PHY152 - Practice Problem Set 7 Solutions

1) Wolfson 13.55

This problem is about simple harmonic motion of a pendulum. We are asked to solve for the period, first by treating it as a simple pendulum and then as a physical pendulum.

Period for a simple pendulum is:

$$
\begin{gathered}
T=2 \pi \sqrt{\frac{m L^{2}}{m g L}}=2 \pi \sqrt{\frac{L}{g}} \\
T=2 \pi \sqrt{\frac{.8}{9.8}}=1.795 \mathrm{~s}
\end{gathered}
$$

For the physical pendulum we will need to invoke Parallel-Axis Theorem to account for the rotational inertia of the ball/sphere (Table 10.2) about the pivot point:

$$
I=I_{c m}+m d^{2}=\frac{2}{5} m R^{2}+m L^{2}
$$

Hence,

$$
\begin{gathered}
T=2 \pi \sqrt{\frac{\frac{2}{5} m R^{2}+m L^{2}}{m g L}}=2 \pi \sqrt{\frac{\frac{2}{5} R^{2}+L^{2}}{g L}} \\
T=2 \pi \sqrt{\frac{\frac{2}{5} * .075^{2}+.8^{2}}{9.8 * .8}}=1.798 \mathrm{~s} \\
\% \text { Difference }=\left|\frac{1.798-1.795}{1.798}\right| 100 \%=.17 \%
\end{gathered}
$$

2) Wolfson 13.65

This problem involves determining \# of oscillations for the amplitude to decay to $1 / \mathrm{e}$ of its initial value in a spring-damper system. The mass $(0.25 \mathrm{~kg})$ is mounted on a spring ($3.3 \mathrm{~N} / \mathrm{m}$) and the damping constant is $\mathrm{b}=8.4 \times 10^{-3} \mathrm{~kg} / \mathrm{s}$.

Examining the equation which models the damped oscillations:

$$
x(t)=A e^{-\frac{b t}{2 m}} \cos (\omega t+\phi)
$$

the term responsible for decay is

$$
e^{-\frac{b t}{2 m}}
$$

Hence,

$$
\begin{gathered}
e^{-\frac{b t}{2 m}}=e^{-1} \\
\frac{b t}{2 m}=1 \\
t=\frac{2 m}{b}=\frac{2(.25)}{8.4 \times 10^{-3}}=59.5 \mathrm{~s}
\end{gathered}
$$

Angular frequency:

$$
\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{3.3}{.25}}=3.6 \frac{\mathrm{rad}}{\mathrm{~s}}
$$

Period:

$$
T=\frac{2 \pi}{\omega}=1.75 \mathrm{~s}
$$

Hence,

$$
\# \text { oscillations }=\frac{t}{T}=\frac{59.5}{1.75}=\mathbf{3 4} \text { oscillations }
$$

3) Wolfson 13.82

This problem involves torsional oscillation of a disk with two masses attached at the end. We are given that the disk has diameter $50 \mathrm{~cm}(\mathrm{R}=0.25 \mathrm{~m})$, mass of $340 \mathrm{~g}(\mathrm{M}=0.34 \mathrm{~kg})$ and is suspended by a wire with torsional constant ($\kappa=5 \mathrm{~N} \mathrm{~m} / \mathrm{rad}$). Once the birds land on opposite sides, frequency of oscillation is $(\mathrm{f}=2.6 \mathrm{~Hz})$.

For torsional oscillation:

$$
\omega=\sqrt{\frac{\kappa}{I}}
$$

Total rotational inertia will consist of:

$$
\begin{gathered}
I=I_{\text {disk }}+I_{\text {birds }} \\
I=\frac{1}{2} M R^{2}+2 m R^{2}
\end{gathered}
$$

So,

$$
\begin{gathered}
2 \pi f=\sqrt{\frac{\kappa}{\frac{1}{2} M R^{2}+2 m R^{2}}} \\
m=\frac{1}{2 R^{2}}\left\{\kappa\left(\frac{1}{2 \pi f}\right)^{2}-\frac{1}{2} M R^{2}\right\} \\
m=\frac{1}{2\left(.25^{2}\right)}\left\{5\left(\frac{1}{2 \pi(2.6)}\right)^{2}-\frac{1}{2} .34\left(.25^{2}\right)\right\} \\
m=\mathbf{0 . 0 6 5} \mathbf{k g}
\end{gathered}
$$

