PHY 151 Practice Problem Set 2

Question 1

(a) How fast would you have to go to reach a star 240 light years away in an 85 year human lifetime?
(b) Two spaceships are racing. The slower one passes Earth at $0.70 c$, and the faster one moves at $0.40 c$ relative to the slower one. What is the speed of the faster ship realtive to Earth?

Question 2

A spaceship travels at $0.80 c$ from Earth to a star 10 light years distant, as measured in the Earth-star reference frame. Let event A be the ship's departure from Earth and event B its arrival at the star. (a) Find the distance and time between the two events in the Earth-star reference frame. (b) Repeat for the ship's frame. (Hint: The distance in the ship's frame is the distance an observer has to move with respect to that frame to be at both events - not the same as the Lorentz-contracted distance between Earth and the star.) (c) Compute the square of the spacetime interval in both frames to show explicitly that it is invariant.

Question 3

Derive length contraction from Lorentz transformation.
(Hint: Suppose that frame S^{\prime} moves at a speed of v with respect to frame S in the x-direction. An event takes place at (x, t) and $\left(x^{\prime}, t^{\prime}\right)$ in S and S^{\prime} respectively. The coordinates are related by

$$
\begin{aligned}
x^{\prime} & =\gamma(x-v t) \\
t^{\prime} & =\gamma\left(t-v x / c^{2}\right)
\end{aligned}
$$

where $\gamma=1 / \sqrt{1-v^{2} / c^{2}}$.)

