PHY151H1F - Practice Problem Set 1 SOLUTIONS

1. Let's define: $t_{\max }=t_{1}+t_{2}+t_{3}$. t 1 is the time of the pitch from the pitcher's mound to Home. $t_{2}=$ 0.45 s is the delay time of the catcher. t_{3} is the time of the throw from Home to Third Base. Convert the distances to SI units. $d_{1}=61 \mathrm{ft}(12 \mathrm{in} / 1 \mathrm{ft})(0.0254 \mathrm{~m} / 1 \mathrm{in})=18.5928 \mathrm{~m} . \quad d_{3}=90$ $\mathrm{ft}(12 \mathrm{in} / 1 \mathrm{ft})(0.0254 \mathrm{~m} / 1 \mathrm{in})=27.432 \mathrm{~m}$.
Pitch time $t_{1}=d_{1} / v_{1}=18.5928 / 20=0.92964 \mathrm{~s}$,
Third Base throw time $t_{3}=d_{3} / v_{3}=27.432 / 20=1.3716 \mathrm{~s}$,
So he's got a maximum time of $t_{\max }=0.92964+0.45+1.3716=2.75124 \mathrm{~s}$
$t_{\text {max }}=2.8 \mathrm{~s}$.
Do I think he'll make it? Well, I know that Donovan Bailey, starting from rest, ran the 50 m dash in 5.56 s. Assuming constant acceleration (which is a bad assumption for runners, but better than assuming constant velocity), then $\mathrm{d}=1 / 2 a t^{2}$, so $\mathrm{a}=2 d / t^{2}=2(50 \mathrm{~m}) / 5.56^{2}=3.23 \mathrm{~m} / \mathrm{s}^{2}$. So if our runner could accelerate as fast as Donovan Bailey, he could run the 90 ft , or 27 m in a time $t=\sqrt{2 d / a}=4.11 \mathrm{~s}$. So no, I don't think he's going to make it in 2.8 s . I would suggest that in order for a baseball player to steal a base, he's got to take a big lead, and hope the catcher is more delayed.
2. $v=\sqrt{(-10 \mathrm{~m} / \mathrm{s})^{2}+(-100 \mathrm{~m} / \mathrm{s})^{2}}=100 \mathrm{~m} / \mathrm{s}, \quad \theta=\tan ^{-1}\left(\frac{100}{10}\right)=84^{\circ}$

3. INTERPRET: Let the x-direction be east and the y-direction be north. Use subscripts M, W, and E for Mary, the water, and the earth, respectively. Let the origin be Mary's starting point on the south bank.

DEVELOP: In the reference frame of the water Mary has no east-west motion; in that frame she travels 100 m across the river at $2.0 \mathrm{~m} / \mathrm{s}$ so $\Delta t=50 \mathrm{~s}$.

EVALUATE:

(a)

$$
\begin{aligned}
\vec{r}_{\mathrm{ME}} & =\vec{r}_{\mathrm{MW}}+\vec{r}_{\mathrm{WE}} \\
& =\vec{v}_{\mathrm{MW}} \Delta t+\vec{v}_{\mathrm{WE}} \Delta t \\
& =(2.0 \mathrm{~m} / \mathrm{s}) \hat{j}(50 \mathrm{~s})+(1.0 \mathrm{~m} / \mathrm{s}) \hat{\imath}(50 \mathrm{~s}) \\
& =(50 \mathrm{~m}) \hat{i}+(100 \mathrm{~m}) \hat{j}
\end{aligned}
$$

So she lands 50 m east (downstream) from where she intended.
(b) $\quad v_{\mathrm{ME}}=\sqrt{\left(v_{x}\right)^{2}+\left(v_{y}\right)^{2}}=\sqrt{(1.0 \mathrm{~m} / \mathrm{s})^{2}+(2.0 \mathrm{~m} / \mathrm{s})^{2}}=2.236 \mathrm{~m} / \mathrm{s} \approx 2.2 \mathrm{~m} / \mathrm{s}$

ASSESS: Most of Mary's speed with respect to the shore is due to her rowing rather than the current.

