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Single-atom switching in photonic crystals
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We describe the role of first non-Markovian corrections to resonance fluorescence in photonic crystals, using
a perturbative expansion of the Heisenberg equations of motion in powers of the atom-field reservoir coupling
strength. Non-Markovian effects arise from the rapid variation of the photonic density of states with frequency.
Our method recaptures the physics of the photon-atom bound state in the presence of a full photonic band gap.
For the anisotropic three-dimensional photonic band gap, it predicts remarkable features in the resonance
fluorescence, such as atomic population inversion and switching behavior in a two-level atom for moderate
values of the applied laser field. The magnitude of the switching effect depends sensitively on the external laser
intensity and its detuning frequency from the atomic transition. The robustness of this effect against nonradi-
ative decay and dephasing mechanisms is also investigated.
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I. INTRODUCTION

Photonic crystals constitute a new class of dielectric m
terials, in which the basic electromagnetic interaction is c
trollably altered over certain frequency and length scales
photonic crystals, the synergetic interplay between the
crocavity resonances of individual dielectric particles and
Bragg scattering resonances of the dielectric array@1# leads
to the formation of a photonic band gap~PBG!, a range of
frequencies for which no propagating electromagnetic mo
are allowed@2,3#. The presence of the photonic band gap
the dispersion relation of the electromagnetic field gives
to new phenomena, including the inhibition of the sponta
ous emission@4#, strong localization of light@5#, formation
of atom-photon bound states@6#, collective switching behav-
ior, and atomic inversion without fluctuations@7#. Photonic
crystals represent the ultimate example of a confined ph
nic system@8–11#, in which the photonic density of state
~DOS! is suppressed throughout the volume of the mate
over a certain frequency window.

These features open the possibility for important tech
logical applications of photonic crystals: low-threshold m
crolasers, ultrafast optical switches, all-optical transisto
and memory devices, to name a few. Previous studies@12,13#
suggest that a laser operating near a photonic band edge
posses unusual spectral and statistical properties, as wel
low-input-power lasing threshold due to the fractional inv
sion of the atoms in the steady-state limit. In certain con
tions, a doped photonic crystal exhibits optical bistability
the atomic response to an applied laser field@14#. Further-
more, the optical bistability may occur at very low intensiti
of the external laser field and relatively small densities
impurity atoms. Also, the atomic population inversion a
the statistics of a collection of atoms driven by a laser field
a photonic crystal show remarkable features@7#. For large
deviations in the photonic-mode density, strong atomic po
lation inversion has been predicted. When the density of
purity atoms is high enough, the atoms collectively swit
from the ground state to the excited state at a very-w
defined threshold value of the applied laser-field intensity

However, rapid variations in the photonic DOS with fr
quency leads to major modifications of the quantum optic
1050-2947/2001/64~3!/033801~21!/$20.00 64 0338
-
-

In
i-
e

s

e
-

o-

l

-

s,

ay
s a
-
i-

f

n

-
-

l-

n

confined photonic materials relative to an ordinary vacuu
The commonly used Markov approximation relies on the
sic assumption of a smoothly varying DOS of a photon
reservoir of modes, which is severely violated in a hig
refractive-index photonic crystal@15#. In certain models of
the photonic crystals, the widely used Born approximation
inadequate to describe the strong atom-field interaction n
a divergence in the photonic DOS@6#.

A perturbation theory was developed by Wo´dkiewicz and
Eberly ~WE! @16# and applied to investigate the non
Markovian character of the Bloch equations for the two-le
atom coupled the radiation reservoir of ordinary vacuum
similar approach has been used in the context of a struct
radiation reservoir by Lewensteinet al. @17,18#. From a strict
mathematical point of view, a quantum mechanical syst
whose energy spectrum in bound from below cannot spo
neously decay in a purely exponential manner@19#. For such
systems, the Paley-Wiener theorem@20# requires that in the
long-time limit the decay be slower than exponential. Seve
theoretical studies@21–23# have shown that the decay beha
ior has in fact a nonexponential tail~for large times the tra-
ditional exponential is replaced by a slower decay ast22, in
agreement with the combined requirements of energy p
tivity and the Paley-Wiener theory!. However, the size of the
nonexponential contribution is of unobservable magnitu
for a two-level atom coupled to the radiation reservoir of fr
space. The WE perturbation technique also gives a gen
solution to the two-level atom resonance fluorescence p
lem and reproduces the results of Torrey@51#, Mollow @52#,
and Heitler@53# in the appropriate limits.

In this paper, we use a perturbative technique based on
Heisenberg equations of motion approach to describe
first-order non-Markovian corrections to the spontaneo
emission and the resonance fluorescence phenomena in
tonic crystals. The perturbation parameter is the coupl
strength between the atomic system and the field reservo
modes. A second-order expansion in this coupling param
is equivalent to the Born approximation.

The paper is organized as follows. In Sec. II, we form
late the problem of spontaneous emission in the contex
frequency-dependent photonic reservoirs and present s
©2001 The American Physical Society01-1
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specific models for the spectral density of photonic band
materials. In Sec. III, we introduce a perturbative techniq
based on the Heisenberg equations of motion approach
analyze the first-order non-Markovian corrections to
spontaneous emission. In Sec. IV, we solve the problem r
nance fluorescence in PBG materials in the second-orde
the perturbation approach. We show that the atomic sys
can exhibit switching behavior as a function of the laser-fi
intensity and laser-field frequency. We also analyze the
sipative effects of dipole dephasing interactions and nonr
ative relaxation of the atomic system.

II. OPTICAL-MODE DENSITY NEAR A PHOTONIC BAND
GAP

We consider a two-level atom interacting with a quantiz
electromagnetic field of a photonic crystal. In the rotati
wave approximation~RWA! and in a frame of reference ro
tating with the atomic resonance frequencyvA , the Hamil-
tonian describing the total system is

H5H01Hint , ~2.1a!

H05(
l

\Dlal
†al , ~2.1b!

Hint5 i\(
l

gl~al
†s122s21al!, ~2.1c!

with

gl5
vAd21

\ F \

2e0vlVG1/2

el•ud , ~2.2!

ands i j 5u i &^ j u ( i , j 51,2) are the atomic pseudospin oper
tors,s35s222s11 describes the atomic inversion,al andal

†

are the radiation-field annihilation and creation operato
andDl5vl2vA represents thel-mode detuning frequenc
from the atomic frequency. Here, the atomic dipole mom
d has been chosen real, withd21 its magnitude andud the
unit vector.el[ek,s , with s51,2, are the transverse pola
ization vectors of the radiation field, andV is the quantiza-
tion volume.

We consider an effective mass approximation to the
dispersion relation of a photonic crystal. Within this appro
mation, two models for the near-band-edge dispersion
used. The first one is the isotropic model, which is obtain
by symmetrizing the dispersion relation to all directions ink
space. Thek dependence of the frequency is given then
v(k)5v(uku)5vC6A(k2k0)2, wherek0 is the radius of
the sphere ink space about which we perform the expansio
and A is a constant that depends on the specific photo
crystal considered. The plus~minus! sign stands for the cas
when the frequency is expanded about the upper~lower band
edge!. If we consider a photonic crystal with a large ba
gap (vgap@2c2/A) and the atomic frequency nearly res
nant with the upper band edge (vC), the influence of the
lower band edge can be completely neglected@13#. Under
these assumptions, the dispersion relation isv(k)5vC
1A(k2k0)2. The density of states generated by this disp
03380
p
e
nd
e
o-
of
m
d
s-
i-

d

-

s,

t

ll
-
re
d

y

,
ic

r-

sion relationship becomes divergent in the band-edge vi
ity: r(v)5(kd(v(k)2v)'1/Av2vC. As shown earlier
@12#, the isotropic model overestimates the phase space
cupied by the band-edge photons of vanishing group ve
ity.

For a real dielectric crystal with an allowed point-grou
symmetry, the band edge occurs at certain points along
Bragg planes of the lattice. We will consider now a mo
realistic model, in which the dispersion relation is anis
tropic. Within the effective mass approximation, this is d
fined byv(k)5vC1A(k2k0)2, wherek0 is a point of the
Brillouin zone boundary. The density of states is now giv
by

r~v!5(
k

d„v~k!2v…5E
Sv

dS

4p3

1

\u¹kv~k!u

}~v2vC!d/221, ~2.3!

whereSv is a surface of constant energyv andd represents
the dimensionality of the photonic crystal. When the gradi
of v(k) vanishes, the integrand in the density of states~2.3!
diverges. In a one-dimensional crystal,r(v) becomes diver-
gent asv approachesvC ~a square root divergence!. For a
two-dimensional photonic crystal, the divergence of the in
grand gives rise to a step discontinuity inr(v). In three
dimensions~3D! the singularity becomes integrable, yieldin
finite and continuous values for the density of states. Ho
ever, it does result in divergences of the slope~Van Hove
singularities@24#! of the density of statesdr/dv.

Photonic band gap materials typically consist of a tw
interpenetrating dielectric components. The first is a c
nected high-dielectric-constant backbone, and the second
connected low-dielectric-constant network. In the microwa
regime, drilling cylindrical holes in a bulk dielectric materia
along a well defined spatial mesh~length scale of the orde
of mm! @25# or layer-by-layer fabrication techniques@26# can
provide band gaps of 20% of the central frequency of the
@25#. As a result of the length scales involved, in the IR a
visible regimes one has to use microlithographic methods
self-ordered systems, such as inverted synthetic opals, in
der to create a photonic band gap material. A rich variety
photonic crystal structures have been proposed and fa
cated~silicon wafer structure@27#, air spheres in a TiO2 di-
electric backbone@28#, SiO2 spheres in a InP backbone@29#,
air spheres in a CdSe nanocrystals backbone@30#, etc.!. The
most recent breakthrough is a 3D photonic crystal with a
complete 3D photonic band gap centered near 1.5mm @31#.
The active ‘‘two-level atoms’’ in our model calculation ca
be embedded in the dielectric backbone or may be la
cooled and trapped in the void regions of the PBG mater

Our perturbation approach is based on the weak coup
between the atomic system and the radiation reservoir. U
the expression of the coupling constant~2.2! ~see Appendix
A for details and also Ref.@32# for an accurate description o
atomic decay in cavities and material media! and appropriate
values for the parameters that characterize the photonic c
tals in the optical regime (vA'1015 Hz, d21'10229 Cm,
V5a3'10218m3, with a the linear dimension of the uni
1-2
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SINGLE-ATOM SWITCHING IN PHOTONIC CRYSTALS PHYSICAL REVIEW A64 033801
cell of the photonic crystal!, we have 1026vA<gl

<1024vA , a regime in which a perturbation treatment of t
interaction of the atomic system with the radiation reserv
of the photonic crystal is justified. For simplicity, we follow
the usual perturbation method, introduce an expansion
rameterL, and rewriteHint→LHint .

On the other hand, Eq.~2.1c! involves a sum over the
transverse polarizations and integration overk space. Quali-
tatively, for an isotropic reservoir,

Hint5 i\LE
0

`

dvr~v!g~v!~av
† s122s21av!. ~2.4!

In order to apply a perturbational approach, the density
states should not become too large over the spectral rang
interest. In an ordinary vacuum, perturbation theory is v
realistic and it recaptures the main results of the two-le
atom quantum optics@16#. We use the ordinary vacuum den
sity of statesr(v)}v2 as a reference case for future discu
sions.

For the isotropic model, the interaction between t
atomic system and the radiation reservoir becomes v
strong near the band edge~the density of states is divergen
for v5vC). As a result, the perturbation theory results a
qualitatively different from the exact solution. This, howev
is an artifact of the isotropic model. For the anisotrop
model, on the other hand,r(v) remains finite over the entire
spectral range of interest. Indeed, perturbation theory re
tures the non-Markovian effects associated with a rap
varying density of states~the non-Markovian effects are mo
important near the band-edge frequency, corresponding
spectral range determined by small values of the atomic
tuningDAC[vA2vC). In this spectral range, the anisotrop
photonic crystal is a striking example of non-Markovian d
namics in the context of the Born approximation.

III. SINGLE-ATOM SPONTANEOUS EMISSION

The Heisenberg equations of evolution for thel mode of
the radiation field, the atomic system polarizations12, and
the atomic excitation populations22 are

d

dt
al~ t !52 iDlal~ t !1Lgls12~ t !, ~3.1a!

d

dt
s12~ t !5Ls3~ t !(

l
glal~ t !, ~3.1b!

d

dt
s22~ t !5,2Ls21~ t !(

l
glal~ t !1H.c. ~3.1c!

We formally eliminate the field operators by integratin
their evolution equation and substituting the result into
equations of motion of the atomic operators~‘‘adiabatic’’
elimination of the field variables!. We obtain

al~ t !5hl1LE
0

t

dt8Gl~ t2t8!s12~ t8!,
03380
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wherehl5al(0)e2 iDlt is the vacuum contribution, the re
mainder is the source~atomic system! contribution, and
Gl(t2t8)5gl exp@2iDl(t2t8)#. This yields

d

dt
s12~ t !5Ls3~ t !h~ t !1L2E

0

t

dt8G~ t2t8!s3~ t !s12~ t8!,

d

dt
s22~ t !52Ls21~ t !h~ t !2L2E

0

t

dt8

3G~ t2t8!s21~ t !s12~ t8!1H.c., ~3.2!

whereh(t)5(lglhl(t) and the memory function is given
by

G~ t2t8!5(
l

gl
2 exp@2 iDl~ t2t8!#. ~3.3!

While the theoretical formulation used here is based
plane wave expansions of the radiation-field operators@in-
herited from the quantum electrodynamics of the free spa
v(k)5cuku], the formalism can be easily generalized to i
corporate realistic dispersion relationships and Bloch mo
obtained through numerical band structure calculations~see
Appendix A!.

A. Perturbation solution of the spontaneous emission problem

We use the perturbation approach introduced by Wo´dk-
iewicz and Eberly@16# to solve the equation of motion of th
atomic operators~3.2!. In this regard, it is useful to explicitly
include the expansion parameterL in the evolution equa-
tions.

The nonlinear part of Eq.~3.2! arises entirely from the
fact that the operator products in the integrand involve se
rate timestÞt8. In the Markovian approximation, the corre
lation time of the photonic reservoir is assumed to be v
short compared to the time scale for a significant change
the atomic observables. Under this assumption, the mem
function becomes@33# G(t2t8)5(g21/21 id21)d(t2t8),
whered21 andg21 are the usual Lamb shift and spontaneo
emission rate, respectively.

In this approximation, the two-time operator produ
present in the equation of evolution is automatica
linearized: s3(t)s12(t8)→s3(t)s12(t)5s12(t) and
s21(t)s12(t8)→s21(t)s12(t)5s22(t). However, in the case
of a photonic crystal with the density of states exhibiti
rapid variations with frequency, the correlation time of t
electromagnetic vacuum is not negligible on the time scale
the evolution of the atomic system, and the Markovian a
proximation scheme is inapplicable in general.

For a PBG material, a perturbation approach may be u
to linearize the two-time operator product by collapsing it
an equal time product. This is done formally@16# by intro-
ducing the left Liouville operator of the system:

s i j ~ t !5e2 iL (t2t8)s i j ~ t8!5 (
n50

`
@2 i ~ t2t8!#n

n!
Lns i j ~ t8!,
1-3
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MARIAN FLORESCU AND SAJEEV JOHN PHYSICAL REVIEW A64 033801
Lns i j ~ t8!5\n@@ . . . ,@s i j ~ t8!,H],H], . . . ,H] , ~3.4!

where the left and right brackets in the commutator are
peatedn times. Equation~3.4! can be solved using th
Laplace transform method. Before applying the Lapla
transform, we drop all terms in the equations of motion t
are higher than a given order inL. Following WE @16#, we
perform a perturbation expansion of the operator e
@2 iL t#. The Liouvillian system can be written asL5L0
1L1, whereL0 is O(1) and L1 is O(L). The Liouvillian
operators L0 , L1 are defined by\L0O(t)5@O(t),H0#,
\L1O(t)5@O(t),H1#, with O(t) an arbitrary operator.

In the Born approximation, we keep contributions in t
equations of motions up to the orderL2. This corresponds to
replacing the LiouvillianL with L0 ~associated with the non
interacting Hamiltonian H0). Since the noninteracting
HamiltonianH0 contains only photon operators, it will com
mute with the atomic operators. Consequently,s i j (t)
5e2 iL (t2t8)s i j (t8)'e2 iL 0(t2t8)s i j (t8)5s i j (t8).

We note that the zeroth order of perturbation does
always imply that the atomic operators remain unchange
time. For example@16#, consider the same problem in a no
rotating frame of reference, for which the free Hamiltonian
H051/2\vAs31(l\vlal

†al . In the lowest order of per-
turbation ~without the RWA!, the atomic operators ar
given by s3(t)5e2 iL 0(t2t8)$s3(t8)%5s3(t8) and s6(t)
5e2 iL 0(t2t8)$s6(t8)%5e6 ivA(t2t8)s6(t8).

B. Temporal behavior and steady-state solution

In the Born approximation~the equations of motion ar
expanded up to the second order of the coupling consta!,
the Heisenberg equations of motion are

d

dt
s12~ t !5Ls3~ t !h~ t !1L2E

0

t

dt8G~ t2t8!s3~ t8!s12~ t8!,

~3.5a!

d

dt
s22~ t !52Ls21~ t !h~ t !2L2E

0

t

dt8

3G~ t2t8!s21~ t8!s12~ t8!1H.c. ~3.5b!

We average over the reservoir degrees of freedom,
consider the photonic reservoir to be initially in its vacuu
state @^al

†(0)al(0)&R50, ^hl&R5^hl
†&R50]. The system

of equations is further simplified by the identit
s i j (t8)skl(t8)5d jks i l (t8). For simplicity, hereafter we drop
the superscripts (a), associated with reservoir averag
^s i j &R[s i j

a , and setL51. Under these assumptions, Eq
~3.5! can be conveniently solved in operator form by maki
the following substitution:

s6~ t !5s6~0!•S6~ t !,

s22~ t !5s22~0!•S22~ t !. ~3.6!
03380
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Here, S6(t) and S22(t) are c numbers. Introducing the
Laplace transforms x(p)[S̃22(p)5L$S22(t)%, z(p)
[S̃12(p)5L$S12(t)%, G̃(p)5L$G(t)%, and G̃* (p)
5L$G* (t)%, where f̃ (p)5L$ f (t)%5*0

`e2ptf (t), Eq. ~3.5!
yields

x~p!5
S22~0!

p1G̃~p!1G̃* ~p!
, ~3.7!

z~p!5
S12~0!

p1G̃~p!
. ~3.8!

The temporal evolution of the atomic variables~3.6! is then
obtained immediately by evaluating the inverse Lapla
transforms of these equations. Finally, we emphasize tha
ansatz~3.6! allows us to solve the Heisenberg equations
motion in an operator form.

1. Isotropic model

In the isotropic model of a photonic crystal, the dispersi
relation for a one-dimensional gap is extrapolated to all s
tial dimensions. The infinity of modes available for the ph
ton near the band edge causes an additional strong-cou
effect over and above that of the resonant interaction of
atom with photons whose group velocitydvk /dk vanishes
~the energy bands have zero slope on a Brillouin zone bou
ary!. The dressing of the atom by its own interaction b
comes strong enough to split the atomic level by a consid
able amount. A low-order perturbation approach leads
inaccuracies if the atomic transition frequency is tuned
close to the singularity inr(v)}1/Av2vC. However, it is
an appropriate formalism when the atomic resonant
quency is detuned slightly away from the divergence
r(v).

Near a photonic band edge, the Born approximation p
vides a useful starting point for recapturing the photon-at
bound state solution. By selectively retaining leading no
Markovian terms in the perturbation scheme, it is possible
recapture strong-coupling effects such as the vacuum R
splitting of the atomic level and the fractionalized stead
state inversion. This provides the basis for applying the sa
formalism to the case of a driven system near the band e
We derive the occurrence of non-Markovian switching
fects in the atomic excitation probability which occur at lo
threshold of the external cw laser field.

In the effective mass approximation and long-time lim
@vA(t2t8)@1, p/vA!1], the memory function and its
Laplace transform are given by~see Appendix B 1!

GI~ t2t8!5b I
3/2e2 i [p/42DAC(t2t8)]

~ t2t8!1/2
, ~3.9!

G̃I~p!5b I
3/2e2 ip/4A p

p2 iDAC
, ~3.10!

where DAC5vA2vC is the detuning of the atomic fre
quency with respect to the band-edge frequencyvC , andb I
1-4
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FIG. 1. Atomic population on the excited
state,̂ s22&, as a function ofb I t, for various val-
ues of the atomic detuning, fromDAC /b I5215
for the thick solid curve toDAC /b I530 for the
thin solid curve.
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is a constant that depends on the nature of the band-
singularity. For the isotropic model, it takes the formb I

3/2

5vA
7/2d21

2 /6\e0p3/2c3.
Using the explicit form forG̃I(p) in Eq. ~3.7!, it is

straightforward to evaluate the inverse Laplace transfo
and recapture the radiative dynamics described by Eq.~3.6!.
The details of this evaluation are given in Appendix C.

Figure 1 shows the atomic population on the excited s
as a function of the scaled time for various values of
atomic detuning from the photonic band edge. Consis
with our perturbational approach, we scan the atomic
quency space, avoiding the positive detuning side of
spectral region surrounding the band-edge singularity, wh
the strong atom-radiation interaction~and a divergent density
of states! make a low-order perturbation approach invalid

Clearly, if the bare atomic level is placed inside the ph
tonic band gap, our approach~in its domain of validity! is
able to recover the splitting of the atomic level into dress
states caused by the interaction between the atomic sy
and its own radiation. However, when the bare atomic le
is outside the gap, the photon-atom bound-state compone
suggested by earlier approaches@6,12# cannot be recapture
in a low-order perturbation analysis. In our approach, outs
the gap the atomic population vanishes in the long-ti
limit, regardless how close the atomic frequency is to
band-edge frequency. On the other hand, the occurrence
nonzero steady-state excitation amplitude for a level outs
the gap appears to be an artifact of the isotropic model~di-
vergent! density of states, which cannot be recaptured b
low-order perturbation expansion. For the more realistic
isotropic model of a PBG material dispersion relation, t
steady-state excitation probability vanishes at the band e
for both the variational wave-function method and the no
Markovian perturbation approach. However, Rabi splitti
can be achieved for an extremely low applied laser field.

2. Anisotropic model

For a real dielectric crystal with an allowed point-grou
symmetry, the band edge occurs at certain points along
03380
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Bragg planes in wave-vector space. We consider now a m
realistic model, in which the dispersion relation is anis
tropic. In the effective mass approximation, the dispersion
given byv(k)5vC1A(k2k0)2, wherek0 is a point of the
Brillouin zone boundary. In this section, we analyze a thr
dimensional photonic crystal, characterized by a continu
and finite density of states~2.3! @r(v)}(v2vC)1/2#. Al-
though there is a spectral region over which the density
states of a three-dimensional photonic crystal becomes la
than the ordinary vacuum density of states, we identify s
eral spectral regions over which a perturbation approach c
tures the behavior of the system under consideration. Th
are the negative atomic detuning side of the frequency sp
where the photonic crystal density of states vanishes~I!, the
region surrounding the band-edge frequency~II ! ~which was
inaccessible in the isotropic case!, and the spectral region
corresponding to moderate-large values of the atomic de
ing ~III !. Remarkably, the non-Markovian effects associa
with the fast variation of the density of states at the ba
edge frequency~region II! can be analyzed within the frame
work of the Born approximation.

In the effective mass approximation and long-time lim
the memory kernel for a three-dimensional anisotropic p
tonic crystal is given by@34# ~see also Appendix B 2!

GA~ t2t8!52bA
1/2ei [p/41DAC(t2t8)]

~ t2t8!3/2
. ~3.11!

Here,DAC5vA2vC is the detuning of the atomic frequenc
with respect to the band-edge frequency, andbA

1/2

5vA
2d21

2 /8\e0p2A3/2. An approximate form of the Laplace
transform of anisotropic memory function is given in Appe
dix B 2:

G̃A~p!5bA
1/2eip/4Ap2 iDAC. ~3.12!

The temporal evolution of the excited atomic populati
is given in Appendix C. In Fig. 2, we plot the atomic pop
1-5
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FIG. 2. Atomic population on the excited
state,̂ s22&, as a function ofbAt, for various val-
ues of the atomic detuning, fromDAC /bA5
220 ~circles! to DAC /bA520 ~up triangles!. The
on-resonance case corresponds to the th
dashed curve.
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lation on the excited state as a function of the scaled t
and for various values of the atomic detuning from the p
tonic band edge. It is now possible to realistically investig
the immediate neighborhood of the band-edge frequenc
the atomic frequency is detuned inside the gap, the ato
population again displays fractionalized inversion, for re
tively small values of the atomic detuning. Even when t
atomic frequency is detuned into the gap, a superpositio
the continuum states leads to a bound state of the em
photon to the atom.

As shown in Fig. 3, in the steady-state limit the depe
dence of atomic excited population on the atomic detunin
again very close to the one obtained using a nonperturba
approach@6#.
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Both methods show that, once the atomic frequency
detuned outside the gap, in the steady-state limit the ato
population vanishes. Outside the PBG, the remnant of
photon-atom bound state only becomes apparent whe
small near-resonant driving field is applied to the system

C. Improved approximation scheme

As stated in the Introduction, a critical issue for perturb
tion theory is the preservation of the positivity of the diag
nal elements of the atomic density matrix operator. For c
tain initial conditions and for short-time scales, perturbatio
based theories produce unphysical results. However, if
carefully restricts attention to the spectral regions over wh
he
FIG. 3. Steady-state atomic population on t
excited state,̂ s22&, as a function of the atomic
detuningDAC /bA , within the Born approxima-
tion with leading non-Markovian corrections.
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SINGLE-ATOM SWITCHING IN PHOTONIC CRYSTALS PHYSICAL REVIEW A64 033801
a perturbation expansion is justified, it provides a very go
approximation. As seen in the previous section, a consis
second-order perturbation theory allows one to investig
some of the non-Markovian features of the quantum optic
photonic crystals. It is has been pointed out that second-o
perturbation theory gives correct results for single-opera
expectation values@35#. The effects of neglecting the rese
voir evolution appear only in expectation values of high
order operator products. This observation suggests a sim
approximation scheme which may be used to preserve
positivity of the excited atomic population. The schem
however, is specific to the model under consideration. In
model, the average over the photonic reservoir degree
freedom preserves some operatorial products. It can
shown easily thatas22[

a(s21s12)5(as21)(
as12) and as11

[a(s12s21)512(as21)(
as12)Þ(as12)(

as21). Using these
properties of the reduced atomic operators, we introduce
approximation scheme for the excited atomic population
erator~once again we drop the~a! superscript, which denote
the averaging over the reservoir degrees of freedom!: s22
5s21s12 ands11512s22. Here, we substitute the approx
mants s21

(n)5s21
(0)1( i 52

n ds21
( i ) and s12

(n)5s12
(0)1( i 52

n ds12
( i ) ,

which represent thenth perturbative solutions fors21 and
s12, respectively, obtained by keeping terms up toO(Ln) in
the equations of motion.

Clearly, at any ordern, this expansion for the reduce
atomic operators preserves the trace of the Bloch vectosW
(s111s2251), ensures the positivity of the atomic popul
tions @sinces21

(n)5(s12
(n))†], and converges to the exact sol

tion as n→`. The zeroth order corresponds to tim
independent atomic operatorss21

(0)(t)5s21(0), s22
(0)(t)

5s21
(0)(0)s12

(0)(0)5s22(0), while, in the next order, the ex
cited atomic population is given bys22

(2)(t)5s21
(2)(t)s12

(2)(t).
Here,s21,12

(2) are the solutions of the equations of motion
which one keeps terms up to the second-order inL ~Born
approximation!, as in the previous section. The second-or
expansion yields identical results~see Appendix C! with the
variational Schro¨dinger equation approach described ear
@6#.

IV. SINGLE ATOM DRIVEN BY AN EXTERNAL LASER
FIELD

A. Model Hamiltonian

We now consider a single stationary atom driven by
external single-mode laser field. We assume that the las
in a coherent stateua exp(2ivLt)&, with a5uaue2 ifL, and
that the occupation number of the laser modeN̄L5ua2u is
high enough such that one can disregard the influence o
atomic system on the laser-field radiation and average o
the laser-field degrees of freedom. Under these assumpt
the interaction HamiltonianHAL can be brought to the usua
RWA form of the interaction between a two-level atom and
classical coherent monochromatic laser field:

HAL5\«~s21e
2 i (vLt1fT)1s12e

i (vLt1fT)!.

Here, «5d21E/\ is the Rabi frequency, the laser electric
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field magnitudeuEu5A\vL/2e0VAN̄LeL , and all phase con-
tributions are grouped infT5fL2p/2.

We now assume that the driven atomic system is coup
to the radiation reservoir of a photonic crystal. Using t
notation introduced in Sec. I, the total Hamiltonian of t
system is given byH5H01H1, where

H05(
l

\vlal
†al1

1

2
\vAs3

1\«@s21e
2 i (vLt1fT)1s12e

i (vLt1fT)#, ~4.1!

H15 i\(
l

gl~al
†s122als21!. ~4.2!

In order to eliminate the explicit time dependence of t
Hamiltonian, we transform to a rotating frame of referen
with the frequencyvL . In this frame of reference, the effec
tive Hamiltonian@36# becomes

H85H081H18 ,

H085(
l

\Dlal
†al1 1

2 \DALs31\«~s121s21!, ~4.3!

H185 i\(
l

gl~al
†s122als21!,

with Dl[vl2vL andDAL[vA2vL .

B. Heisenberg equations of evolution

1. Heisenberg equations of evolution: Bare picture

With the usual procedure of ‘‘adiabatic’’ elimination o
the field variables, the Hamiltonian~4.3! generates the fol-
lowing Heisenberg equations of motion for thel mode of
the radiation field, the atomic system polarizations21, and
the atomic population inversions3:

al~ t !5hl~ t !1LE
0

t

dt8Gl~ t2t8!s12~ t8!, ~4.4a!

d

dt
s21~ t !5Lh†~ t !s3~ t !2 i«s3~ t !1 iDALs21~ t !

1L2E
0

t

dt8G~ t2t8!s21~ t8!s3~ t !, ~4.4b!

d

dt
s3~ t !522Ls21~ t !h~ t !22i«s21~ t !22L2E

0

t

dt8

3G~ t2t8!s21~ t !s12~ t8!1H.c. ~4.4c!

Since the noninteracting Hamiltonian contains the atom
operatorss3 , s12, s21 with different factors (DAL , «, re-
spectively!, s i j (t)'e2 iL 0(t2t8)$s i j (t8)% cannot be decou-
pled in a simple form. The bare picture perturbation theo
of the resonance fluorescence is tedious since the lea
1-7
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MARIAN FLORESCU AND SAJEEV JOHN PHYSICAL REVIEW A64 033801
approximation ofs i j (t) contains combinations of all atomi
operators@18#. Another possibility@16# is to displace one of
the vacuum modes, such that it contains the external l
field. Then the corresponding noninteracting Hamiltonian
comes diagonal and the Born approximation may easily
applied. In this paper, we choose to diagonalize the nonin
acting part of the Hamiltonian by transforming to the dress
atom basis. In the resulting Heisenberg picture, the opera
no longer retain their atomic or electromagnetic character
times t.0. Nevertheless, the usual commutation relatio
are preserved during the temporal evolution.

2. Heisenberg equations of evolution: Dressed picture

The dressed atomic basis is defined asu1̃&5cu1&1su2&,
u2̃&52su1&1cu2&, where c5 cosf, s5 sinf, and sin2f
51

2@12sgn(DAL)/(4e2/DAL
2 11)1/2#. The corresponding

dressed atomic operatorsRi j 5u ĩ &^ j̃ u( i , j 51,2), R35R22
2R11 are related to the bare atomic operators by the relat

s125csR31c2R122s2R21,

s215csR32s2R121c2R21, ~4.5!

s35~c22s2!R322cs~R121R21!.

This transformation leads to the noninteracting dress
state Hamiltonian

H05\VR31\(
l

Dlal
†al , ~4.6!

with V5@e21DAL
2 /4#1/2 the generalized Rabi frequency.

We define the time-dependent interaction picture Ham

tonian H̃15U†(t)H1U(t), with the unitary transformation
operatorU(t)5exp(2 iH 0t/\). In this picture, the interac

tion HamiltonianH̃1 takes the form

H̃15 i\L(
l

gl@al
†~csR3eiDlt1c2R12e

i (Dl22V)t

2s2R21e
i (Dl12V)t!#1H.c. ~4.7!

The dressed atomic operators in this interaction p
ture exhibit the time dependence given byR̃12(t)
5R12(0)exp(22iVt), R̃21(t)5R21(0)exp(2iVt), and R̃3(t)
5R3(0). Clearly, R̃3(t), R̃12(t), and R̃21(t) can be consid-
ered as source operators for the central component and
and right sidebands of the Mollow triplet at the frequenc
vL , vL22V, andvL12V. Hereafter, we drop the tilde o
the interaction picture operators. The Hamiltonian given
Eq. ~4.7! generates the following equations of motion:

d

dt
al~ t !5glL$csR3eiDlt1c2R12e

i (Dl22V)t

2s2R21e
i (Dl12V)t%, ~4.8a!
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d

dt
R21~ t !5L(

l
gl$22csal

†R21e
iDlt1c2al

†R3ei (Dl22V)t

12csR21ale2 iDlt1s2R3ale2 i (Dl12V)t%,

~4.8b!

d

dt
R3~ t !522L(

l
gl$s2al

†R21e
i (Dl12V)t

1c2al
†R12e

i (Dl22V)t%1H.c. ~4.8c!

We adiabatically eliminate the field operators by forma
integrating Eq.~4.8a! and substituting the result back int
Eqs. ~4.8b! and ~4.8c!. Further, we average over the fie
and atomic variables. We assume that the radiation fi
is initially in its vacuum state, i.e.,̂ al(0)&5^al

†(0)&
5^al(0)Ri j (t)&50. In the Born approximation we retai
terms up to the second order inL, and replace

Ri j ~ t !'e2 iL 0(t2t8)$Ri j ~ t8!%'Ri j ~ t8!. ~4.9!

It follows that, in the Born approximation,̂Ri j (t)Rmk(t8)&
'^Ri j (t8)Rmk(t8)&5^Rik(t8)&d jm .

We introduce the memory functionsG0(t2t8)
5(lgl

2e2 iDl(t2t8) and G6(t2t8)5(lgl
2e2 i (Dl62V)(t2t8).

These functions characterize the memory effects of the c
tral component, the right and left side bands of the Mollo
spectrum, and describe the influence of the driving field
the atom-reservoir interaction~see Appendix D for the gen
eral equations of motion!. The system of equations chara
terizing the evolution of the atomic operators is further si
plified by making the secular approximation; i.e., the fa
oscillating terms with frequencies 2V and 4V are discarded.
This approximation is valid in the regimeV.b, whereb is
the characteristic time scale of the evolution of the atom
system.

Under these assumptions, the temporal evolution of
atomic system is described by the following equations:

d

dt
^R21~ t !&522c2s2E

0

t

dt8G0* ~ t2t8!^R21~ t8!&

2c4E
0

t

dt8G1* ~ t2t8!^R21~ t8!&

22c2s2E
0

t

dt8G0~ t2t8!^R21~ t8!&

2s4E
0

t

dt8G2~ t2t8!^R21~ t8!&, ~4.10a!

d

dt
^R3~ t !&522c4E

0

t

dt8G1~ t2t8!^R22~ t8!&

12s4E
0

t

dt8G2~ t2t8!^R11~ t8!&1H.c.

~4.10b!
1-8
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FIG. 4. Relevant frequencies and frequen
scales in the case of a steplike density of state
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C. Strong external laser field: The Markovian approximation

In general, the memory functionsG0(t2t8) and G6(t
2t8) are determined by the radiation-field density of stat
For a broadband, smoothly varying density of states of
reservoir ~as in ordinary vacuum!, the dependence of th
memory functions on the external field can be ignored a
G0(t2t8)5G6(t2t8)'(g/2)d(t2t8). However, the den-
sity of states of the photonic crystals exhibits band-edge
other Van Hove singularities, as described in the Introd
tion. In such a system with fast variations of the density
states in the spectral range given by$vL22V,vL12V%
~shown in Fig. 4!, the distinctive memory functions intro
duced previously lead to qualitatively different behav
from an ordinary vacuum.

For a strong external laser field@7#, the dressed frequen
cies vL , vL22V, and vL12V may be pushed far awa
from the band-edge singularity. In this section we assu
that the photonic-mode density, while singular at one f
quency, is smoothly varying over the spectral regions s
rounding the dressed-state resonant frequenciesvL , vL

22V, and vL12V. The spectral components will exper
ence very different densities of states and the memory fu
tions in the Markov approximation are given byG0(t2t8)
5(g0/2)d(t2t8), G1(t2t8)5(g1/2)d(t2t8), and G2(t
2t8)5(g2/2)d(t2t8). The spontaneous emission dec
rates g052p(lgl

2d(vl2vL), g252p(lgl
2d(vl2vL

12V), andg152p(lgl
2d(vl2vL22V) are proportional

to the density of modes at dressed-state resonant frequen
The strong-field assumption ensures that the Mollow spec
components are well separated and the overlap between
is negligible~in fact this assumption requires a much stro
ger field than the one involved in the secular approximatio!.

Under these approximations, the temporal evolution of
dressed atomic polarization and inversion is then given b
03380
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^R21~ t !&5^R21~0!&expF2
1

2
~4c2s2g01c4g11s4g2!t G ,

~4.11a!

^R3~ t !&5^R3~0!&exp@2~c4g11s4g2!t#

2
c4g12s4g2

c4g11s4g2

$12 exp@2~c4g11s4g2!t#%.

~4.11b!

The bare operators are obtained by the transformatio
Eq. ~4.5!, and the bare-state excited atomic population a
polarization behavior is quite different from the one found
the ordinary vacuum case@37,38# ~these results correspon
to settingg05g25g1).

In Figs. 5~a! and 5~b!, we plot the bare excited atomi
population as a function of the scaled timet5g1t and the
scaled resonance Rabi frequencye/uDALu for two values of
the decay ratiog2 /g1 . The first figure corresponds to th
ordinary vacuum case, with no singularity in the density
states (g15g2), and the second one to a confined photo
material, with an appreciable jump in its density of sta
g2 /g151023. Both graphs share similar structures b
there are some no table differences. For the confined ph
nic material, the time scale of the atomic evolution is giv
by the decay rate of the right side band of the Mollow sp
trum (t5g1t). For a given laser-field intensity and fre
quency, this time scale may be very different from the us
time scale (t5g0t) encountered in the ordinary vacuu
case. In an ordinary vacuum, the atomic system does
exhibit steady-state inversion. Consequently, conventio
lasers require additional atomic levels to achieve atomic
version. In the confined photonic material, for a given inte
sity of the laser field, the atomic system reaches posi
inversion@Fig. 5~b!#. As shown in Fig. 6, if the jump in the
photonic density of states is quite large~corresponding to
small ratiosg2 /g1), the atomic system achieves nearly to
inversion.
1-9
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FIG. 5. ~a! Atomic population inversion̂s3&
as a function of the scaled timet5g1t and the
intensity of the laser fielde/uDALu, for g2 /g1

5g0 /g151, sgn(DAL)521, V/g152. ~b!
Atomic population inversion̂ s3& as a function
of the scaled timet5g0t and the intensity of the
laser field e/uDALu, for g0 /g151, g2 /g1

51023, sgn(DAL)521, V/g152.
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This behavior is a consequence of the fact that the dre
state u1̃& ~the left Mollow’s sideband at the frequencyvL
22V) is placed in the spectral region with a low density
states and with slow decay, whereas the dressed stateu2̃& ~the
right Mollow’s sideband at the frequencyvL12V) experi-
ences a large density of states and a rapid decay. In the l
time limit, the population on the dressed stateu1̃& is much
larger than the atomic population in the dressed stateu2̃&.
This imbalance of the atomic population between the dres
states is responsible for the atomic inversion in the bare
ture.

However, even though the single-atom system reac
positive inversion, the transition from negative to positi
inversion is a smooth and gradual one in this Markov p
ture; i.e., there is no sharp switching effect as a function
applied field.
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D. Switching by a moderate external field: Non-Markovian
case

For weak and moderate external fields, Mollow’s spect
components may remain close to the density of states dis
tinuity and it is necessary to solve the Eqs.~4.10a! and
~4.10b! without recourse to the Markov approximation. F
this purpose, we introduce Laplace transforms of the ato
variables, x(p)5R̃3(p)5L$^R3(t)&% and z(p)5R̃21(p)
5L$^R21(t)&% and the memory functions G̃0(p)
5L$G0(t)%, G̃1(p)5L$G1(t)%, and G̃2(p)5L$G2(t)%,
where f̃ (p)5L$ f (t)%5*0

`e2ptf (t). With this notation, the
solution of the evolution equations is given by

x~p!5
x0p1@s4G̃2~p!2c4G̃1~p!1c.c.#

p$p1@c4G̃1~p!1s4G̃2~p!1c.c.#%
,

~4.12a!
1-10
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FIG. 6. Steady-state atomic population inve
sion ^s3& as a function ofe/uDALu, for various
discontinuities in the density of states,g2 /g1

51 ~dot-dashed curve!, g2 /g151021 ~long-
dashed curve!, g2 /g151022 ~short-dashed
curve!, and g1 /g151023 ~thin solid curve!,
g2 /g151025 ~thick solid curve!. The atomic
detuning is negative, sgn(DAL)521.
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z~p!5
z0

p1c4G̃1* ~p!1s4G̃2~p!12c2s2@G̃0~p!1G̃0* ~p!#
,

~4.12b!

wherex05^R3(0)& and z05^R21(0)& are the initial values
of the excited atomic population and polarization, resp
tively. These are determined by the initial values of the ba
state inversion and polarization through Eqs.~4.5!. The time
evolution of the dressed state atomic variables is given

^R3(t)&5L 21$R̃3(p)%5L 21$x(p)%, and their bare-state
counterparts are obtained using Eq.~4.5!. We will use these
results to analyze the temporal and the steady-state beh
03380
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of the atomic population and polarization of a two-level ato
placed in a 3D anisotropic photonic crystal, with the releva
frequencies shown in Fig. 7.

The memory function and the corresponding Lapla
transform for a three-dimensional photonic crystal have b
evaluated@6#, and in the long-time limit they are given b
Eqs. ~3.11! and ~3.12!. The Laplace transforms of th
memory functions for the anisotropic photonic band edge

G̃0~p!5L$G0~ t !%5AibA
1/2Ap0,

G̃6~p!5L$G6~ t !%5AibA
1/2Ap7, ~4.13!
cy
of
FIG. 7. Relevant frequencies and frequen
scales in the case of an anisotropic density
states.
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FIG. 8. Atomic population inversion̂s3(t)&
as a function of the scaled timet5bAt, for vari-
ous values of the laser intensity~curves 1.a, 1.b,
1.c!: e/bA50.25 ~1.a!, e/bA50.5 ~1.b!, and
e/bA51.25 ~1.c!. The laser field frequency de
tuning isDLC /bA[(vL2vC)/bA51.2. Curve 2
corresponds toe/bA51 and DLC /bA520. The
inset shows the steady-state atomic population
version ^s3& as a function ofe/bA , when the
laser-field frequency detuning isDLC /bA51.2.
The atomic detuning for all curves isDAL5
2bA.
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where p0[p2 iDLC , p7[p2 iDLC62iV, and DLC[vL
2vC .

In the Laplace space, the evolution of the dressed ato
population and polarization satisfies Eqs.~4.12!:

x~p!5
x0p/bA

1/212s4 Re@AiAp1#22c4 Re@AiAp2#

p~p/bA
1/212c4 Re@AiAp2#12s4 Re@AiAp1# !

,

~4.14a!

z~p!5
z0bA

1/2

p/bA
1/21c4A2 iAp21s4AiAp114c2s2 Re@AiAp0#

.

~4.14b!

The time-dependent dressed atomic variables are given
the inverse Laplace transformation̂R3(t)&5L 21$x(p)%,
^R21(t)&5L 21$z(p)%, where

f ~ t !5L 21$ f̃ ~p!%5
1

2p i E«2 i`

«1 i`

dpept f̃ ~p!.

Here, the real number« is chosen so thatp5« lies to the
right of all singularities~poles and branch points! of the
function to be integrated. The system~4.12! is simplified by
scaling the time variable bybA

1/2 ~the frequency is then scale
with 1/bA

1/2). We numerically evaluate the inverse Lapla
transforms of the atomic variables using an Adams algorit
@39#. Once the Laplace inversion is performed, the bare-s
atomic averages are obtained through Eq.~4.5!.

In Fig. 8, we plot the excited atomic population inversi
for some specific choices of the system parameters. If the
Mollow sideband is driven from outside the gap,DLC<2V
@curve 1~a!#, to inside the gap,DLC.2V @curves 1~b! and
1~c!#, the atomic system becomes inverted in the station
state @1~b! and 1~c!# @the actual stationary values, fort
5tbA.1000, of the atomic inversion arê s3&

st5
20.864 694 for 1~a!, ^s3&

st50.370 638 for 1~b!, and^s3&
st

50.706 475 for 1~c!#. The transition described above can
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accomplished by starting with a given parametric configu
tion in which the left component is placed outside the g
near the band-edge frequency, and the intensity of the ex
nal laser field is gradually increased. Far outside the
(DLC@2V for curve 2!, the influence of the band-edge sin
gularity becomes negligible, and the system reaches the
dinary vacuum case regime. The inset shows the steady-
inversion as a function of applied-field intensity for a speci
set of detuning frequencies. The analytical results are gi
in the next section.

E. Steady-state solution

The derivation of a steady-state solution for the atom
inversion is facilitated by the identity limt→`$F(t)%
5 limp→0$p f̃(p)% @40–42#, where f̃ 5L$F% is the Laplace
transform ofF. Sincez(p) andx(p) have only complex~not
purely imaginary poles!, it follows that the steady state
dressed atomic polarization vanishes: ^R21&

st

5 limt→`^R21(t)&50. However, the dressed excited atom
population,^R3&

st5 limt→`^R3(t)& has a nontrivial behav-
ior:

^R3&
st

5H 21 if DLC<2V,

s42c4A~DLC12V!/~DLC22V!

s41c4A~DLC12V!/~DLC22V!
if DLC.2V.

~4.15!

We check the consistency of the solution in two limitin
cases. First, if we place the Mollow spectral components
outside the gapDLC@2V, the system reaches the ordina
vacuum behavior:

^R3&
st52

c42s4

c41s4
⇒^s22&

st52
~c22s2!2

c41s4
. ~4.16!
1-12
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This limiting case is consistent with the Markovian approa
~far away from the density of states singularity, the photo
crystal reservoir of modes is a Markovian reservoir!. Accord-
ingly, Eq. ~4.16! can also be obtained in the Markovian fo
malism developed in Sec. IV C, by substitutingg15g2

5g0 in Eqs. ~4.11a! and ~4.11b!. On the other hand, if we
place the left spectral component inside the gap (DLC

!2V), the atomic system becomes trapped in theu1̃& state:

^R3&
st521⇒^s22&

st5s22c2. ~4.17!

Consider a near-resonant laser excitation (vL'vA). If we
begin with an atom with resonant transition frequencyvA
just outside the photonic band gap~say, for instance,DAC
[vA2vC.0), it is possible to drive the system through t
transition described above, simply by increasing the app
field intensity. For a nearly resonant laser excitation (vL
'vA), the left Mollow sideband~at frequencyvA22V)
passes through the photonic band-edge frequency w
Vcrit5DLC/2, while the other Mollow spectral componen
remain outside the gap. At this critical laser intensity, t
atomic population exhibits switching from a noninvert
state to an inverted state. In the bare picture, the ato
inversion can be expressed as

^s22&
st55

s22c2 if DLC<2V,

~c22s2!

s42c4ADLC12V

DLC22V

s41c4ADLC12V

DLC22V

if DLC.2V.

~4.18!

It is apparent from Fig. 9~a! that, for moderate values o
the laser intensity, the atomic system switches very sha
from the ground state to the excited state, at a critical va
of e. This switching behavior is caused by the very sensit
dependence of the dressed atomic population on the rela
position of the Mollow spectrum components. The mag
tude of this effect depends on the actual value of the la
detuning with respect to the band-edge frequency,DLC
5vL2vC . This interplay between the control parameters
shown in Fig. 9~b!, where now the atomic population dis
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plays sharp switching behavior as a function of the detun
of the laser-field frequency, for various choices of the appl
laser-field intensity.

A similar switching behavior was found in Ref.@7#, in the
context of collective behavior of an ensemble of two-lev
atoms placed in a confined photonic material and driven
an external laser field. As the left sideband of the Mollo
spectrum was placed inside the gap of a photonic crysta
other low-DOS region, while the other spectral compone
were placed in a high-DOS region, the atomic population
the excited state showed a sharp collective jump. The swi
ing behavior described in@7# is a collective effect~for a
single-atom case, sharp switching is absent!, strongly depen-
dent on the atomic density. The Markov approximation
quired the use of a strong external laser field which driv
the Mollow spectral components away from the photo
density of states singularity, so that, over the width of ea
component, the density of states is smooth (V@Ng0 ,V
@Ng6 , whereg0 ,g6 represent the decay rates of the ce
tral, right and left components of the Mollow triplet andN is
the number of atoms!. In the present non-Markovian cas
we describesingle-atomswitching, which occurs for moder
ate values of the laser intensity, due to the fast variation
the density of states near the band-edge frequency, the s
tral range carefully avoided in Ref.@7#.

F. Influence of dephasing interactions and nonradiative
relaxation

In order to make closer contact with experiment, we
clude phenomenological decay rates 1/T1

nr and 1/T2
nr associ-

ated with other~nonradiative! decay and dephasing, respe
tively. Deep inside the gap, where radiative decay
negligible, the nonradiative contribution may become ve
important. In this case,T1

nr and T2
nr may be considered a

empirical constants. The nonradiative decay may come fr
phonon-assisted transitions if the atom is placed in a s
matrix. Dephasing occurs if an atomic vapor is placed in
photonic crystal voids and is collisionally perturbed by t
other atoms. If the atom is implanted in the dielectric regio
the interaction with lattice vibrations of the host dielectr
material~elastic scattering of the phonons on the atomic s
tem! will cause dephasing.

The effect of these additional decay and dephas
mechanisms is investigated in Appendix D. Here, we pres
only the steady-state results for the dressed atomic pop
tion inversion and polarization:
^R3&
st

5H @22c4ADLC12V1~s22c2!/T̃1
nr#@2c4ADLC12V14s2c2/T̃2

nr1~s22c2!2/T̃1
nr#21 if DLC<2V,

@2s4ADLC22V22c4ADLC12V1~s22c2!/T̃1
nr!@2s4ADLC22V12c4ADLC12V14s2c2/T̃2

nr1~s22c2!2/T̃1
nr#21

if DLC.2V,

~4.19!
1-13
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FIG. 9. ~a! Atomic population inversion̂s3&
as a function of the laser intensitye/bA , for dif-
ferent values of the laser detuning:DLC /bA

51.01 ~solid curve!, DLC /bA51.20 ~dotted
curve!, DLC /bA51.70 ~dashed curve!, DLC /bA

52.70 ~long-dashed curve!, and DLC /bA510.0
~dot-dashed curve!. The atomic detuning isDAL

52bA . ~b! Atomic inversion^s3& as a function
of the laser detuningDLC /bA , for different val-
ues of the laser intensity:e/bA50.3 ~solid
curve!, ande/bA50.7 ~dotted curve!, e/bA51.1
~dashed curve!. The atomic detuning isDAL5
2bA .
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where we introduced the scaled nonradiative decay
dephasing timesT̃1

nr5T1
nrbA

1/2, and T̃2
nr5T2

nrbA
1/2, respec-

tively.
Clearly, the additional decay and dephasing mechani

tend to weaken the switching effect. The robustness of
switching effect follows from an estimate of the time sca
factor in photonic band gap materials. In the case of
isotropic model, the time scale factorb I can be expressed a

b I5vC

1

AĨ
1/3

3A 1

16p S g

vA
D 2S ck0

vC
D 4

,

where we introduced the dimensionless constantAĨ

5AI /(c2/vC). The values ofvC , k0, andAĨ , are determined
03380
d

s
e

e

by the specifics of the dielectric structure considered. Ho
ever, the isotropic model is obtained by generalizing the d
persion relation of a one-dimensional Bragg stack to alk
space directions@6#, and, implicitly, the dependence of th
time factor scale on the curvature of the dispersion relat
(AĨ) is reduced. In the optical domain, an estimate ofb I
produces 0.8g<b I<10g.

The situation is quite different for the anisotropic mod
In this case, the time scale factorbA can be expressed as

bA5vC

1

AÃ
3

9

256p S g

v21
D 2

,

and we obtain a much stronger dependence on the curva
of the dispersion relation. Moreover, real band structure c
1-14
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FIG. 10. Atomic population inversion̂s3&,
as a function ofe/bA , and the nonradiative deca

rate 1/T̃1
nr . The laser-field frequency detuning i

DLC /bA51.2, DAL /bA521, andDAC /bA50.2.
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culations show an extremely sensitive dependence of the
vature of the dispersion relation on the specific direction
the reciprocal space (k0) and produce a wide range of value
for the dimensionless parameterAÃ.

We are using in our numerical estimations a time sc
factor range 0.8g<bA<10g, but point out that a more ac
curate estimation has to be obtained by using band struc
calculations for a real photonic crystal~along the lines given
in Appendix A!.

Clearly, as shown in Fig. 10 and Fig. 11, a sizable swit
ing effect is present even when 1/T̃1

nr , 1/T̃2
nr 'bA . It is also

apparent that the nonradiative decay contribution~Fig. 10! is
much more deleterious to switching effects than the deph
ing mechanisms~Fig. 11!.

V. CONCLUSIONS

In this paper, we analyzed the leading non-Markov
corrections to resonance fluorescence in photonic band
materials. By means of a perturbative expansion of
03380
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e

Heisenberg equations of motion in terms of the coupl
strength of the atomic system to the radiation reservoir
modes, we recaptured the most important non-Markovian
fects caused by the strong variation of the photonic den
of states with frequency. In the context of spontaneous em
sion, our approach recaptures the physics of photon-a
bound state.

Our results provide a clear distinction between the M
kov approximation and the Born approximation in the co
text of photonic band-gap materials. The Markov approxim
tion is related to memory effects of the photonic radiati
reservoir, whereas the Born approximation is associated w
the strength of the coupling between the atom and the re
voir. In the case of realistic photonic crystals models,
essential non-Markovian effect leading to the photon-at
bound state can be captured even within the Born appr
mation.

We predict that a single atom in a PBG material driven
a external laser field with a moderate intensity will exhib
switching behavior as a function of both laser-field intens
-

g

FIG. 11. Atomic population inversion̂s3& as
a function ofe/bA and the nonradiative dephas

ing rate 1/T̃2
nr . The laser-field frequency detunin

is DLC /bA51.2, DAL /bA521, and DAC /bA

50.2.
1-15
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MARIAN FLORESCU AND SAJEEV JOHN PHYSICAL REVIEW A64 033801
and detuning frequency. The condition that triggers this ju
in the atomic population inversion corresponds to driving
left component of the atomic spectrum inside the gap, wh
the central resonance and the right sideband remain ou
the gap.

The switching effect described here may be relevan
ultrafast all-optical switches and all-optical transistor act
@7#. For this case, our analysis needs to be generalized to
case ofN-atom, non-Markovian collective switching. As
function of the intensity of the driving field~control laser!,
the active region of a photonic material~the atomic system!
sharply switches from an absorptive medium~the atom
spends most of its time in the ground state! to a gain medium
~higher probability to find the atom in its excited state!. A
second probe laser beam will experience a substantial di
ential gain when the control laser intensity is in the neig
borhood of the threshold value.

Our model system can be experimentally realized eit
by pumping a cold atomic gas in the void regions of a ph
tonic crystals or exciting a two-level system in the dielect
region. The electric-field distribution for a laser mode in t
vicinity of the upper band edge~the so-called ‘‘air’’ band!
has strong intensity peaks in the void region of the mater
which can act as a optical trap for active atoms@43#. The
trapped atoms will exhibit little interaction with the lattice o
the dielectric host, thus minimizing additional decay a
dephasing effect. Alternatively, the radiative transition of t
erbium atom at 1.537mm comes from the 4f atomic shell,
which is screened by the outer shells from the environme
influence. At low temperatures, the erbium atoms suita
implanted in a silicon PBG material may have very sha
single atom-like features@44# ~the most intense line at 1.53
mm has a full width of 0.0005mm). In this case, dephasin
effects associated with the scattering of phonons on
atomic system will need to be considered.

Clearly, the experimental observation of atomic switchi
depends strongly on the influence of the dielectric host m
terial on the active atoms. By including these effects in o
calculations, we have shown that a sizable switching effec
present even in the presence of nonradiative decay
dephasing contribution (0.08g<1/T1

nr,1/T2
nr<g). The influ-

ence of dephasing is weaker than that of the nonradia
decay. Also, the magnitude of the driving field is extreme
important. In our approximations, switching occurs wh
V'b, whereV is the generalized Rabi frequency, andb is
the typical time scale of the atomic system evolution. Sin
b depends on the specific photonic crystal used, we li
ourselves to general considerations about the order of m
nitude of the laser-field intensity,I, required to produce
switching. If we neglect the detuning of the atomic fr
quency with respect the laser frequency, it can be ea
shown that@45#

U V

2p
@Hz#U5ud21•eLu

ea0
A2e2a0

2

«0\2c
AI @W/m2#

50.22 107
ud21•eu

ea0
AI @W/m2#. ~5.1!
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For a typical optical transition~with dipole moments be-
tween 1021 and 101 atomic units! a laser field of 0.5
mW/mm2 intensity will produce a Rabi frequency of 0.
GHz ~which is of the order of magnitude ofb).

Our paper describes non-Markovian single-atom swit
ing in photonic band gap materials using a second-order
pansion of the equations of motion. In the Markovian evo
tion of a collection of two-level atoms@7# ~the N-atom
generalization of Sec. IV C!, an analogouscollectiveswitch-
ing effect is present. A full non-Markovian treatment of
collection of two-level atoms driven by an external field w
lead to a lower threshold and much faster switching rate t
discussed previously~the collective time scale factor near
three-dimensional photonic band edge has been shown t
proportional to the square of the number of atoms@7#!.

ACKNOWLEDGMENTS

We are grateful to Dr. Tran Quang for a number of d
cussions. M.F. acknowledges support from the Natural S
ences and Engineering Research Council of Canada Sch
ship Program. This work was supported in part by t
Natural Sciences and Engineering Research Council
Canada and the New Energy and Industrial Technology
velopment Organization~NEDO! of Japan.

APPENDIX A: MEMORY FUNCTIONS AND PHOTONIC
CRYSTAL LOCAL DENSITY OF STATES

The projection of the vector potential operatorA, along
the direction of the atomic dipoleûd , evaluated at the cente
of the atom (R), in the dipole approximation, and in th
modified Coulomb gauge„F50,¹•@e(r )#50… @46,47#, is
given by

A~R![A~R!•ûd

5(
n,s

E
kP1BZ

dk

~2p!3/2
A \

2e0vn,k,sV

3@An,k,s~R!•ûd#an,k,s1H.c.

Here, n is the band energy index,s the polarization index,
andV the volume of the unit cell. Thek integration is carried
over in the first Brillouin zone~1BZ!. The Bloch-mode
$n,k,s% annihilation~creation! operator is denoted byan,k,s

(an,k,s
† ), its amplitude at the atomic location is denoted

An,k,s(R), and the mode frequency byvn,k,s . The anisotropy
of the photonic crystal lifts the polarization degeneracy, a
the mode energy~frequency! acquires a supplementary inde
s. The interaction Hamiltonian between the atomic syst
and the radiation field reservoir is given by

H5 i\(
l

gl~R!al
†s121H.c., ~A1!

wherel denotes the triplet$n,k,s% and the coupling constan
gl(R) is
1-16
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gn,k,s~R!5
vAd21

\ F \

2e0vn,k,sVG1/2

An,k,s~R!•ud . ~A2!

The memory function~3.3! becomes

G~R,t2t8!5
vA

2d21
2

16p3\«0
(
n,s

E
kP1BZ

dk
e2 iDn,k,s(t2t8)

vn,k,s

3uAn,k,s~R!udu2. ~A3!

Clearly, the memory function depends on the actual po
tion of the atom in the unit cell and on the orientation of t
atomic dipole with respect to the symmetry axis of the ph
tonic crystal. However, taking into account the randomn
of the atomic dipole orientation, we may average t
memory function over all the possible dipole orientation
The orientation-averaged memory function is given by

Gav~R,t2t8![
1

4p
^G~R,t2t8!&ud

5
vA

2d21
2

192p2\«0
E

0

`

r loc~R,v!
e2 i (v2v21)(t2t8)

v3
dv.

~A4!

Here,r loc(R,v) is the local density of states@48# defined by

r loc~R,v!5(
n,s

E
kP1BZ

dkd~v2vn,k,s!uEn,k,s~R!u2,

~A5!

with En,k,s(R)5 ivn,k,s(R)An,k,s(R), the electric-field Bloch
mode,$n,k,s%, amplitude at the atomic position.

APPENDIX B: MEMORY FUNCTIONS AND THEIR
LAPLACE TRANSFORMS

1. Isotropic model

Using the definition~3.3!, the memory function become

GI~t!5
a

~2p!3 (
k,s

uek,sudu2
e2 i (v(k)2vA)t

v~k!
, ~B1!

wheres represents the polarization index anda is given by
a5vA

2d21
2 /2\«0.

For the isotropic dispersion relationv(k)5vC1AI(k
2k0)2, we have

GI~t!5a Ie
iDACtE

k0

`

dkk2
e2 iAI (k2k0)2t

vC1AI~k2k0!2
, ~B2!

with DAC5vC2vA and a I58a/3p2. By evaluating thek
integral we get
03380
i-

-
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e
.

GI~t!5a Ie
iDACtH AvCAp

2AI
3/2 FApeivCt Erfc~AivCt!

1
1

AivCt
G1

k0

AI
eivCt Ei~1,ivCt!

1
pk0

2

2AvCAI

eivCtErfc~AivCt!J . ~B3!

Here, Erfc(x) is the complementary error function define
for all complex x by Erfc(x)512Erf(x), with Erf(x)
5(2/Ap)*0

xdte2t2. This has the asymptotic behavio
limx→`Erfc(x)5(1/Apx)e2x2

. Also, the exponential inte-
gral Ei(1,x) is defined for Re(x).0 by Ei(1,x)
5*1

`dte2xt/t and extended by analytic continuation to th
entire complex plane~except for the branch pointx50).
This has the asymptotic behavior limx→`Ei(1,x)5e2x/x.

The memory function simplifies considerably in the a
proximationA'vC /k0

2,

GI~t!5a I

AvCAp

2AI
3/2

eiDACtFA p

ivCt
12eivCt Ei~1,ivCt!G ,

~B4!

and, in the long-time limit (vCt@1), becomes

GI~t!5b I
3/2ei (DCt2p/4)

At
, ~B5!

with b I
3/25(vA

2d21
2 /12«0\p3/2)(k0

2/vCAAI)
'vA

7/2d21
2 /6\«0p3/2c3.

The Laplace transform of the isotropic model memo
function can be evaluated as follows:

G̃I~p!5L@GI~t!#5E
0

`

dte2ptGI~t!

5a IE
k0

`

dkk2

3
1

@vC1AI~k2k0!2#@p2 i ~DAC2AI~k2k0!2!#
.

~B6!

The integral in Eq.~B6! can be evaluated by contour inte
gration methods and the memory function becomes

G̃I~p!52 i
a I

AI
2 H i

p

2 S AI

vC
D 3/2

3k0
2F12 iAip1DAC

vC
G21Aip1DAC

vC

21

2
k0AI

vC
F lnS ip1DAC

vC
D2 ipGF11

ip1DAC

vC
G21

1
p

2
AAI

vC
F12 iAip1DAC

vC
G21J . ~B7!
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In the long-time limit (vCt@1, s/vC!1), the Laplace
transform of the memory function~B5! becomes

G̃I~p!5b I
3/2e2 ip/4A p

p2 iDAC
. ~B8!

2. Anisotropic model

In the case of an anisotropic modelv(k)5vC1AI(k
2k0)2, Eq. ~B2! becomes

GA~t!5aAeiDACtE
k0

`

dk
e2 iAA(k2k0)2t

vC1AA~k2k0!2
, ~B9!

with DAC5vC2vA and aA5a/2p2. By evaluating thek
space integral, we get

GA~t!5aAAvC

AA
3

eiDACtHA p

ivCt
2peivCt Erfc@AivCt#J .

~B10!

In the long-time limit (vCt@1), the anisotropic memory
function becomes

GA~t!52bA
1/2ei (DACt1p/4)

t3/2
, ~B11!

with bA
1/25(vA

2d21
2 /16«0\p3/2)(1/vCAA

3/2).
The Laplace transform of the anisotropic model mem

function can be evaluated in a similar fashion:

G̃A~p!5L@GA~t!#5E
0

`

dte2ptGA~t!

5aAE
k0

`

dk

3
1

@vC1AI~k2k0!2#@p2 i ~DAC2AI~k2k0!2!#
.

~B12!

The integral in Eq.~B12! can be evaluated by contour inte
gration methods and the memory function becomes

G̃A~p!52 i
aAp

2AvCAA
3/2F12 iAip1DAC

vC
G21

. ~B13!

In order to evaluate the long-time behavior of the Lapla
transform of the anisotropic memory function, we have
deal with the nonintegrability of the memory function~B5!.
However, this is an artifact of the long-time expansion; t
exact memory function actually possesses a much we
03380
y
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e
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~square root! singularity att50 and is thus integrable. In
this paper, we use the regularized version introduced
@34,43,49#, in which the Laplace transform of anisotrop
memory is given by

G̃A~p!5bA
1/2eip/4Ap2 iDAC. ~B14!

APPENDIX C: SPONTANEOUS EMISSION, TEMPORAL
EVOLUTION, AND STEADY-STATE SOLUTION

1. Isotropic model

For the atomic system evolution is described by Eq.~3.6!,
and the atomic polarization is given by

S21~t!5
1

2p i Ee2 i`

e1 i`

dpeptF p1
e2 ip/4

Ap2 i D̃AC

G21

. ~C1!

Here, the real numbere is chosen so that the linep5e lies to
the right of all singularities~poles and essential singularitie!
of the functionz(p), and the time and atomic detuning hav
been scaled so thatt5b I t and D̃AC5DAC /b I . The inverse
Laplace transform yields

S21~t!5ei D̃ACtH (
k51

3

akxk~11r k!e
xk

2t

2 (
k51

3

akxkr k Erfc~Axk
2t!exk

2tJ , ~C2!

where

x15~A11A2!eip/4, ~C3!

x25~A1e2 ip/62A2eip/6!e2 ip/4, ~C4!

x35~A1eip/62A2e2 ip/6!e3ip/4, ~C5!

A65F1

2
6

1

2 S 11
4

27
D̃AC

3 D 1/2G1/3

, ~C6!

ak5
xk

~xk2xi !~xk2xj !
~kÞ iÞk;k,i , j 51,3!, ~C7!

r k5csgn~xk!, ~C8!

and Erfc(x) is the error function@50# and csgn(x) is the
generalized sign function for real and complex expressio
defined by
csgn~x!5H 1 if Re(x).0 or [Re(x)50 and Im(x).0],

21 if Re(x),0 or [Re(x)50 and Im(x),0].
1-18
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The value ofr 2 is determined by the atomic detuningD̃AC :

r 25H 1 if D̃AC>23a/@11a3#2/3,

21 otherwise,

wherea521A3, r 151, andr 3521 are independent of th
value of the atomic detuning. The temporal behavior of
atomic operators21 is then given by

s21~t!5s21~0!ei D̃ACtH 2a1x1ex1
2t1a2x2~11r 2!ex2

2t

2 (
k51

3

akxkr k Erfc~Axk
2t!exk

2tJ . ~C9!

For large time, the terms of higher order thant23/2 can be
neglected, and Eq.~C9! reduces to

s21~t!5s21~0!ei D̃ACtH 2a1x1ex1
2t1a2x2~11r 2!ex2

2t

1
1

2Ap
F (

k51

3
ak

xk
2G 1

t 3/2J . ~C10!

The formal solution of the excited atomic population is

S22~t!5
1

2p i
E

e2 i`

e1 i`

dpeptF p1
e2 ip/4

Ap2 i D̃AC

1
eip/4

Ap1 i D̃AC

G21

. ~C11!

Since the Laplace inversion of Eq.~C11! requires the for-
mal solution of a sixth-order polynomial equation, we opt f
a numerical approach. For each value of the atomic detun
we numerically find the singularities ofx(p), which are then
used in an Adams algorithm@39#, to perform the Laplace
transform inversion.

2. Anisotropic model

By scaling the time and frequencyt[bAt and D̃AC
[DAC /bA , the formal solutions for the atomic populatio
and polarization become

S22~t!5
1

2p i Ee2 i`

e1 i`

dpept @p1bA
1/2~eip/4Ap2 iDAC

1e2 ip/4Ap1 iDAC!#21, ~C12a!

S21~t!5
1

2p i Ee2 i`

e1 i`

dpept @p1bA
1/2eip/4Ap2 iDAC#21.

~C12b!

The inverse Laplace transform ofz(p) yields
03380
e

r
g,

S21~t!5ei D̃ACtH (
k51

2

bkxk~11r k!e
xk

2t

2 (
k51

3

bkxkr k Erfc~Axk
2t!exk

2tJ , ~C13!

where

x1,252
Ai

2
@16A124D̃AC#, ~C14a!

bk5
1

xi2xj
~kÞ iÞ j ;k,i , j 51,2!, ~C14b!

r k5csgn~xk!. ~C14c!

The value ofr 1 is determined by the atomic detuningD̃AC
and one can show that

r 15H 1 if D̃AC P ~2`,0!øS 1

2
,` D ,

21 if D̃AC P S 0,
1

2D ,

while r 2521 is independent of the value of the atomic d
tuning frequencyD̃AC . The expression of the atomic oper
tor s21 is then given by

s21~t!5s21~0!ei D̃ACtH 2b1x1ex1
2t

2 (
k51

2

bkxkr k Erfc~Axk
2t!exk

2tJ . ~C15!

APPENDIX D: NONRADIATIVE RELAXATION AND
DEPHASING EFFECTS

In order to compare our model to experiments, we inclu
phenomenological decay rates 1/T1

nr and 1/T2
nr associated

with other ~nonradiative! decay and dephasing, respective
In the bare picture, Eqs.~4.4b! and ~4.4c! become

d

dt
s21~ t !5Lh†~ t !s3~ t !2 i«s3~ t !1S iDAL2

1

T2
nrD s21~ t !

1L2E
0

t

dt8G~ t2t8!s21~ t8!s3~ t !, ~D1a!

d

dt
s3~ t !522Ls21~ t !h~ t !22i«s21~ t !

22L2E
0

t

dt8G~ t2t8!s21~ t !s12~ t8!

2
1

2T1
nr

~s311!1H.c. ~D1b!

Using the dressed-state transformation~4.5!, the equations
of motion are given by
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K d

dt
R21~ t !L 522c2s2L2E

0

t

dt8G0* ~ t2t8!^R21~ t8!&2c4L2E
0

t

dt8G1* ~ t2t8!^R21~ t8!&22c2s2L2E
0

t

dt8G0~ t2t8!^R21~ t8!&

2s4L2E
0

t

dt8G2~ t2t8!^R21~ t8!&2F 1

T2
nr

~s41c4!12
1

T1
nr

s2c2G ^R21~ t !&12e22iVtH cs3L2E
0

t

dt8G2* ~ t2t8!

3^R11~ t8!&1c3sL2E
0

t

dt8G1~ t2t8!^R22~ t8!&1
c3s

2
L2E

0

t

dt8G0* ~ t2t8!1
cs3

2
L2E

0

t

dt8G0~ t2t8!

2
sc~s22c2!

2 S 1

T1
nr

2
1

T2
nrD ^R3~ t !&1

sc

2T1
nrJ 2e24iVtH c2s2L2E

0

t

dt8G2* ~ t2t8!^R12~ t8!&

1c2s2L2E
0

t

dt8G1~ t2t8!^R12~ t8!&2s2c2S 1

T1
nr

2
1

T2
nrD ^R12~ t !&J , ~D2a!

K d

dt
R3~ t !L 522c4L2E

0

t

dt8G1~ t2t8!^R22~ t8!&12s4L2E
0

t

dt8G2~ t2t8!^R11~ t8!&2F2s2c2

T2
nr

1
~c22s2!2

2T1
nr G ^R3~ t !&1

s22c2

2T1
nr

22cs3e22iVtL2E
0

t

dt8G0~ t2t8!^R12~ t8!&2sc~c22s2!e22iVtS 1

T1
nr

2
1

T2
nrD ^R12~ t !&

12c3se2iVtL2E
0

t

dt8G0~ t2t8!^R21~ t8!&2sc~c22s2!e2iVtS 1

T1
nr

2
1

T2
nrD ^R21~ t !&1H.c. ~D2b!

We now consider certain special cases of these general equations. If the external laser field is sufficiently strong
secular approximation is justified, the evolution of the atomic system is given by

d

dt
^R21~ t !&522c2s2E

0

t

dt8G0* ~ t2t8!^R21~ t8!&2c4E
0

t

dt8G1* ~ t2t8!^R21~ t8!&22c2s2E
0

t

dt8G0~ t2t8!^R21~ t8!&

2s4E
0

t

dt8G2~ t2t8!^R21~ t8!&2F 1

T2
nr

~s41c4!12
1

T1
nr

s2c2G ^R21~ t !&, ~D3a!

d

dt
^R3~ t !&522c4E

0

t

dt8G1~ t2t8!^R22~ t8!&12s4E
0

t

dt8G2~ t2t8!^R11~ t8!&2F2s2c2

T2
nr

1
~c22s2!2

2T1
nr G ^R3~ t !&1

s22c2

2T1
nr

1H.c.

~D3b!

In the case of a strong external laser field and Markovian approximation, considered in Sec. IV C, the temporal e
of the dressed atomic polarization and inversion@Eqs.~4.11!# is given by

^R21~ t !&5^R21~0!&expF2
1

2 S 4c2s2g01c4g11s4g21
s41c4

T2
nr

12
s2c2

T1
nr D tG , ~D4a!

^R3~ t !&5^R3~0!&expF2S c4g11s4g214
s2c2

T2
nr

1
~s22c2!2

T1
nr D tG

1
c4g12s4g21~s22c2!/T1

nr

c4g11s4g214s2c2/T2
nr1~s22c2!2/T1

nr H 12 expF2S c4g11s4g214
s2c2

T2
nr

1
~s22c2!2

T1
nr D tG J . ~D4b!

In the non-Markovian case~Sec. IV D!, when the spectral features are placed in the neighborhood of a photonic band
the Laplace transforms of the dressed atomic inversion and polarization become@Eqs.~4.12a! and ~4.12b!#
033801-20



SINGLE-ATOM SWITCHING IN PHOTONIC CRYSTALS PHYSICAL REVIEW A64 033801
x~p!5
x0p1@s4G̃2~p!2c4G̃1~p!1~s22c2!/2T1

nr1c.c.#

p$p1@c4G̃1~p!1s4G̃2~p!12s2c2/T2
nr1~s22c2!2/2T1

nr1c.c.#%
, ~D5a!

z~p!5
z0

p1c4G̃1* ~p!1s4G̃2~p!12c2s2@G̃0~p!1G̃0* ~p!#1~s41c4!/T2
nr12s2c2/T1

nr
. ~D5b!

For an anisotropic photonic band gap material~Sec. IV D!, characterized by the photon density of states~2.3!, the functions
G̃0(p), G̃6(p) are given by Eq.~4.13!. Equation~4.18! then follows from the identity limt→`$^R3(t)&%5 limp→0$px(p)%.
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