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Photonic Band Gap Architectures for Holographic Lithography
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Using symmetry considerations, we identify three families of large photonic band-gap (PBG)
architectures defined by the isointensity surfaces of four beam laser interference. For particular choices
of beam intensities, directions, and polarizations, we obtain a diamondlike crystal, a novel body-
centered cubic architecture, and a simple cubic structure with PBG to center frequency ratios of 25%,
21%, and 11%, respectively, when the isointensity surface defines a silicon (dielectric constant of 11.9)
to air boundary.
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Photonic band-gap (PBG) materials [1,2] are periodi-
cally ordered dielectric microstructures that facilitate the
localization of light [3,4]. This provides a fundamental
platform for the integration of active and passive devices
into an all-optical microchip [5]. The efficient micro-
fabrication of high quality PBG materials has been a
major scientific challenge over the past decade. While
considerable attention has focused on layer-by-layer
microlithography [6,7] and self-assembly techniques
[8,9], the achievement of long range order (LRO) on the
scale of hundreds of lattice constants has been difficult.
In the holographic lithography (HL) method, recently
introduced by Campbell et al. [10], nearly perfect LRO
can be maintained over arbitrary length scales using the
three-dimensional (3D) interference pattern of four laser
beams in a photoresist material [11–14]. When the total
light intensity, I�~rr�, at position ~rr, is maintained over a
time interval �� such that the ‘‘exposure’’ I�~rr��� exceeds
a specified threshold, T, the photoresist in the vicinity
of ~rr is chemically altered. This ‘‘overexposed’’ region
can be selectively removed using a developer substance
which leaves the ‘‘underexposed’’ regions intact. The
developed photoresist then acts as a 3D photonic crystal
(PC) template which is infiltrated with SiO2 [15]. The
photoresist is then burned away, leaving behind a daugh-
ter ‘‘inverse’’ template. Finally, the daughter template is
inverted by infiltration with silicon [8,9] and selective
chemical etching of the SiO2. The result is a 3D silicon
PC, in which the silicon-air boundary is defined by the
isointensity surface I�~rr��� � T. Despite the enormous
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potential offered by HL for efficient and accurate syn-
thesis of 3D PCs, a major unsolved theoretical problem is
the identification of holographic beam intensities, polar-
izations, and directions that lead to a large and complete
3D PBG.

In this Letter, we present a detailed theoretical road
map for achieving large 3D photonic band gaps using
holographic lithography. Previously published theoretical
reports have either focused on only a partial set of pa-
rameters [16,17] or considered [18–20] the isosurface
separating the underexposed and overexposed phases as
a particular case of triply periodic minimal surfaces [21].
In contrast, we present physical, intuitive results based on
point group and space group symmetries. We demonstrate
that holographic beam parameters can be chosen to re-
capture essential features of the diamond lattice struc-
ture, leading to an architecture with a complete PBG
(after replication with Si, " � 11:9) of more than 25%.
We also introduce a new family of body-centered cubic
(bcc) architectures. Remarkably, the optimized bcc crys-
tal exhibits a PBG (after replication with Si) of 21%. This
serves as a striking alternative to the prevailing view that
only face-centered cubic (fcc) PCs are suitable for ob-
serving a large 3D PBG.

The interference of N monochromatic plane waves of
frequency !, propagation vectors ~GGi, linear polarization
vectors ~��, phases 
i, and real amplitudes Ei creates a
field given by ~EE�~rr; t� � e�i!tei� ~GG0�~rr�
0��E0 ~��0 �

PN�1
i�1 �

Ei ~��i ei�
~KKi�~rr��i��, where ~KKi � ~GGi � ~GG0 and �i � 
i�


0. The corresponding, stationary intensity pattern is
given by
I�~rr� � ~EE	�~rr; t� � ~EE�~rr; t� �
XN�1

i�0

E2
i � 2

XN�1

i�1

E0Ei ~��0 � ~��i cos� ~KKi � ~rr� �i� � 2
XN�1

i>j�1

EiEj ~��i � ~��j cos
� ~KKi � ~KKj� � ~rr� �i � �j�:

(1)

In the following, we consider only the case N � 4 which provides the minimum number of beams required to produce a
nontrivial 3D intensity pattern. The holographic structure is a two components medium defined by the ‘‘shape’’ function
�
I�~rr� � Iexpthr �, where Iexpthr is a threshold value and � � 1 for x � 0 and zero otherwise (Heaviside step function). By
convention, we assume the high intensity regions in Eq. (1) become the silicon component of the photonic crystal
["�~rr� � 1 where I�~rr�< Iexpthr and "�~rr� � 11:9 where I�~rr� � Iexpthr ].
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For a given ~GGi, it is convenient to introduce the orthonormal triad of vectors ~RRi � ~GGi � ẑz=j ~GGi � ẑzj, ~UUi � ~RRi �
~GGi=j ~GGij, and ~UUi � ~RRi � ~GGi=j ~GGij, where �x̂x; ŷy; ẑz� define unit vectors in a specific laboratory coordinate frame. (If ~GGijjẑz,

then by convention we choose ~RRi � x̂x.)
The polarization vector can be expressed in terms of ~UUi, ~RRi, and a polarization angle, ’i, as ~��i � cos�’i� ~UUi �

sin�’i� ~RRi. In the case of the four beam configuration, Eq. (1) becomes I�~rr� � I0 � 2�I�~rr� where I0 � E2
0 � E2

1 � E2
2 �

E2
3 and

�I�~rr� � c1 cos� ~KK1 � ~rr� �1� � c2 cos� ~KK2 � ~rr� �2� � c3 cos� ~KK3 � ~rr� �3� � c12 cos� ~KK12 � ~rr� �1 � �2�

� c13 cos� ~KK13 � ~rr� �1 � �3� � c23 cos� ~KK23 � ~rr� �2 � �3�; (2)
where

ci � E0Ei ~��0 � ~��i; cij � EiEj ~��i � ~��j; (3)

~KK ij � ~KKi � ~KKj; ~KKi � ~GGi � ~GG0: (4)

The phase factors in Eq. (2) are irrelevant because they
can be simultaneously eliminated [22]. By rewriting the
‘‘experimental’’ intensity threshold as Iexpthr � I0 � 2Ithr,
we arrive at the following simplified shape function:

��I�~rr� � Iexpthr � � ���I�~rr� � Ithr�: (5)

The spatial modulation of the intensity pattern given by
Eq. (2) is periodic with a lattice whose primitive vectors,
~aai, satisfy ~KKi � ~aaj � 2��ij. As a consequence, the lattice
constants are inversely proportional to the frequency of
the laser beams.

The design problem consists of identifying the set C �
fci; cijgi<j�1;3 of six polarization and amplitude coeffi-
cients (some possibly 0), three ~KKi vectors, and suitable
threshold Ithr, which generates a photonic crystal [through
the shape function given by (5)] with a complete PBG.
Once C and ~KKi are found, the directions, amplitudes, and
polarizations of the four laser beams are determined by a
two-step algorithm: (1) find the four beam directions,
f ~GGgi�0;3, which satisfy Eq. (4), (2) use ~GGi from stage (1)
to find the four amplitudes and polarization angles,
fEi; 
igi�0;3, by solving the nonlinear system of six equa-
tions given by Eq. (3).

The identification of C and the choice of ~KKi are ob-
tained by two guiding principles: (i) choose a given
Bravais lattice, and (ii) identify architectures leading to
the smallest possible irreducible Brillouin zones (IBZ). If
we denote by f ~aai; ~bbigi�1;3 the primitive and reciprocal
vectors, respectively, of the desired Bravais lattice, then
criterion (i) above is automatically satisfied if ~KKi is a
linear combination with integral coefficients of vectors
from the set f ~bbg. Condition (ii), however, is far more re-
strictive. Indeed, only a very limited set of C, ~KKi combi-
nations generate an intensity pattern with a sufficiently
high symmetry. Suppose that the desired holographic
structure has a cubic symmetry [simple cubic (sc), bcc, or
fcc]. Sorted by their lengths, the first three sets of vectors
in the cubic reciprocal space are Bs�f� ~bbsi g of length
2�=a, Bb�f� ~bbbi g

S
f ~bbbi � ~bbbj gi�j of length 2�

���
2

p
=a,

and Bf�f� ~bbf
i g
S
f�� ~bbf1� ~bbf2� ~bbf3�g of length 2�

���
3

p
=a.

i and j run from 1 to 3, and ~bb	
i denote the three primitive
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vectors of the sc (s), bcc (b), and fcc (f) reciprocal
lattices, respectively. We define the set T of ‘‘target
vectors’’ as a subset T �K�f ~KK1; ~KK2; ~KK3; ~KK12; ~KK13; ~KK23g
corresponding to nonzero terms in Eq. (2) (or, equiva-
lently, nonzero coefficients in C). Accordingly, we define
CT � C as the subset of nonzero coefficients of C.
Clearly, the requirement of high symmetry can be
achieved by choosing T simply to be a subset of one of
the reciprocal lattice basis vector sets B	. Since �I�~rr� is
insensitive to the sign of the target vectors in T , an upper
bound on the size of the sets T and CT is 3 in the case of
Bs, 6 in the case of Bb, and 4 in the case of Bf.

We first illustrate the choice of C coefficients using the
fcc Bravais lattice. Since there are only four distinct
directions in the Bf set, the target vector set can be
denoted as T � f ~TT1; ~TT2; ~TT3; ~TT4g. One possible choice for
the three ~KKi vectors is ~KK1 �

2�
a �1; 1; 1�, ~KK2 �

2�
a �0; 2; 0�,

and ~KK3 �
2�
a ��1; 1; 1�. This leads to the choice T �

f ~KK3; ~KK12; ~KK23; ~KK1g, and C � f	; 0; 	; 	; 0; 	g where 	 indi-
cates a nonzero real coefficient. We denote the nonzero
target coefficients as CT � f�1; �2; �3; �4g and Eq. (2)
becomes �I�~rr� �

P
4
i�1 �i cos� ~TTi � ~rr�. We define Od �

fOd
j gj�1;48 as the set of fcc point group operations. The

requirement for the smallest possible IBZ corresponds to
choosing CT and finding a translation vector, ~��, such that
�I�~rr� is invariant under changes of the form ~rr !
Sd
j; ~��
�~rr� � Od

j �~rr� � ~��:

�I�~rr����!
Sd
j; ~�� X4

i�1

�icos� ~TTi �S
d
j; ~��
�~rr���

X4

i�1

�icos
O
r
j� ~TTi� � ~rr�"i�:

(6)

Here, Or � fOr
jgj�1;48 is the set of point group operations

of the fcc reciprocal space, and f"i � ~TTi � ~��gi�1;4 is a set
of four phase factors. "i are not independent because they
are related to �i � ~KKi � ~��. For our particular choice of tar-
get vectors, it can be verified that Or

j� ~TTi�2 f� ~TT1;� ~TT2;
� ~TT3;� ~TT4g. Since the sign of ~TTi leaves �I�~rr� unchanged,
it follows that the point group operations Od

j simply per-
mute the coefficients f�ig as they appear in (6). Invariance
of �I�~rr� can, therefore, be enforced by requiring j�ij � 1
for each i and using ~�� to compensate for any sign changes
(induced by permutation) in (6). Accordingly, we assume
that �i; "i 2 f0; �g. The eight possible phase configura-
tions are described by the sign vectors defined as �k�
fei�1 ;ei�2 ;ei�3 ;ei��1��2�;ei��1��3�;ei��2��3�g, where k � 1; 8
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corresponds to one of the 23 possible choices for the
f�1; �2; �3g set. It follows that

�I�~rr� �
X4

i�1

�i cos� ~TTi � ~rr�!
Sd
j; ~�� X4

i�1

�k
i ��P j

�i� cos� ~TTi � ~rr�;

where P j is a permutation of the indices f1; 2; 3; 4g com-
pletely determined by Od

j and �k is one of the eight sign
vectors described above.

Without loss of generality we can always choose the
first three coefficients to be �1. This leaves us with two
options for �Ifcc�~rr�:

�Ifcc�~rr� � cos� ~bbf1 � ~rr� � cos� ~bbf2 � ~rr� � cos� ~bbf
3 � ~rr�

� $ cos
� ~bbf1 � ~bbf2 � ~bbf3� � ~rr�; (7)

where $ � �1 and f ~bbF
i g are the primitive vectors of the
FIG. 1 (color online). The isointensity surfaces of the fcc
structure generated by Eq. (7). (a) An opal-like architecture
appears for $ � �1. (b) A diamondlike architecture appears
for $ � �1. In both cases, the light intensity is mapped to the
color bar.
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fcc reciprocal space. The choice $ � �1 leads to an
intensity pattern which resembles the opal structure
[see Fig. 1(a)]. However, when $ � �1 the intensity pat-
tern exhibits a strong resemblance to a diamond net-
work structure [see Fig. 1(b)]. The single sign which
differentiates the fcc-opal versus diamond structures in
Eq. (7) is crucial to the photonic band structure. Whereas
in the case $ � �1 the fundamental band gap does not
open, in the case $ � �1 a gap as large as 25% opens
between second and third bands in a structure whose
solid component has a dielectric constant of 11.9 (Si).
In the HL technique, this sign can be controlled di-
rectly through the amplitude and polarization of the
laser beams. The beam parameters in the $ � �1 case
are the following: (i) wave vectors ~GG0�

�
a �0;�2;�1�,

~GG1�
�
a �2;0;1�,

~GG2 �
�
a �0; 2;�1�, and ~GG3 �

�
a ��2; 0; 1�,

(ii) amplitudes fE0; E1; E2; E3g � fA;B; B;Bg where
A=B � 1=

������
17

p
, and (iii) polarizations f’0;’1;’2;’3g�

f350:4�;244:3�;105:7�;16:1�g.
The procedure described above can be applied to any

Bravais lattice. A particularly interesting case is the bcc
lattice, which has remained largely unexplored in the
photonic crystal literature. In this case, the target vectors
are chosen from the set Bb. To create an intensity pattern
whose IBZ is as small as that of the bcc Bravais lattice,
all six target vectors (the sign of the vectors is irrelevant)
are needed. Unfortunately, the resulting structure is too
symmetric and the fundamental PBG does not open.
Therefore, we consider a subset of four out of the six
available directions. This leads to a larger IBZ and an
intensity pattern of lower symmetry. Figure 2 displays
the holographic isointensity surface for the optimized bcc
architecture:
FIG. 2 (color online). The optimized bcc architecture gener-
ated by Eq. (8) with a solid volume filling fraction of �22%.
When the solid regions (interior of depicted isointensity sur-
faces) consist of silicon and the background is air, a PBG of
21% is obtained.
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FIG. 3 (color online). The photonic band structure diagram of
the optimized bcc architecture. A gap of 21%, centered at
a=)vac � 0:45, opens between bands 2 and 3. The positions
of the high symmetry points together with the IBZ are shown
in the inset.
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�Ibcc�~rr� � cos� ~TT1 � ~rr� � cos� ~TT2 � ~rr�

� cos� ~TT3 � ~rr� � cos� ~TT4 � ~rr�: (8)

The target vectors expressed in terms of the bcc
reciprocal primitive vectors are f ~TT1; ~TT2; ~TT3; ~TT4g �

f ~bbb2 ; ~bb
b
1 � ~bbb3 ;� ~bbb2 � ~bbb3 ; ~bb

b
1g. For a Si volume fraction

of �22% this structure has a complete PBG of �21%
(see Fig. 3). The beam parameters in this case are
the following: (i) wave vectors ~GG0�

�
a ��1;�1;�1�,

~GG1�
�
a ��1;1;1�, ~GG2�

�
a �1;1;�1�, and ~GG3 �

�
a �1;�1; 1�,

(ii) amplitudes fE0; E1; E2; E3g � fA; A; B; Bg where
fA;Bg � f1:970; 1:098g, and (iii) polarizations
f’0; ’1; ’2; ’3g � f72:2�; 338:4�; 6:1�; 319:9�g.

We have also found a simple cubic holographic archi-
tecture, �Isc�~rr� �

P
3
i�1 cos�

~bbsi � ~rr�, exhibiting a PBG of
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
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FIG. 4 (color online). Relative size of the full PBG of the sc,
bcc, and fcc architectures as a function of the solid volume
fraction. The solid has a dielectric constant of 11.9.
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roughly 11% in the case of Si:air materials. Further de-
tails of this and other structures will be presented else-
where [23]. Figure 4 displays the variation of the relative
size of the PBG with the Si volume fraction for the three
holographic structures described above.

In summary, we have introduced a road map for the use
of holographic lithography to create sc, fcc, and bcc
photonic crystals with large 3D photonic band gaps.
Our results reveal that an optimized geometrical struc-
ture within the unit cell enables the bcc lattice to exhibit a
PBG comparable to that of widely studied diamond lat-
tices. Provided that the local geometry consists of four
‘‘ligands’’ of suitable shape emanating from a set of nodes
to form a connected network of ‘‘bonds,’’ a PBG of more
than 20% is found in both fcc and bcc lattices. This
revives a fundamental question, whether long range pe-
riodicity is, in fact, essential for PBG formation or
whether appropriate forms of short range order in a dis-
ordered network may suffice.
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