Solution to PHY 152 Practice Problem Set 2

1.a. By symmetry, many of the electric forces due to individual charges on the central charge cancel. Nonzero contributions come from the charge $q \equiv+5 \mathrm{nC}$ at the middle of the left boundary, and the charges q and $2 q$ at the lower left and upper right corner respectively. Let $r=10 \mathrm{~cm}$, the net electric field at the center is

$$
\begin{aligned}
\mathbf{E} & =\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q}{r^{2}} \hat{\mathbf{x}}+\frac{(q-2 q)}{2 r^{2}} \frac{1}{\sqrt{2}}(\hat{\mathbf{x}}+\hat{\mathbf{y}})\right) \\
& =\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}}\left(\left(1-\frac{\sqrt{2}}{4}\right) \hat{\mathbf{x}}-\frac{\sqrt{2}}{4} \hat{\mathbf{y}}\right)
\end{aligned}
$$

The net electric force on the central charge is then

$$
\begin{aligned}
\mathbf{F} & =2 q \mathbf{E} \\
& =2.9 \times 10^{-5} \mathrm{~N} \hat{\mathbf{x}}-1.6 \times 10^{-5} \mathrm{~N} \hat{\mathbf{y}}
\end{aligned}
$$

2.a. First, it is obvious that $-q$ experiences no net electric force. By symmetry, the electric force on one of the two $+Q$'s is zero if and only if the other is zero. Therefore, we can just focus on one $+Q$ and calculate its value such that the electric field it sees is zero. Denote the distance between $-q$ and $+Q$ by r,

$$
\frac{1}{4 \pi \epsilon_{0}}\left(\frac{-q}{r^{2}}+\frac{Q}{(2 r)^{2}}\right)=0
$$

which yields $Q=4 q$.
2.b. For a point on the y-axis above all three charges, the electric field is

$$
E=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q}{(y-\sqrt{3} a / 2)^{2}}+\frac{2 q}{y^{2}+(a / 2)^{2}} \frac{y}{\sqrt{y^{2}+(a / 2)^{2}}}\right)
$$

pointing in y-direction. When $y \gg a$, this expression reduces to

$$
\begin{aligned}
E & \approx \frac{1}{4 \pi \epsilon_{0}}\left(\frac{q}{y^{2}}+\frac{2 q}{y^{2}} \frac{y}{\sqrt{y^{2}}}\right) \\
& =\frac{1}{4 \pi \epsilon_{0}} \frac{3 q}{y^{2}}
\end{aligned}
$$

which is the electric field of a point charge $3 q$.
3. Consider the situation when there is only one balloon. It stays at vertical $(\theta=0)$ when there is no net external force. The balloon floats because buoyance force is greater than its weight, i.e. it experiences a net force pointing upward,

$$
\begin{aligned}
F_{\mathrm{up}} & =F_{\mathrm{b}}-W \\
& =\rho_{\mathrm{air}} V g-\rho_{\mathrm{He}} V g
\end{aligned}
$$

where V is the volume of the balloon and we have used Archimedes' principle. When you try to tilt the balloon from equilibrium by angle θ, it experiences a restoring force $F_{R}=F_{\text {up }} \sin \theta$ perpendicular to the direction of string. In the case when θ is small, $\sin \theta \approx \theta$ and the direction of the F_{R} is almost horizontal. Suppose now that we have two balloons as shown in the figure. Since they carry identical charge, the repulsive electric force F_{E} tries to push them apart, while F_{R} tries to pull them inward. At equilibrium, assuming θ is small,

$$
\begin{aligned}
F_{E} & \approx F_{R} \\
\frac{1}{4 \pi \epsilon_{0}} \frac{Q^{2}}{(2 L \sin \theta)^{2}} & \approx F_{\mathrm{up}} \sin \theta \\
\theta^{3} & \approx \frac{1}{4 \pi \epsilon_{0}} \frac{Q^{2}}{4 L^{2}\left(\rho_{\mathrm{air}}-\rho_{\mathrm{He}}\right) V g} \\
\theta & \approx\left(\frac{1}{4 \pi \epsilon_{0}} \frac{3 Q^{2}}{16 L^{2}\left(\rho_{\mathrm{air}}-\rho_{\mathrm{He}}\right) \pi r^{3} g}\right)^{1 / 3}
\end{aligned}
$$

