only $sin(k_x \xi)$ and $cos sin(k_x \xi)$

→ $k_x = (\pi a / 2l)(2s + 1)$, $s = 0, 1, 2, \dots$ magnetic field dependent

Dendritic and uniform flux jumps in superconducting films

PRB. 73(2006) 014512 D. V. Denisov et. al.

Dispersion relation for $\lambda(k_x, k_y)$

$$\begin{split} A_1\lambda^2 + A_2\lambda + A_3 &= 0.\\ A_1 &= n\gamma\alpha, \quad A_2 = k_y^2(1 + \tau A_1) + nk_x^2 + A_1(h\tau - 1),\\ A_3 &= k_y^4\tau + nk_x^2k_y^2\tau + nk_x^2(h\tau + 1/n) + k_y^2(h\tau - 1). \end{split}$$

Re λ (dimensionless instability increment) >0 : exponential growth of perturbation

Critical k_x^* : applied magnetic field k_y^* : spatial scale of instability

$$k_x^* = (\sqrt{n+1} - \sqrt{nh\tau})/n\sqrt{\tau},$$

$$k_y^* = [\sqrt{nh\tau + 1}(\sqrt{n+1} - \sqrt{nh\tau + 1})]^{1/2}/\sqrt{n\tau}.$$

Dendritic and uniform flux jumps in superconducting films PRB. 73(2006) 014512 D. V. Denisov *et. al.*

Dendritic and uniform flux jumps in superconducting films PRB. 73(2006) 014512 D. V. Denisov *et. al.*

Stability diagram in the *H*-*E* plane

Threshold magnetic field for the fingering instability $h \ll 1/\tau$, $n \gg 1$

$$H_{fing} = \left(\frac{J_c d^2}{\pi w} \sqrt{\frac{\kappa T^* J_c}{E}}\right)^{1/2}$$

Dendritic and uniform flux jumps in superconducting films PRB. 73(2006) 014512 D. V. Denisov *et. al.*

• Thin film vs. bulk

- background electric field in the superconductor

$$\frac{E_c(0)}{E_c^{slab}} = \frac{\gamma^2}{\pi^2} \frac{d^2 J_c^2 \mu_0}{CT^*}$$

thin strip: $E_c \approx 4 \times 10^{-4} \text{ v/m}$, slab :: $E^{slab}_c \approx 0.1 \text{ v/m}$

- threshold magnetic field

$$\frac{H_{fing}}{H_{fing}^{slab}} = \frac{\sqrt{2}}{\pi} \frac{d}{\sqrt{wl^*}} \qquad (l^* = (\pi/2)\sqrt{\kappa T^*/J_{l^*}E}) \text{ flux penetration depth}$$

 $l^* >> d$

