Practice Problem Set 8

March 12, 2017

Problem 1

A 250 g mass is mounted on a spring with a spring constant of $k=3.3 \mathrm{~N} / \mathrm{m}$. The damping constant for this system is $b=8.4 \times 10^{-3} \mathrm{~kg} / \mathrm{s}$. Is the system underdamped, critically damped, or overdamped? How many oscillations will the system undergo during the time it takes the amplitude to decay to $1 / e$ of its original value?

Solution

Compare b with $2 m \omega_{0}$

$$
\begin{equation*}
2 m \omega_{0}=2 m \sqrt{\frac{k}{m}}=1.8 \mathrm{~kg} / \mathrm{s} \tag{1}
\end{equation*}
$$

With $b=8.4 \times 10^{-3} \mathrm{~kg} / \mathrm{s}, b \ll 2 m \omega_{0}$ so the motion is underdamped.
The system with oscillate with:

$$
\begin{gather*}
x(t)=A \exp \left(-\frac{b}{2 m} t\right) \cos (\omega t+\delta) \tag{2}\\
\omega=\sqrt{\omega_{0}^{2}-\frac{b^{2}}{4 m^{2}}} \tag{3}
\end{gather*}
$$

For oscillations to decay to $1 / e$ of their original value we have

$$
\begin{gather*}
A \exp \left(-\frac{b}{2 m} t\right)=A \exp (-1) \tag{4}\\
t=\frac{2 m}{b}=59.5 \mathrm{~s} \tag{5}
\end{gather*}
$$

The periods of the oscillations is

$$
\begin{equation*}
T=\frac{2 \pi}{\omega}=1.7 \mathrm{~s} \tag{6}
\end{equation*}
$$

Thus, the number of oscillations is 34

Problem 2

A block with mass M rests a frictionless surface inclined 30° and is connected to a horizontal spring of force constant k. The other end of the spring is attached to a wall. A second block with mass m rests on top of the first block. The coefficient of static friction between the blocks is μ_{s}. Find the maximum amplitude of the oscillation such that the top block will not slip on the bottom block.

Solution

The force on the small box is

$$
\begin{align*}
F_{n e t} & =F_{f}+F_{g} \\
& =m g \mu_{s}-m g \sin (\theta) \tag{7}\\
& =m a
\end{align*}
$$

The equation for the movement of the spring is

$$
\begin{align*}
& x(t)=A \sin (\omega t) \tag{8}\\
& \omega=\sqrt{\frac{k}{m+M}} \tag{9}
\end{align*}
$$

The acceleration is the second derivative of the position

$$
\begin{equation*}
a(t)=\frac{d^{2} x}{d t^{2}}=-A \omega^{2} \sin (\omega t) \tag{10}
\end{equation*}
$$

The max acceleration is

$$
\begin{equation*}
a_{\max }(t)=-A \omega^{2} \tag{11}
\end{equation*}
$$

Plug this into the force equation

$$
\begin{equation*}
A_{\max }=\frac{g(m+M)\left(\mu_{s}-\operatorname{Sin}(\theta)\right)}{k} \tag{12}
\end{equation*}
$$

Problem 3

A steel beam of mass M and length L is suspended at its midpoint by a cable and executes torsional oscillations. If two masses m are now attached to either end of the beam and this reduces the frequency by 10% what is the ratio m / M ?

Solution

The frequency is proportional to $I^{-1 / 2}$ where I is the moment of inertia.

$$
\begin{equation*}
\frac{\omega_{f}}{\omega_{i}}=\sqrt{\frac{I_{i}}{I_{f}}} \tag{13}
\end{equation*}
$$

The moments of inertia for the beam and the system if beam plus balls are

$$
\begin{gather*}
I_{\text {beam }}=I_{i}=\frac{M L^{2}}{12} \tag{14}\\
I_{\text {sys }}=I_{f}=\frac{M L^{2}}{12}+\frac{m L^{2}}{2} \tag{15}
\end{gather*}
$$

Plugging this into the ratio of frequencies we can solve for the ratio m / M

$$
\begin{equation*}
\frac{m}{M}=\frac{1}{6}\left(\frac{1}{0.9^{2}}-1\right)=0.039 \tag{16}
\end{equation*}
$$

Problem 4

A square object of mass m is constructed of four identical uniform thin sticks, each of length L, attached together. This object is hung on a hook at its upper corner. If it is rotated slightly to the left and then released, at what frequency will it swing back and forth?

Solution

The frequency of a physical pendulum is given by

$$
\begin{equation*}
f=\frac{1}{2 \pi} \sqrt{\frac{m g d}{I}} \tag{17}
\end{equation*}
$$

where $d=L \cos \left(45^{\circ}\right)$ is the distance from the pivot(hook) to the center of mass of the square loop, and I is the moment of inertia.

The moment of inertia is given by

$$
\begin{align*}
I & =I_{c m}+m d^{2} \\
& =I_{c m}+\frac{m L^{2}}{2} \\
& =4\left(\frac{1}{12}\left(\frac{m}{4}\right) L^{2}+\frac{m}{4}\left(\frac{L}{2}\right)^{2}\right)+\frac{m L^{2}}{2} \tag{18}\\
& =\frac{5}{6} m L^{2}
\end{align*}
$$

Plugging this into the equation for the frquecny we get

$$
\begin{equation*}
f=\frac{1}{2 \pi} \sqrt{\frac{6 g}{5 \sqrt{2} L}} \tag{19}
\end{equation*}
$$

