Practice Problem Set \#6

Question \#1:

A point-particle of unit mass $(m=1)$ is constrained by some external system to follow the path

$$
\begin{equation*}
\vec{r}(t)=\left(\frac{1}{2} t^{2}+3 t\right) \hat{i}+2 t^{2} \hat{j}-7 t \hat{k}, \tag{1}
\end{equation*}
$$

as a function of time t.
a) Find an expression for the power supplied to the particle by the external system as a function of time.
b) What is the total work done by the external system on the particle between times $t=0$ and $t=1$?

Question \#2: (Wolfson Ch. 6, Q. 84)
You push an object of mass m slowly, partway up a loop-the-loop track of radius R, starting from the bottom, and ending at a height $h<R$ above the bottom. The coefficient of friction between the object and the track is a constant μ. Show that the work you do against friction is $\mu m g \sqrt{2 h R-h^{2}}$.

Question \#3: (Wolfson Ch. 6, Q. 70)
A $1400-\mathrm{kg}$ car ascends a mountain road at a steady $60 \mathrm{~km} / \mathrm{h}$, against a $450-\mathrm{N}$ force of air resistance. If the engine supplies energy to the drive wheels at the rate of 38 kW , what is the slope angle of the road?

