PHY131H1F - Hour 30

 How Does Foucault's Pendulum Prove the Earth Rotates?This elegant scientific demonstration has been delighting everyday people for nearly 200 years

Today:

10.3 Dynamics of Simple Harmonic Motion
10.4 Energy in Simple Harmonic Motion
10.5 The Simple Pendulum

Simple Harmonic Motion

$$
a_{x}=-\left(\frac{4 \pi^{2}}{T}\right) x
$$

"Trial Solution":

$$
x=A \cos \left(\frac{2 \pi}{T} t\right)
$$

where $A=$ constant.

Mathematically, S.H.M. is identical to one component of uniform circular motion!

What are $v_{\max }$ and $a_{\text {max }}$?

- If the position function is given by:

$$
x=A \cos \left(\frac{2 \pi}{T} t\right)
$$

- Then the velocity and acceleration functions are:

$$
\begin{aligned}
v_{x} & =-\left(\frac{2 \pi}{T}\right) A \sin \left(\frac{2 \pi}{T} t\right) \\
a_{x} & =-\left(\frac{2 \pi}{T}\right)^{2} A \cos \left(\frac{2 \pi}{T} t\right) \quad v_{\max }=\frac{2 \pi A}{T} \\
& A \text { is the amplitude of the vibration; } T \text { is the period }
\end{aligned} \quad a_{\max }=\frac{4 \pi^{2} A}{T^{2}}
$$ of the vibration.

Learning Catalytics question

The Body Mass Measurement Device chair (mass = 32 kg) has a vibrational period of 1.2 s when empty. When an astronaut sits on the chair, what will be the vibrational period?
A. More than 1.2 s
B. Less than 1.2 s
C. 1.2 s

Astronaut Tamara Jernigan (Shuttle Columbia during STS-40, 5-14 June 1991) is weighed into space. This is the first type of "chair pose space." As the chair moves forward and backward, a

$$
\begin{aligned}
& \mathrm{Me}_{\mathrm{m}}^{\mathrm{m}}=32 \\
& \begin{array}{l}
\text { The Body Mass Measurement Device chair (mass }=32 \\
\mathrm{~kg} \text {) has a vibrational period of } 1.2 \mathrm{~s} \text { when empty. When }
\end{array} \\
& \text { an astronaut sits on the chair, the period changes to } 2.1 \mathrm{~s} \text {. } \\
& \text {. Determine the mass of the astronaut. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Represent mathematically } \\
& \frac{T_{e}^{2}}{4 \pi^{2}}=\frac{m_{e}}{k}, k=\frac{m_{e} 4 \pi^{2}}{T_{e}^{2}}=\frac{32(4) \pi^{2}}{1.2^{2}}=877.3 \\
& \frac{T_{f}^{2}}{4 \pi^{2}}=\frac{m_{f}}{k}, M_{f}=\frac{T_{f}^{2}}{4 \pi^{2}} \cdot k=\frac{2.1^{2}}{4 \pi^{2}} \cdot 877.3 \\
& m_{b}=98 \mathrm{~kg} . \quad m_{a}=98-32=66 \mathrm{~kg} . \\
& 2.2 \text { voands/kg: } m_{a} \approx 150 \text { pounds. } 1 .
\end{aligned}
$$

What is the total energy of a mass vibrating on a spring, as a function of time? Assume horizontal $\begin{array}{ll}\text { Sketch and translate spring. Set Amplitude } \\ k & =A . \quad x=A \cos \left(\frac{2 \pi}{T} t\right)\end{array}$

From Aid Sheet:

$$
v=\frac{-2 \pi A}{T} \sin \frac{2 \pi}{T} t
$$

Simplify and diagram

$$
\begin{aligned}
E & =k+u_{s} \\
& =\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}
\end{aligned}
$$

$$
\begin{gathered}
E=\frac{1}{2} m\left[\frac{-2 \pi A}{T} \sin \left(\frac{2 \pi}{T} t\right)\right]^{2}+\frac{1}{2} k\left[A \cos \left(\frac{2 \pi t}{T} t\right)\right]^{2} \\
K \text { Recall: } T=2 \pi \sqrt{\frac{m}{k}}
\end{gathered}
$$

$$
\begin{aligned}
& E=\frac{m}{2}\left[\frac{-2 \pi}{2 \pi} \sqrt{\frac{k}{m}} A \sin \left(\frac{2 \pi}{T}\right)\right]^{2}+\frac{k}{2}\left[A \cos \left(\frac{2 \pi t}{T}\right)\right]^{2} \\
& E=\frac{m}{2}\left(\frac{k}{n}\right) A^{2}\left[\sin \left(\frac{2 \pi t}{T} t\right)\right]^{2}+\frac{k}{2} A^{2}\left[\cos \left(\frac{2 \pi t}{T}\right)\right]^{2}
\end{aligned}
$$

Solve and Evaluate
$E=\frac{1}{2} k A^{2}\left[\sin ^{2}\left(\frac{2 \pi t}{t}\right)+\cos ^{2}\left(\frac{2 \pi t}{t}\right)\right]$
Recall Trig Identity:

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

$$
\frac{E=\frac{1}{2} k A^{2}}{1!\text { Constant!! }}
$$

This is a surprise, since $K \& U_{s}$ are constantly varying, but their sum is constant.

Energy of a mass on a spring

Clock reading \boldsymbol{t}	Displacement	Elastic potential energy U_{s}	Kinetic energy \boldsymbol{K}	Total energy $\boldsymbol{U}_{\text {tot }}$
$\frac{1}{2} T$	$-A$	$\frac{1}{2} k A^{2}$	0	$U_{\text {tot }}=\frac{1}{2} k A^{2}$
$\frac{1}{4} T$	0	0	$\frac{1}{2} m v_{\text {max }}{ }^{2}$	
$\frac{3}{4} T$	0	0	$\frac{1}{2} m v_{\text {max }}{ }^{2}$	$U_{\text {tot }}=\frac{1}{2} m v_{\text {max }}{ }^{2}$
0	A	$\frac{1}{2} k A^{2}$	0	
T	A	$\frac{1}{2} k A^{2}$	0	$U_{\text {tot }}=\frac{1}{2} k A^{2}$

$$
E=\frac{1}{2} m v_{x}^{2}+\frac{1}{2} k x^{2}=\frac{1}{2} k A^{2}=\frac{1}{2} m\left(v_{\max }\right)^{2} \quad(\text { conservation of energy })
$$

Relationship between the amplitude of the vibration and the cart's maximum speed

- The equation $U=\frac{1}{2} k A^{2}=\frac{1}{2} m v_{\text {max }}^{2}=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}$ can be rearranged to give:

$$
v_{\max }=\sqrt{\frac{k}{m}} A
$$

- This makes sense conceptually:

- When the mass of the cart is large, it should move slowly.
- If the spring is stiff, the cart will move more rapidly.

TIP In the above discussion we neglected the interactions of the system with the surface of the track and with the air. These would both do negative work on the system and gradually decrease its energy, eventually bringing the vibrating system to rest.

By what factor must we increase the amplitude of vibration of an object and the end of a spring in order to double its maximum speed during a vibration?
A. $\sqrt{2}$
B. 2
$v_{\text {max }} \cdot \frac{2 \pi}{T}$
$A, T=$ fixed $T=2 \pi \sqrt{\frac{m}{k}}$

Learning Catalytics question
By what factor must we increase the amplitude of vibration of an object and the end of a spring in order to double the total energy of the system?
(A.) $\sqrt{2}$
B. 2

$$
E=\frac{1}{2} k A^{2}
$$

C. 4

If force diagram:

Suppose we restrict a pendulum's oscillations to small angles (< 10°). Then we may use the small angle approximation $\sin \theta \approx \theta$, where θ is measured in radians. The net torque on the mass is

$$
\Sigma \tau=I \alpha=-m g L \theta
$$

So the simple harmonic motion equation for θ as a function of time is:

$$
\alpha=-\frac{m g L}{I} \theta
$$

The solution to this is $\theta=A \cos \left(\frac{2 \pi}{T} t\right)$, where A is a constant, and the Period of oscillations (in seconds) is:

$$
T=2 \pi \sqrt{\frac{I}{m g L}}
$$

But the rotational inertia of a point mass m a distance L from the rotation axis is $I=m L^{2}$, so

$$
T=2 \pi \sqrt{\frac{m L^{2}}{m g l b}}=2 \pi \sqrt{\frac{L}{g}}
$$

Learning Catalytics Question

Two pendula have the same length, but different mass. The force of gravity, $F=m g$, is larger for the larger mass. Which will have the longer period?

A. the larger mass
B. the smaller mass
C. neither

$$
T=2 \pi \sqrt{\frac{L}{g}}
$$

mass doesn't
natter.

Mass on Spring versus Pendulum

A person swings on a swing. When the person sits still, the swing oscillates back and forth at its natural frequency. If, instead, the person stands on the swing, the natural frequency of the swing is
A. greater
sitting
B. the same
C. smaller
$f=\frac{1}{\tau}$ higher-
standing

$$
\begin{aligned}
L_{2}<L_{1} & \Rightarrow 2 \pi \sqrt{\frac{L}{g}} \\
T & =2
\end{aligned}
$$

