1. a)

$$
\begin{gathered}
y(x, t)=A \sin \left(\frac{2 \pi}{\lambda}(x-v t)\right) \\
\lambda=\frac{2 \pi}{k}=\frac{2 \pi}{4 \pi m^{-1}}=0.5 \mathrm{~m}
\end{gathered}
$$

b)

$$
f=\frac{v}{\lambda}=\frac{4 \mathrm{~m} / \mathrm{s}}{0.5 \mathrm{~m}}=8 \mathrm{~Hz}
$$

c)

$$
v=4 \mathrm{~m} / \mathrm{s} \text { in the positive } \mathrm{x} \text { direction }
$$

2. a)

$$
\begin{aligned}
& \lambda=4 L=(4)(2.4 \mathrm{~m})=9.6 \mathrm{~m} \\
& f=\frac{v}{\lambda}=\frac{343 \mathrm{~m} / \mathrm{s}}{9.6 \mathrm{~m}}=35.7 \mathrm{~Hz}
\end{aligned}
$$

b)

The beat produced is at 0.7 Hz , so $f_{\text {beat }}=0.7 \mathrm{~Hz}=\left|f_{\text {organ }}-f_{\text {fork }}\right|$

$$
f_{\text {organ }}=f_{\text {fork }} \pm 0.7 \mathrm{~Hz}=391.3 \mathrm{~Hz} \text { or } 392.7 \mathrm{~Hz}
$$

Dividing these by the fundamental frequency of the organ we get $n=10.96$ and $n=11$
So the beat is caused by the $11^{\text {th }}$ harmonic of the organ
3. The car emits the sound traveling at $v=24 \mathrm{~km} / \mathrm{h}=6.67 \mathrm{~m} / \mathrm{s}$ towards the wall. It is then reflected back towards the car, so the shift is:

$$
\begin{gathered}
f=\left(\frac{c+v_{r}}{c+v_{s}}\right) f_{0} \\
f=\left(\frac{(343+6.67) \mathrm{m} / \mathrm{s}}{(343-6.67) \mathrm{m} / \mathrm{s}}\right)(250 \mathrm{~Hz})=259.9 \mathrm{~Hz}
\end{gathered}
$$

So the beat frequency is $259.9 \mathrm{~Hz}-250 \mathrm{~Hz}=9.9 \mathrm{~Hz}$
4. a) The background + computer is at 50 dB and the background is at 40 dB .10 dB difference -> ratio of $10 x$
b) The headphones are at 85 dB and the background + computer is at 50 dB .35 dB difference so

$$
\begin{aligned}
& 35 d B=10 \log \left(\frac{I_{\text {headphones }}}{I_{\text {computer }}}\right) \\
& \frac{I_{\text {headphones }}}{I_{\text {computer }}}=10^{3.5}=3162
\end{aligned}
$$

