PHY152 - Practice Problem Set \#5 Solutions

Winter 2018
See posted Midterm Solutions on the Course Materials page for more detailed solutions.

1. Midterm Test $2015-\mathrm{Q} 1: \mathrm{C}=\mathrm{D}>\mathrm{A}>\mathrm{B}$
2. Midterm Test 2014 - Q5: ~28 N/C m${ }^{2}$
3. Midterm Test 2015 - Q9
(a) the magnitude of the electric field is:

$$
\text { for } \mathrm{A}: \frac{k q}{R^{2}} ; \text { for } \mathrm{B}: \frac{2 k q}{\pi R^{2}} ; \text { for } \mathrm{C}: 0
$$

(b) the electric potential for all distributions is:

$$
V=\frac{k q}{R}
$$

4. Midterm Test 2017 - QT
(a)

The electric field is shown by the red lines, the blue + and - indicate the locations of charges, and the green dashed lines are the equipotentials.
(b) Charges on the solid sphere and inner and outer surface of the spherical shell are:

$$
\begin{gathered}
\left.\sigma_{\text {solid }}=1.1 \times 10^{2} \mathrm{nC} / \mathrm{m}^{2}(\text { positive }) ; \sigma_{\text {inner }}=40 \mathrm{nC} / \mathrm{m}^{2} \text { (negative }\right) ; \\
\left.\sigma_{\text {outer }}=5.5 \mathrm{nC} / \mathrm{m}^{2} \text { (positive }\right)
\end{gathered}
$$

(c) direction of the electric field is away from the centre of the solid sphere, r is this distance

$$
r \leq 60 \mathrm{~mm} \quad E=0(\text { conductor })
$$

$$
60 \mathrm{~mm}<r<100 \mathrm{~mm} \quad E=\frac{k q_{1}}{r^{2}}\left(q_{1}=5.0 \mathrm{nC}\right)
$$

$100 \mathrm{~mm} \leq r \leq 120 \mathrm{~mm} \quad E=0$ (conductor)
$120 \mathrm{~mm}<r<200 \mathrm{~mm} \quad E=\frac{k q_{2}}{r^{2}} \quad\left(q_{2}=1.0 \mathrm{nC}\right)$

