PHY152 — Practice Problem Set 7 Solutions
1) Wolfson 13.55

This problem is about simple harmonic motion of a pendulum. We are asked to solve for the
period, first by treating it as a simple pendulum and then as a physical pendulum.
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Period for a simple pendulum is:

For the physical pendulum we will need to invoke Parallel-Axis Theorem to account for the
rotational inertia of the ball/sphere (Table 10.2) about the pivot point:
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2) Wolfson 13.65

This problem involves determining # of oscillations for the amplitude to decay to 1/e of its initial
value in a spring-damper system. The mass (0.25kg) is mounted on a spring (3.3 N/m) and the
damping constant is b = 8.4 x 10~ kg/s.
Examining the equation which models the damped oscillations:
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3) Wolfson 13.82

This problem involves torsional oscillation of a disk with two masses attached at the end. We are
given that the disk has diameter 50cm (R=0.25m), mass of 340g (M=0.34kg) and is suspended
by a wire with torsional constant (k=5N m/rad). Once the birds land on opposite sides, frequency
of oscillation is (f=2.6Hz).

For torsional oscillation:

Total rotational inertia will consist of:
I = lgisk + Ipiras
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So,
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