Practice Problem Set 10

1) Conservation of Angular Momentum

A figure skater is rotating at an angular speed of $12.56 \mathrm{rad} / \mathrm{s}$ with their arms outstretched. By pulling their arms in to their body the skater changes their moment of inertia from $2.7 \mathrm{~kg} \mathrm{~m}^{2}$ to $1.2 \mathrm{~kg} \mathrm{~m}{ }^{2}$.
Assuming angular momentum is conserved, what is their new angular speed?
If they spin at this new speed for $2 s$, how many rotations have they completed?
2) Moment of Inertia and Angular Momentum

A ball-and-chain flail is a medieval weapon that can be modelled as a massive sphere attached to a massless rope; the sphere are rope combination rotates about the other end of the rope.

The sphere has a mass of 1.00 kg and a diameter of 10.0 cm . Given that the system makes two rotations every second and its angular momentum is $5.039 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$, find:
a) the moment of inertia of the system;
b) how far the centre of the sphere is from the point of rotation.
3) 2015 Final Exam Question 7
7. A $40 \mathrm{~kg}, 5.0 \mathrm{~m}$ long beam is supported, but NOT attached to, the two posts in Figure 4. A 20 kg child stands at the centre of mass of the beam. Everything is at rest.
(a) Calculate the force acting on the beam by post 1 .
(b) The child starts walking to the right along the beam. How close can he get to the right end of the beam without the beam tipping over?

