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The frequency dependent dielectric permittivity of dispersive materials is commonly modeled as a rational poly-
nomial based on multiple Debye, Drude, or Lorentz terms in the finite-difference time-domain (FDTD) method. We
identify a simple effective model in which dielectric polarization depends both on the electric field and its first time
derivative. This enables nearly exact FDTD simulation of light propagation and absorption in silicon in the spectral
range of 300–1000 nm. Numerical precision of our model is demonstrated for Mie scattering from a silicon sphere
and solar absorption in a silicon nanowire photonic crystal. © 2011 Optical Society of America
OCIS codes: 000.3860, 000.4430, 350.6050.

The finite-difference time-domain (FDTD) method [1] is
widely used in computational electrodynamics for light
scattering from arbitrary shaped objects [1], transmission
and reflection at various incident angles for planar layers
of scatterers [1,2], and photonic band structure of infinite
periodic structures [3,4].
Unlike frequency domain methods, the dielectric per-

mittivity ε�ω� of dispersive materials in tabular form can-
not be directly substituted into the FDTD scheme.
Instead, it can be approximated using multiple Debye,
Drude, Lorentz [1], or critical point [5] terms of the form

ε�ω� � ε∞ �
XP
p�1

εp�ω�; (1)

εp�ω� �
ap;0 � ap;1�−iω�

bp;0 � bp;1�−iω� − bp;2ω2 ; (2)

where ε∞ is permitivitty at infinite frequency, and ap;j, bp;j
are real fitting coefficients that do not necessarily have a
physical meaning. There are recent reports on successful
application of the critical point model (with ap;1 ≠ 0) for
the description of the dielectric function of gold [6,7],
silver [7,8], aluminum, and chromium [7] in the wide
wavelength range. This model was implemented in
FDTD with the help of the recursive convolution (RC)
technique [9].
Dispersion profiles of complex materials cannot al-

ways be fitted using a small number, P, of terms in
(1). Alternately, one can divide the required wavelength
range into subranges for separate fittings in each sub-
range. In this case, multiple FDTD simulations should
be performed, followed by merging of the separate re-
sults. This makes simulation cumbersome and inefficient.
In traditional fitting, each dielectric susceptibility term

(2) consists of either a single imaginary pole (Debye mod-
el), two complex poles (Lorentz model), or an imaginary
pole plus pole at zero (Drude model) in the complex ω-
plane. More flexible fitting (some of which is captured in
the critical point model [5]), is enabled by additional
terms proportional to �−iω�n in both numerators and de-
nominators of (2). In the numerator, they describe direct
polarization of the medium by time derivatives of the ap-

plied electric field. In the denominator, they correspond
to higher order electronic damping (n odd) or correc-
tions to the electronic dispersion relation in the medium
(n even). Remarkably we find that two (P � 2) simple
susceptibilities of the form

εp�ω� �
Δε�ω2

p − iγ0pω�
ω2
p − 2iωγp − ω2 (3)

are sufficient to model the entire response of bulk crys-
talline silicon to sunlight over the wavelength range from
300 to 1000 nm, whereas even a large number of Debye,
Lorentz, or Drude terms are inadequate to cover the solar
spectrum. In particular, we fit silicon permittivity by two
terms of the type (3) with (ωp, γp, and γ0p are in 1∕μm, and
the speed of light is unity) ε∞�1,Δε1�8.93,Δε2�1.855,
ω1 � 3.42 (corresponding to wavelength λ1 ≈ 0.292 μm),
ω2 � 2.72 (λ2 ≈ 0.368 μm), γp1 � 0.425, γp2 � 0.123,
γ0p1 � 0.087, and γ0p2 � 2.678. We find excellent agree-
ment (Fig. 1) between our fit and experimental data
[10]. This effective optical response model is of particular
value in silicon solar cell FDTD simulations. Previous fit-
ting for silicon by three Lorentz terms (see [11] on silicon
textured antireflective coatings) was accurate only for
the visible spectrum, and no single fitting with Lorentz
terms was found for both visible and near ultraviolet
ranges.

While various FDTD methodologies exist for disper-
sive materials [1,12,13], we implement our effective mod-
el using the simple and efficient auxiliary differential
equation (ADE) technique [1].
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Fig. 1. (Color online) Real and imaginary components of the
silicon dielectric permittivity: comparison of the experimental
data (dots) with fitting by two terms of the type (3) (curve).
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The effective Ampere’s law in time domain for a
material described by (1)–(3) is given by

∇ × ~H � ε∞
d
dt

~E � σ ~E �
X
p

~Jp; (4)

where ~H and ~E are the electric and magnetic fields, re-
spectively, σ is the material conductivity, and ~Jp is the
polarization current response to the electric field ~E asso-
ciated with εp:

~Jp � −iωεp�ω� ~E: (5)

For our effective optical response (3), this relation
becomes

~Jp�ω� � −iω Δε�ω2
p − iγ0pω�

ω2
p − 2iωγp − ω2

~E�ω�: (6)

Rewriting (6) as

�ω2
p − 2iωγp − ω2�~Jp�ω� � Δε�ω2

p − iγ0pω� · �−iω� ~E�ω�
(7)

and making inverse Fourier transformation, we obtain

ω2
p
~Jp � 2

d
dt

γp ~Jp �
d2

dt2
~Jp � Δεω2

p
d
dt

~E �Δεγ0p
d2

dt2
~E:

(8)

Finite-difference expression for (8) centered at time step
n yields

ω2
p
~Jn
p � 2γp

~Jn�1
p − ~Jn−1

p

2Δt
�

~Jn�1
p − 2~Jn

p � ~Jn−1
p

�Δt�2

� Δεpω2
p

~En�1
− ~En−1

2Δt
�Δεpγ0p

~En�1
− 2 ~En � ~En−1

�Δt�2 :

(9)

Expressing explicitly ~Jn�1
p from (9), we get

~Jn�1
p � αp ~J

n
p � ξp ~J

n−1
p � ζ�p ~En�1 � ζ−p ~E

n−1 � ζp ~E
n

Δt
; (10)

where

αp � 2 − ω2
p�Δt�2

γpΔt� 1
; ξp � γpΔt − 1

γpΔt� 1
; (11)

ζ�p � ΔεpΔt��ω2
pΔt∕2� γ0p�

γpΔt� 1
; ζp � −

2Δεpγ0pΔt
γpΔt� 1

:

(12)

The time-stepping scheme for ~Jp (10) is applied synchro-
nously with the scheme for ~E derived from finite-

difference discretization of Ampere’s law (4) centered
at time step n� 1∕2:

∇ × ~Hn�1∕2 � ε∞
~En�1`

− ~En

Δt
� σ

~En�1 � ~En

2
�

X
p

~Jn�1∕2
p ;

(13)

where ~Jn�1∕2
p is obtained from (10)

~Jn�1∕2
p � 1

2
�~Jn

p � ~Jn�1
p �

� 1� αp
2

~Jn
p �

ξp
2
~Jn−1
p

� ζ�p ~En�1 � ζ−p ~E
n−1 � ζp ~E

n

2Δt
: (14)

Combining (13) and (14), we obtain an explicit time-
stepping relation for ~E:

~En�1 � C1
~En−1 � C2

~En

� C3

�
∇ × ~Hn�1∕2

−
1
2

X
p

��1� αp�~Jn
p � ξp ~J

n−1
p �

�
;

(15)

where

C1 �
−
P

pζ−p
2ε∞ � σΔt�P

p
ζ�p

; �16�

C2 �
2ε∞ − σΔt −

P
p
ζp

2ε∞ � σΔt�P
p
ζ�p

; (17)

C3 �
2Δt

2ε∞ � σΔt�P
p
ζ�p

: (18)

The resulting ADE algorithm then consists of three steps.
Starting with known values of ~En−1, ~En, ~Jn−1

p , ~Jn
p , and

~Hn�1∕2
p , we first update ~En�1 using (15). Second, we up-

date ~Jn�1
p using (10) and just computed ~En�1. Finally,

~Hn�3∕2
p is updated from ~En�1 and ~Hn�1∕2

p using the stan-
dard Yee’s discretization for Faradey’s law [1].

Another formulation of ADE [14,15], which relates ~E
and ~D instead of introducing polarization currents ~Jp,
can likewise be implemented in our model. The ADE
technique can be easily extended for the multiple Pade
approximants of ε�ω� by including the finite-difference
discretization of higher order time derivatives.

Our effective optical responsemodel is implemented as
a part of the electromagnetic template library (EMTL)
[16]. We test this model for Mie scattering from a silicon
sphere and solar absorption in silicon nanowires. Geome-
try of the first numerical test is shown at the inset of Fig. 2.
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Calculated space (mesh stepΔr � 7.5 nm) is surrounded
by absorbing perfectly matched layers (PML) [1]. To re-
duce undesired numerical reflection from the PML, we
use the additional back absorbing layers technique [17].
The total field/scattered field method [1] is used to gener-
ate a test planewave impulse impinging a silicon sphere of
radius R � 150 nm. To reduce the error caused by the
staircasing effect on rectangular FDTD mesh, subpixel
smoothing for dielectric permittivity is used at the sphere
borders [18]. The scattered field is measured by detectors
that form a closed surface surrounding sphere. Scattering
cross section S is calculated as the Poynting vector flux
over this surface normalized by the incident flux. Figure 2
depicts the calculated scattering efficiency factor defined
as the scattering cross section normalized by the sphere
geometrical cross section areaQsca � S∕�πR2�.We find an
excellent agreement between FDTD results and the exact
analytical Mie solution.
In the second test, we calculate the absorption spec-

trum of a silicon nanowire photonic crystal (square lat-
tice) with parameters from [19]: the lattice period
a � 100 nm and the nanowires diameter d � 50 nm
and length L � 2.33 μm. Here the nanowire crystal is
completely suspended in air, and light is incident along
the axis of wires with linear polarization.
We use the standard FDTD scheme (see the inset of

Fig. 3), where a plane wave impulse is directed onto

the structure and transmitted (reflected) fields are
recorded, transformed to the frequency domain, and
normalized to the incident spectrum, to calculate trans-
mittance T (reflectance R). Absorption is calculated
as 1 − T − R.

Figure 3 depicts the absorption spectra comparison for
(a) our FDTDmethod (mesh stepΔr � 5 nm), (b) the for-
mulation of the finite element method (FEM) adapted to
the problem of diffraction by a nanowire array and oper-
ating in the frequency domain [20], and (c) transfer matrix
method (TMM) results (mesh step Δr � 4.5 nm) taken
from [19]. There is a good agreement between FDTD
and TMM results, except for absorption in the 2.2–3 eV
range. FDTD results do not change significantly for the
decreasing mesh step. The TMM results from [19] may im-
prove if calculatedwith highermesh resolution. Excellent
agreement over the whole spectral range between FDTD
and FEM confirms the accuracy of our scheme.

In summary, we have demonstrated the efficiency of a
simple effective optical response model, suitable for
FDTD, to simulate silicon throughout near infrared to
near ultraviolet range.

We thank Dr. Guillaume Demesy (University of Toron-
to) for providing us with FEM results on absorption of
silicon nanowires. This work is supported in part by
the United States Department of Energy contract DE-
FG02-10ER46754 and the Natural Sciences and Engineer-
ing Research Council of Canada.
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Fig. 2. (Color online) Comparison of scattering Qsca of a sili-
con sphere with radius R � 150 nm for FDTD and exact Mie
solution. Inset: scheme of FDTD simulation geometry.
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Fig. 3. (Color online) Comparison of absorption of silicon
nanowires packed in square lattice (lattice period a �
100 nm. The nanowire’s diameter is d � 50 nm and length is
L � 2.33 μm) for FDTD, the finite element method, and the
transfer matrix method. Inset: scheme of the FDTD simulation
geometry; 1—generating (TF/SF) border; 2, 20—detector arrays
for reflected and transmitted signals; 3—periodic cell of nano-
wires array.
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