Practice Problem Set 4 - Solutions

1. Wolfson 21.74

The hint alludes to the fact that two interpen-
etrating charge densities, one p and the other —p,
are electrically neutral and equivalent—in terms
of static field calculations—to having no charge
at all." Then, the superposition principle can be
used to find the net electric field from the indi-
vidual fields of each interpenetrating part.

Our building blocks are uniformly charged
balls, and we are interested in the electric fields
inside such balls. Gauss’ law can be used to eas-
ily find this electric field; this is done in Exam-
ple 21.3 of the textbook. There, it is concluded
that the field inside the ball is
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where 7 is the position measured from the center
of the sphere.

Hence, we approach the problem by con-
sidering two interpenetrating spheres: one cen-
tered at 0 with uniform charge density p and the
other centered at a (with |d| = R/2) with uniform
charge density —p. As we just argued, the first
produces an electric field
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and the second produces an electric field
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The net field in the region common to both
spheres is
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'In some cases, electrons and protons in neutral matter can be thought of as a real-world example of this situation.



This field has magnitude
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and its direction is given by the vector g, which
extends from the center of the large sphere to
that of the small sphere.

2. Flatland question

In order to apply Gauss’ law to solve this
problem, we must realize that in 2D, “surfaces”
that enclose charge are simply closed curves, and
surface integrals are simply line integrals:
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where d! is the length element of the curve C and
ft is the outer-normal vector to the curve.

(a) By applying Gauss’ law, we will find that
Coulomb’s law is not the same in 2D as it is in 3D.

The problem at hand has circular, or polar
symmetry, which is analogous to spherical sym-
metry in 3D. Polar symmetry requires the field to
point purely in the radial direction, and requires
its magnitude to depend only on on the radial co-
ordinate. We consider a Gaussian circle of radius
r centered at the point charge (Fig. 1).



Figure 1: Point charge (in red) in 2D with field lines
(solid lines) emanating from it. The Gaussian circle
(dashed) of radius r and the outer-normal vector are
shown as well.

The flux through the Gaussian cricle is
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where /i- E = |E| because 7 and E are everywhere
parallel, and where |E| is uniform over the Gaus-
sian circle of radius r. Applying Gauss’ theorem,
we get
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(b) The charge configuration at hand has line
symmetry, meaning that the charge density de-
pends only on the distance from an infinite line.
This implies that the electric field is purely in the
direction perpendicular to the line, and is oppo-
site on either side of the line.

We choose as our Gaussian surface a rectan-
gle whose width (of length L) is parallel to the line
of charge and whose height (of length 2y) is per-
pendicular to the line of charge (Fig. 2).
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Figure 2: Line charge (in red) in 2D with field lines
(solid lines) emanating from it. The Gaussian rectan-
gle (dashed) of radius of height 2y and width L as well
as the outer-normal vector are also shown.



The flux through this rectangle is given by
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so Gauss’ theorem yields
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(c) We split up the charged rod into inifinites-
imal charges dg = Adx, each producing a field
given by the modified Coulomb’s law from part
(a) (Fig. 3).
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Figure 3: Electric field dF at position (0, y) due to an
infinitesimal point charge dg at position (x,0). We in-
tegrate over the whole x axis to find the total field at
the point.
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Figure 3: Electric field dF at position (0, y) due to an
infinitesimal point charge dg at position (x,0). We in-
tegrate over the whole x axis to find the total field at
the point.

Since the charge distribution is symmetric
about the y axis, the x component of the elec-
tric field is everywhere zero. We find the y com-
ponent via integration. The field at some y >0 is
given by
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We do this integral via the change of variables
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in agreement with part (b).

3. Gauss’s Law For Gravitation Question

(a) The point of this exercise is to realize that
the same steps leading to Gauss’ law for electric
fields could lead to a gravitational Gauss' law as
well—the only difference would be in the sym-
bols and their meanings.?

For convenience, we rewrite Gauss' law (for
electric fields) in terms of Coulomb’s constant:
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ZClearly, a significant difference between gravity and electricity is that gravity is always attractive. This difference does
not cause any problems in the derivation of the gravitational Gauss’ law.



Comparing the two field laws in Eq. 13, we estab-
lish the following correspondences:
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This allows us to immediately write down the
gravitational Gauss’ law:
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(b) We apply the exact same strategy as we did
for the uniformly charged ball.

Briefly, since the problem has spherical sym-
metry, we know that the gravitational field points
purely in the radial direction and depends only
on the radial coordinate. Hence, we can use the
gravitational Gauss’ law to find the magnitude of
the field at a radius r.

We choose a spherical Gaussian surface of
radius r concentric with the Earth. Anticipating
that the gravitational field g points in the direc-
tion opposite to the outer-normal, the gravita-
tional flux through the surface is
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and the mass enclosed by the surface is
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so the gravitational Gauss' law dictates that
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Of course, this is the same behaviour as for the
electric field in a uniformly charged sphere, sub-
ject to the replacements of Eq. 16.



