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Solutions to practice problem set 4

1 Chapter 21, Problem 74
A solid sphere of radius R carries a uniform vol-
ume charge density ρ. A hole of radius R/2 oc-
cupies a region from the center to the edge of the
sphere, as shown in Fig. 21.38. Show that the elec-
tric field everywhere in the hole points horizon-
tally and has magnitude ρR/6ε0. Hint: Treat the
hole as a superposition of two charged spheres
with opposite charges.

The hint alludes to the fact that two interpen-
etrating charge densities, one ρ and the other −ρ,
are electrically neutral and equivalent—in terms
of static field calculations—to having no charge
at all.1 Then, the superposition principle can be
used to find the net electric field from the indi-
vidual fields of each interpenetrating part.

Our building blocks are uniformly charged
balls, and we are interested in the electric fields
inside such balls. Gauss’ law can be used to eas-
ily find this electric field; this is done in Exam-
ple 21.3 of the textbook. There, it is concluded
that the field inside the ball is

~E = Q︸︷︷︸
4
3πR3ρ

~r

4πε0R3
= ρ~r

3πε0
, (1)

where~r is the position measured from the center
of the sphere.

Hence, we approach the problem by con-
sidering two interpenetrating spheres: one cen-
tered at~0 with uniform charge density ρ and the
other centered at ~a (with |~a| = R/2) with uniform
charge density −ρ. As we just argued, the first
produces an electric field

~E1 = ρ~r

3ε0
(|~r | ≤ R) (2)

and the second produces an electric field

~E2 = (−ρ)(~r −~a)

3ε0

(
|~r | ≤ R

2

)
. (3)

The net field in the region common to both
spheres is

~Enet = ~E1 +~E2 = ρ~a

3ε0
. (4)

This field has magnitude

|~Enet| = ρ|~a|
3ε0

= ρR

6ε0
, (5)

and its direction is given by the vector ~a, which
extends from the center of the large sphere to
that of the small sphere.

2 Flatland
Coulomb’s law is a consequence of Gauss’ law,
one of the four fundamental laws of electromag-
netism. In this problem, we will use Gauss’ law to
think about electric fields in a hypothetical two-
dimensional (2D) space.

(a) Does Coulomb’s law take the same form in
2D space? Use Gauss’ law to find the electric field
due to a point charge q existing in 2D space.

(b) Use Gauss’ law to find the electric field due
to an infinite, thin rod with uniform linear charge
density λ existing in 2D space.

(c) Repeat part (b), this time using your result
from part (a) and integrating over the charged
rod. You may find it useful to know that

d

du
arctanu = 1

1+u2
.

In order to apply Gauss’ law to solve this
problem, we must realize that in 2D, “surfaces”
that enclose charge are simply closed curves, and
surface integrals are simply line integrals:∮

d~A ·~E →
∮

C
dl n̂ ·~E , (6)

where dl is the length element of the curve C and
n̂ is the outer-normal vector to the curve.

(a) By applying Gauss’ law, we will find that
Coulomb’s law is not the same in 2D as it is in 3D.

The problem at hand has circular, or polar
symmetry, which is analogous to spherical sym-
metry in 3D. Polar symmetry requires the field to
point purely in the radial direction, and requires
its magnitude to depend only on on the radial co-
ordinate. We consider a Gaussian circle of radius
r centered at the point charge (Fig. 1).

1In some cases, electrons and protons in neutral matter can be thought of as a real-world example of this situation.
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~E n̂

Figure 1: Point charge (in red) in 2D with field lines
(solid lines) emanating from it. The Gaussian circle
(dashed) of radius r and the outer-normal vector are
shown as well.

The flux through the Gaussian cricle is

Φ=
∮

C
dl n̂ ·~E = |~E |

∮
C

dl = 2πr |~E |, (7)

where n̂ ·~E = |~E | because n̂ and ~E are everywhere
parallel, and where |~E | is uniform over the Gaus-
sian circle of radius r . Applying Gauss’ theorem,
we get

Φ= 1

ε0
q (8a)

2πr |~E | = 1

ε0
q (8b)

|~E | = q

2πε0r
. (8c)

(b) The charge configuration at hand has line
symmetry, meaning that the charge density de-
pends only on the distance from an infinite line.
This implies that the electric field is purely in the
direction perpendicular to the line, and is oppo-
site on either side of the line.

We choose as our Gaussian surface a rectan-
gle whose width (of length L) is parallel to the line
of charge and whose height (of length 2y) is per-
pendicular to the line of charge (Fig. 2).

Ê n̂

Figure 2: Line charge (in red) in 2D with field lines
(solid lines) emanating from it. The Gaussian rectan-
gle (dashed) of radius of height 2y and width L as well
as the outer-normal vector are also shown.

The flux through this rectangle is given by

Φ=
∮

C
dl n̂ ·~E = 2L|~E |, (9)

so Gauss’ theorem yields

Φ= 1

ε0
qenclosed (10a)

2L|~E | = 1

ε0
λL (10b)

|~E | = λ

2ε0
(10c)

(c) We split up the charged rod into inifinites-
imal charges dq = λdx, each producing a field
given by the modified Coulomb’s law from part
(a) (Fig. 3).

x

y

~r

d~E

dq

Figure 3: Electric field d~E at position (0, y) due to an
infinitesimal point charge dq at position (x,0). We in-
tegrate over the whole x axis to find the total field at
the point.

Since the charge distribution is symmetric
about the y axis, the x component of the elec-
tric field is everywhere zero. We find the y com-
ponent via integration. The field at some y > 0 is
given by

|~E | = Ey =
∫

dq

2πε0r
r̂y (11a)

=
∫ ∞

−∞
λdx

2πε0r

|y |
r

(11b)

= λ|y |
2πε0

∫ ∞

−∞
dx

1

r 2
(11c)

= λ|y |
2πε0

∫ ∞

−∞
dx

1

x2 + y2
. (11d)

We do this integral via the change of variables
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x = |y |u, so dx = |y | du.

|~E | = λ|y |
2πε0

∫ ∞

−∞
du |y | 1

y2u2 + y2
(11e)

= λy2

2πε0

1

y2

∫ ∞

−∞
du

1

u2 +1
(11f)

= λ

2πε0

(
arctanu

)∣∣∞−∞. (11g)

Since arctan(±∞) →±π/2, we finally find

|~E | = λ

2ε0
, (12)

in agreement with part (b).

3 Gauss’ Law for Gravitation
An analogy can be made between electric fields
and graviational fields, which both obey r−2 laws:

~E = kq

r 2
r̂ , ~g =−GM

r 2
r̂ . (13)

In particular, just as we did for electric fields,
we could explore gravitational field lines, gravita-
tional flux through surfaces, and so on.

(a) Based solely on comparison between the two
laws appearing in Eq. 13, deduce the gravitational
analogue of Gauss’ law. Remember that Gauss’
law for electric fields is∮

S

~E ·d~A = 1

ε0
qenclosed, (14)

where S is a closed surface, and k = 1/(4πε0).

(b) Take the Earth to be a ball of uniform mass
densityρ. What is the gravitational field as a func-
tion of radius within the ball?

(a) The point of this exercise is to realize that
the same steps leading to Gauss’ law for electric
fields could lead to a gravitational Gauss’ law as
well—the only difference would be in the sym-
bols and their meanings.2

For convenience, we rewrite Gauss’ law (for
electric fields) in terms of Coulomb’s constant:∮

S
d~A ·~E = 4πkqenclosed. (15)

Comparing the two field laws in Eq. 13, we estab-
lish the following correspondences:

~E ↔ −~g (16a)

k ↔ G (16b)

q ↔ m. (16c)

This allows us to immediately write down the
gravitational Gauss’ law:∮

S
d~A ·~g =−4πGmenclosed. (17)

(b) We apply the exact same strategy as we did
for the uniformly charged ball.

Briefly, since the problem has spherical sym-
metry, we know that the gravitational field points
purely in the radial direction and depends only
on the radial coordinate. Hence, we can use the
gravitational Gauss’ law to find the magnitude of
the field at a radius r .

We choose a spherical Gaussian surface of
radius r concentric with the Earth. Anticipating
that the gravitational field ~g points in the direc-
tion opposite to the outer-normal, the gravita-
tional flux through the surface is∮

S
d~A ·~g︸ ︷︷ ︸
−dA |~g |

=−|~g |
∮

S
dA (18a)

=−4πr 2|~g |, (18b)

and the mass enclosed by the surface is

menclosed = ρ

(
4

3
πr 3

)
, (19)

so the gravitational Gauss’ law dictates that∮
S

d~A ·~g =−4πGmenclosed (20a)

−4πr 2|~g | = −4πGρ
4

3
πr 3 (20b)

|~g | = 4

3
πGρr. (20c)

Of course, this is the same behaviour as for the
electric field in a uniformly charged sphere, sub-
ject to the replacements of Eq. 16.

2Clearly, a significant difference between gravity and electricity is that gravity is always attractive. This difference does
not cause any problems in the derivation of the gravitational Gauss’ law.

3


