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Single-atom switching in photonic crystals
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We describe the role of first non-Markovian corrections to resonance fluorescence in photonic crystals, using
a perturbative expansion of the Heisenberg equations of motion in powers of the atom-field reservoir coupling
strength. Non-Markovian effects arise from the rapid variation of the photonic density of states with frequency.
Our method recaptures the physics of the photon-atom bound state in the presence of a full photonic band gap.
For the anisotropic three-dimensional photonic band gap, it predicts remarkable features in the resonance
fluorescence, such as atomic population inversion and switching behavior in a two-level atom for moderate
values of the applied laser field. The magnitude of the switching effect depends sensitively on the external laser
intensity and its detuning frequency from the atomic transition. The robustness of this effect against nonradi-
ative decay and dephasing mechanisms is also investigated.
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[. INTRODUCTION confined photonic materials relative to an ordinary vacuum.

Photonic crystals constitute a new class of dielectric maThe commonly used Markov approximation relies on the ba-
terials, in which the basic electromagnetic interaction is consic assumption of a smoothly varying DOS of a photonic
trollably altered over certain frequency and length scales. Imeservoir of modes, which is severely violated in a high-
photonic crystals, the synergetic interplay between the mirefractive-index photonic crystafl5]. In certain models of
crocavity resonances of individual dielectric particles and théhe photonic crystals, the widely used Born approximation is
Bragg scattering resonances of the dielectric afidyleads inadequate to describe the strong atom-field interaction near
to the formation of a photonic band gdPBG), a range of a divergence in the photonic DQ8].
frequencies for which no propagating electromagnetic modes A perturbation theory was developed by Wkiewicz and
are allowed 2,3]. The presence of the photonic band gap inEberly (WE) [16] and applied to investigate the non-
the dispersion relation of the electromagnetic field gives riséMarkovian character of the Bloch equations for the two-level
to new phenomena, including the inhibition of the spontaneatom coupled the radiation reservoir of ordinary vacuum. A
ous emissiorf4], strong localization of ligh{5], formation  similar approach has been used in the context of a structured
of atom-photon bound stat8], collective switching behav- radiation reservoir by Lewensteat al.[17,18. From a strict
ior, and atomic inversion without fluctuatiohg]. Photonic  mathematical point of view, a quantum mechanical system
crystals represent the ultimate example of a confined photovhose energy spectrum in bound from below cannot sponta-
nic system[8—11], in which the photonic density of states neously decay in a purely exponential manfi9]. For such
(DOS is suppressed throughout the volume of the materiasystems, the Paley-Wiener theor¢®®] requires that in the
over a certain frequency window. long-time limit the decay be slower than exponential. Several

These features open the possibility for important technotheoretical studieR21-23 have shown that the decay behav-
logical applications of photonic crystals: low-threshold mi- ior has in fact a nonexponential tdfor large times the tra-
crolasers, ultrafast optical switches, all-optical transistorsditional exponential is replaced by a slower decay &s in
and memory devices, to name a few. Previous stydigd3  agreement with the combined requirements of energy posi-
suggest that a laser operating near a photonic band edge mtyity and the Paley-Wiener theoryHowever, the size of the
posses unusual spectral and statistical properties, as well amanexponential contribution is of unobservable magnitude
low-input-power lasing threshold due to the fractional inver-for a two-level atom coupled to the radiation reservoir of free
sion of the atoms in the steady-state limit. In certain condi-space. The WE perturbation technique also gives a general
tions, a doped photonic crystal exhibits optical bistability in solution to the two-level atom resonance fluorescence prob-
the atomic response to an applied laser fidld]. Further- lem and reproduces the results of Tor{&y], Mollow [52],
more, the optical bistability may occur at very low intensitiesand Heitler[53] in the appropriate limits.
of the external laser field and relatively small densities of In this paper, we use a perturbative technique based on the
impurity atoms. Also, the atomic population inversion andHeisenberg equations of motion approach to describe the
the statistics of a collection of atoms driven by a laser field infirst-order non-Markovian corrections to the spontaneous
a photonic crystal show remarkable featuf@s For large  emission and the resonance fluorescence phenomena in pho-
deviations in the photonic-mode density, strong atomic poputonic crystals. The perturbation parameter is the coupling
lation inversion has been predicted. When the density of imstrength between the atomic system and the field reservoir of
purity atoms is high enough, the atoms collectively switchmodes. A second-order expansion in this coupling parameter
from the ground state to the excited state at a very-wellis equivalent to the Born approximation.
defined threshold value of the applied laser-field intensity. The paper is organized as follows. In Sec. Il, we formu-

However, rapid variations in the photonic DOS with fre- late the problem of spontaneous emission in the context of
guency leads to major modifications of the quantum optics iffrequency-dependent photonic reservoirs and present some
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specific models for the spectral density of photonic band gagion relationship becomes divergent in the band-edge vicin-
materials. In Sec. Ill, we introduce a perturbative techniquéty: p(w)==,6(w(k)—w)~1/Jo—wc. As shown earlier
based on the Heisenberg equations of motion approach arfd?2], the isotropic model overestimates the phase space oc-
analyze the first-order non-Markovian corrections to thecupied by the band-edge photons of vanishing group veloc-
spontaneous emission. In Sec. IV, we solve the problem resaxy.
nance fluorescence in PBG materials in the second-order of For a real dielectric crystal with an allowed point-group
the perturbation approach. We show that the atomic systemymmetry, the band edge occurs at certain points along the
can exhibit switching behavior as a function of the laser-fieldBragg planes of the lattice. We will consider now a more
intensity and laser-field frequency. We also analyze the disrealistic model, in which the dispersion relation is aniso-
sipative effects of dipole dephasing interactions and nonraditropic. Within the effective mass approximation, this is de-
ative relaxation of the atomic system. fined by w(k) = wc+A(k—Kkq)?, wherek, is a point of the
Brillouin zone boundary. The density of states is now given
Il. OPTICAL-MODE DENSITY NEAR A PHOTONIC BAND by
GAP

We consider a two-level atom interacting with a quantized p(w)=2> 8(w(k)—w)= J E _
electromagnetic field of a photonic crystal. In the rotating K s,am3 1| Viw(K)|
wave approximatiofRWA) and in a frame of reference ro- a1
tating with the atomic resonance frequengy, the Hamil- *(0—wc) ' 2.3

tonian describing the total system is whereS,, is a surface of constant energyandd represents

H=Hg+Hin, (2.13  the dimensionality of the photonic crystal. When the gradient
of w(k) vanishes, the integrand in the density of std®8)
diverges. In a one-dimensional crysta(w) becomes diver-
gent asw approachesvc (a square root divergence-or a
two-dimensional photonic crystal, the divergence of the inte-
grand gives rise to a step discontinuity gifw). In three
Hine=1%2 g\(alo—021a,), (219  dimensiong3D) the singularity becomes integrable, yielding
» finite and continuous values for the density of states. How-
with ever, it does result in divergences of the sldjan Hove
singularities[24]) of the density of statedp/dw.
Photonic band gap materials typically consist of a two
& Ud, (2.2 interpenetrating dielectric components. The first is a con-
nected high-dielectric-constant backbone, and the second is a
and oy =|i)(j| (i,j=1,2) are the atomic pseudospin opera-connected low-dielectric-constant network. In the microwave
tors, o3= 05,— 071, describes the atomic inversiom, anda; regime, drilling cylindrical holes in a bulk dielectric material
are the radiation-field annihilation and creation operatorsalong a well defined spatial meglength scale of the order
andA, = w, — w, represents the-mode detuning frequency of mm) [25] or layer-by-layer fabrication techniqug6] can
from the atomic frequency. Here, the atomic dipole momenprovide band gaps of 20% of the central frequency of the gap
d has been chosen real, with, its magnitude andiy the  [25]. As a result of the length scales involved, in the IR and
unit vector.e, =g ,, with 0=1,2, are the transverse polar- visible regimes one has to use microlithographic methods or
ization vectors of the radiation field, andis the quantiza- self-ordered systems, such as inverted synthetic opals, in or-
tion volume. der to create a photonic band gap material. A rich variety of
We consider an effective mass approximation to the fullphotonic crystal structures have been proposed and fabri-
dispersion relation of a photonic crystal. Within this approxi- cated(silicon wafer structur¢27], air spheres in a TiQdi-
mation, two models for the near-band-edge dispersion arelectric backbong28], SiO, spheres in a InP backboh29],
used. The first one is the isotropic model, which is obtainedir spheres in a CdSe nanocrystals backd&® etc). The
by symmetrizing the dispersion relation to all directionkin most recent breakthrough is a 3D photonic crystal with a 5%
space. The& dependence of the frequency is given then bycomplete 3D photonic band gap centered nearudn®[31].
(k)= o(|k|)=wc+A(k—kq)?, wherek, is the radius of The active “two-level atoms” in our model calculation can
the sphere itk space about which we perform the expansion,be embedded in the dielectric backbone or may be laser
and A is a constant that depends on the specific photonicooled and trapped in the void regions of the PBG material.
crystal considered. The plgminus sign stands for the case  Our perturbation approach is based on the weak coupling
when the frequency is expanded about the uglesver band  between the atomic system and the radiation reservoir. Using
edge. If we consider a photonic crystal with a large bandthe expression of the coupling const&2t?) (see Appendix
gap (wgap> 2¢?/A) and the atomic frequency nearly reso- A for details and also Ref32] for an accurate description of
nant with the upper band edge ), the influence of the atomic decay in cavities and material mgdiad appropriate
lower band edge can be completely negledit8]. Under values for the parameters that characterize the photonic crys-
these assumptions, the dispersion relation wifk) = w¢ tals in the optical regime gy~ 10"° Hz, dy;~10"2° Cm,
+A(k— ko). The density of states generated by this disperV=a3~10"18m?3, with a the linear dimension of the unit

Ho=> %A,aja,, (2.1b
A

h 1/2

260w)\V

wplyy
g)\: h
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cell of the photonic crystal we have 10%w,<g, where 77, =a,(0)e '“\' is the vacuum contribution, the re-
<10 “w,, aregime in which a perturbation treatment of themainder is the sourcéatomic system contribution, and
interaction of the atomic system with the radiation reservoirG, (t—t') =g, exgd —iA,(t—t')]. This yields
of the photonic crystal is justified. For simplicity, we follow
the usual perturbation method, introduce an expansion pa-d 5 (4., , ,
rameterA, and rewriteH;,,— AH;,;. a‘flz(t):AUB(t)”(t)“LA fodt G(t=t)os(t)orat'),

On the other hand, Eq2.19 involves a sum over the
transverse polarizations and integration okespace. Quali-

. . . . t
tatlvely, for an ISOtrOpIC reservaolr, ao'zz(t): —A0'21(t)77(t)—A2f0dt'
Him=iﬁAfo dop(w)g(w)(@lop—ona,). (2.4 XG(t—t")op(t)o(t’)+H.c., (3.2

In order to apply a perturbational approach, the density o

states should not become too large over the spectral range

interest. In an ordinary vacuum, perturbation theory is very

realistic and it recaptures the main results of the two-level G(t—t")=>, g2exd —iA,(t—t")]. (3.3

atom quantum optickl6]. We use the ordinary vacuum den- A

sity of stateg(w) = w? as a reference case for future discus-

sions. While the theoretical formulation used here is based on
For the isotropic model, the interaction between theplane wave expansions of the radiation-field operafors

atomic system and the radiation reservoir becomes verherited from the quantum electrodynamics of the free space,

strong near the band edgine density of states is divergent w(k)=cl|k|], the formalism can be easily generalized to in-

for w=wc). As a result, the perturbation theory results arecorporate realistic dispersion relationships and Bloch modes

qualitatively different from the exact solution. This, however, obtained through numerical band structure calculatices

is an artifact of the isotropic model. For the anisotropicAppendix A).

model, on the other hang( ) remains finite over the entire

spectral range of interest. Indeed, perturbation theory recapy perturhation solution of the spontaneous emission problem

tures the non-Markovian effects associated with a rapidly _ ) ,

varying density of stateéhe non-Markovian effects are most ~ We use the perturbation approach introduced bydo

important near the band-edge frequency, corresponding to I§WicZ and Eberly 16] to solve the equation of motion of the

spectral range determined by small values of the atomic deAtomic operator$3.2)'. In this regard., it is useful to explicitly

tuningA sc=wa— w¢). In this spectral range, the anisotropic mclude the expansion parametarin the evolution equa-

photonic crystal is a striking example of non-Markovian dy- 10NS.

namics in the context of the Born approximation. The nonlinear part of Eq(3.2) arisgs entirely from the
fact that the operator products in the integrand involve sepa-

rate timest#t’. In the Markovian approximation, the corre-
lation time of the photonic reservoir is assumed to be very
The Heisenberg equations of evolution for thenode of ~ short compared to the time scale for a significant change in
the radiation field, the atomic system polarizatiop,, and  the atomic observables. Under this assumption, the memory
the atomic excitation populatioa,, are function becomes[33] G(t—t")=(y,/2+id,)(t—t"),
where §,1 and y,4 are the usual Lamb shift and spontaneous
) emission rate, respectively.
gian(O=—1Aa (1) +AgoAD), 313 In this approximation, the two-time operator product
present in the equation of evolution is automatically
d Iinearized: 0'3(t)0'12(t’)—>0'3(t) 0'12(t)=(1'12(t) and
aalz(t):Aag(t)z;, gray(t), (3.1b 021(t)012(t’)5021(t)012_(t)=022(t). However, in the case
of a photonic crystal with the density of states exhibiting
g rapid variations with frequency, the correlation time of the
o _ electromagnetic vacuum is not negligible on the time scale of
ar722b=, AUZl(t); ga(vTHe (319 4 evolution of the atomic system, and the Markovian ap-
proximation scheme is inapplicable in general.
We formally eliminate the field operators by integrating For a PBG material, a perturbation approach may be used
their evolution equation and substituting the result into theto linearize the two-time operator product by collapsing it to
equations of motion of the atomic operatdfadiabatic”  an equal time product. This is done forma[li6] by intro-

Q/here 7n(t)=Z=,0, 7. (t) and the memory function is given

[ll. SINGLE-ATOM SPONTANEOUS EMISSION

elimination of the field variablesWe obtain ducing the left Liouville operator of the system:
t iy S [=ie=t)]n
(O =m+A | dUG(t-t)out)), oij(=e"M "oy (t) = X —— LMy (t"),
n= H
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Loy (t)=A"[ ... [oy(t'),H],H], ... H], (3.9 Here, S.(t) and S,,(t) are ¢ numbers. Introducing the
Laplace transforms x(p)=S,,(p)=L{Sxu(t)}, z(p)
where the left and right brackets in the commutator are reE~812(p)=£{812(t)}, (~3(p)=£{G(t)}, and G*(p)
peatedn times. Equation(3.4) can be solved using the =_{G*(t)}, WhereT(p):ﬁ{f(t)}:f%"e*mf(t), Eq. (3.5
Laplace transform method. Before applying the Laplaceyields
transform, we drop all terms in the equations of motion that

are higher than a given order ik. Following WE[16], we S, 0)

perform a perturbation expansion of the operator exp X(p)=—= = 3.7
[—iL7]. The Liouvillian system can be written ds=L, p+G(p)+G*(p)

+L,, wherelLy is O(1) andL, is O(A). The Liouvillian

operatorsLy, L, are defined byAaLy O(t)=[O(t),Ho]l, 2(p)= S120) (3.9

AL, O(t)=[O(t),H ], with O(t) an arbitrary operator. P p+G(p) '

In the Born approximation, we keep contributions in the
equations of motions up to the ord&f. This corresponds to  The temporal evolution of the atomic variabks6) is then
replacing the LiouvilliarL with L, (associated with the non- obtained immediately by evaluating the inverse Laplace
interacting Hamiltonian Hy). Since the noninteracting transforms of these equations. Finally,_ we emphasize_ that the
HamiltonianH, contains only photon operators, it will com- ansatz(3.6) allows us to solve the Heisenberg equations of
mute with the atomic operators. Consequentby;;(t) motion in an operator form.

— e—iL(t—t')o_ij (t')we_iLO(t_t')a'ij (t/) = 0 (t/) )

We note that the zeroth order of perturbation does not
always imply that the atomic operators remain unchanged in In the isotropic model of a photonic crystal, the dispersion
time. For exampl¢16], consider the same problem in a non- relation for a one-dimensional gap is extrapolated to all spa-
rotating frame of reference, for which the free Hamiltonian istial dimensions. The infinity of modes available for the pho-
Ho=1/2hwao3+ 3, fiwyala, . In the lowest order of per- ton near the band edge causes an addition_al strong—coupling
turbation (without the RWA, the atomic operators are effect OYﬁr ahnd abovithat of the relsoni;zt ;‘;tsraCt'Prr‘] of the

- — ailgt—t! NV o (1 atom with photons whose group veloc vanishes
given by ag(t)=e ol og(t)}=ag(t') and o(1) (the energypbands have zerg sIoF[)Je on a Brillouin zone bound-

1. Isotropic model

— a—ilg(t—t") N1 — atiop(t—t") ’ : ' _ )
e e {o.(t')}=e7'vA o (). ary). The dressing of the atom by its own interaction be-
comes strong enough to split the atomic level by a consider-

B. Temporal behavior and steady-state solution able amount. A low-order perturbation approach leads to

inaccuracies if the atomic transition frequency is tuned too
close to the singularity ip(w)*1/\o— wc. However, it is
an appropriate formalism when the atomic resonant fre-
quency is detuned slightly away from the divergence in
d t p(w).
aalz(t)=A03(t)77(t)+A2f dt’G(t—t")o(t" ) o t’), Near a photonic band edge, the Born approximation pro-
0 vides a useful starting point for recapturing the photon-atom
(3.58 bound state solution. By selectively retaining leading non-
Markovian terms in the perturbation scheme, it is possible to
d > (., recapture strong-coupling effects such as the vacuum Rabi
affﬂ(t):_A"Zl(t)”(t)_A Jodt splitting of the atomic level and the fractionalized steady-
state inversion. This provides the basis for applying the same
XG(t—t")oy(t")o(t")+H.c. (3.5  formalism to the case of a driven system near the band edge.
We derive the occurrence of non-Markovian switching ef-
cts in the atomic excitation probability which occur at low
reshold of the external cw laser field.
In the effective mass approximation and long-time limit
[wa(t—t")>1, p/wa<1], the memory function and its
Laplace transform are given lgee Appendix B L

In the Born approximatiorithe equations of motion are
expanded up to the second order of the coupling constant
the Heisenberg equations of motion are

We average over the reservoir degrees of freedom, an(liE
consider the photonic reservoir to be initially in its vacuum'!
state[(a](0)2,(0))z=0, (7 )r=(7)»=0]. The system
of equations is further simplified by the identity
aij(t") o (t") = 8oy (") . For simplicity, hereafter we drop
the superscripts &), associated with reservoir average
(oij)r=07 , and setA =1. Under these assumptions, Egs. Gi(t—t")=p}"
(3.5 can be conveniently solved in operator form by making (t—t")1?

the following substitution:
~ . a
Gi(p)=pBle 1\ ——, 3.1
(P)=B; Vooiae (3.10

where Apc=wp— wc IS the detuning of the atomic fre-
oo(t)=0,50) - Sy(1). (3.6 guency with respect to the band-edge frequesngy andpg,

efi[-rr/4fAAC(tft’)]

: (3.9

o+ (t)=0.(0)-S.(1),
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0.8

0.6
A
= FIG. 1. Atomic population on the excited
bﬁ state,(o,y), as a function of3;t, for various val-
v ues of the atomic detuning, froh,c/B,=—15

for the thick solid curve ta\ 5c/B,=30 for the
thin solid curve.

0.2

is a constant that depends on the nature of the band-eddragg planes in wave-vector space. We consider now a more
singularity. For the isotropic model, it takes the foyi>  realistic model, in which the dispersion relation is aniso-
= wL/ngl/eﬁ EOWS/ZCS_ tropic. In the effective mass approximation, the dispersion is
Using the explicit form forG,(p) in Eq. (3.7, it is  9IVen ,by“’(k):‘”CJrA(k_kO)_z’ wherek, is a point of the
straightforward to evaluate the inverse Laplace transfornrillouin zone boundary. In this section, we analyze a three-
and recapture the radiative dynamics described by(&E@g).  dimensional photonic crystal, characterized by a continuous
The details of this evaluation are given in Appendix C.  and finite density of state€.3) [p(w)>(w—wc)*]. Al-
Figure 1 shows the atomic population on the excited statéhough there is a spectral region over which the density of
as a function of the scaled time for various values of thestates of a three-dimensional photonic crystal becomes larger
atomic detuning from the photonic band edge. Consistenthan the ordinary vacuum density of states, we identify sev-
with our perturbational approach, we scan the atomic freeral spectral regions over which a perturbation approach cap-
quency space, avoiding the positive detuning side of theures the behavior of the system under consideration. These
spectral region surrounding the band-edge singularity, wherare the negative atomic detuning side of the frequency space
the strong atom-radiation interactigand a divergent density where the photonic crystal density of states vanigheghe
of state$ make a low-order perturbation approach invalid. region surrounding the band-edge frequefity (which was
Clearly, if the bare atomic level is placed inside the pho-inaccessible in the isotropic casend the spectral region
tonic band gap, our approachn its domain of validity is  corresponding to moderate-large values of the atomic detun-
able to recover the splitting of the atomic level into dressednq (j1). Remarkably, the non-Markovian effects associated
states caused by the interaction between the atomic systefiiy the fast variation of the density of states at the band-

and its own radiation. However, when the bare atomic leve : S
; : ' dge frequencyregion Il) can be analyzed within the frame-
is outside the gapthe photon-atom bound-state ComponentWO?k of tqhe Bogn %ppro;imation y

suggested by earlier approacijésl] cannot be recaptured In the effective mass approximation and long-time limit,

In & low-order pertu_rbation an.alysis. In our approach, OUtsid?he memory kernel for a three-dimensional anisotropic pho-
the gap the atomic population vanishes in the long-time

limit, regardless how close the atomic frequency is to theonic crystal is given by34] (see also Appendix B)2
band-edge frequency. On the other hand, the occurrence of a i[mlat Apc(t—t))]

nonzero steady-state excitation amplitude for a level outside Ga(t—t')=— gY2 (3.11)
the gap appears to be an artifact of the isotropic madiel A A (t—t")%? '
vergeni density of states, which cannot be recaptured by a

low-order perturbation expansion. For the more realistic anHere,A p,c= wa— w¢ is the detuning of the atomic frequency
isotropic model of a PBG material dispersion relation, thewith respect to the band-edge frequency, ami}?
steady-state excitation probability vanishes at the band edge w2d2,/8l eqm?A%2 An approximate form of the Laplace

for both the variational wave-function method and the non+ransform of anisotropic memory function is given in Appen-
Markovian perturbation approach. However, Rabi splittinggix g 2:

can be achieved for an extremely low applied laser field.

Ga(p)=BA% ™ \p—iAsc. (3.12

For a real dielectric crystal with an allowed point-group  The temporal evolution of the excited atomic population
symmetry, the band edge occurs at certain points along this given in Appendix C. In Fig. 2, we plot the atomic popu-

2. Anisotropic model
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AdB= 20
—v A B= -5
—e A BA= -1

— A MB=-01 Py FIG. 2. Atomic population on the excited
------ ApclBy=-0.05 state (o2, as a function of3at, for various val-
L S ues of the atomic detuning, fromhac/Ba=
cmm A JB= 005

—20 (circles to Apc/Ba=20 (up triangles. The
on-resonance case corresponds to the thick
dashed curve.

..... A, B= 01
—a A B= 5

lation on the excited state as a function of the scaled time Both methods show that, once the atomic frequency is
and for various values of the atomic detuning from the pho-detuned outside the gap, in the steady-state limit the atomic
tonic band edge. It is now possible to realistically investigatepopulation vanishes. Outside the PBG, the remnant of the
the immediate neighborhood of the band-edge frequency. lphoton-atom bound state only becomes apparent when a
the atomic frequency is detuned inside the gap, the atomismall near-resonant driving field is applied to the system.
population again displays fractionalized inversion, for rela-
tively small values of the atomic detuning. Even when the o
atomic frequency is detuned into the gap, a superposition of C. Improved approximation scheme
the continuum states leads to a bound state of the emitted As stated in the Introduction, a critical issue for perturba-
photon to the atom. tion theory is the preservation of the positivity of the diago-
As shown in Fig. 3, in the steady-state limit the depen-nal elements of the atomic density matrix operator. For cer-
dence of atomic excited population on the atomic detuning i¢ain initial conditions and for short-time scales, perturbation-
again very close to the one obtained using a nonperturbativieased theories produce unphysical results. However, if one
approacH6]. carefully restricts attention to the spectral regions over which

—— Variational Approach

—— Born Approximation

FIG. 3. Steady-state atomic population on the
excited state{o,,), as a function of the atomic
detuningAc/Ba, within the Born approxima-
tion with leading non-Markovian corrections.

20 40
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a perturbation expansion is justified, it provides a very gooq:ie|d maanitudd & = Ve /2 VN, e, . and all phase con-
approximation. As seen in the previous section, a consisteqﬁbutiong are Sroluped (;)E'!‘)T:E(Z_ i P

second-order perturbation theory allows one to investigate We now assume that the driven atomic system is coupled
some of the non-Markovian features of the quantum optics Mo the radiation reservoir of a photonic crystal. Using the

photonic _crystals. I is_has been pointed out tha_t second-ordeyation introduced in Sec. I, the total Hamiltonian of the
perturbation theory gives correct results for smgle-operatogystem is given by =H,+ Hl’ where

expectation valueg35]. The effects of neglecting the reser-

voir evolution appear only in expectation values of higher- 1

order operator products. This observation suggests a simple Ho=2 ﬁwxa;[aﬁ EﬁwA%

approximation scheme which may be used to preserve the A

positivity of the excited atomic population. The scheme, +he[oye (et on g elletten]  (4.0)

however, is specific to the model under consideration. In our

model, the average over the photonic reservoir degrees of

freedom preserves some operatorial products. It can be Hi=ih2 gy(aloi—ayos). (4.2
shown easily thafo,,=2(001,) = (2021 (*c1,) and 2oy »

_a _1_ya a a a ; . L
=%(012020) =1~ (P02) (P19 # ("019) ("020) . Using these |, orqer to eliminate the explicit time dependence of the
properties of the reduced atomic operators, we introduce afjgmjitonian, we transform to a rotating frame of reference

approximation scheme for the excited atomic population opyit, the frequencyw, . In this frame of reference, the effec-
erator(once again we drop th@) superscript, which denotes o Hamiltonian[36] becomes

the averaging over the reservoir degrees of freedam,
=001, ando,=1—0,,. Here, we substitute the approxi- H' =H{+H],
mants o) =0+ 32" ,804] and o) =cP+=" ,600),
which represent thath perturbative solutions foo,; and , ¢ .
015, respectively, obtained by keeping terms uXp\") in Ho:; hid\ayay+3fiApLostfie(opt 021, (4.3
the equations of motion.
Clearly, at any orden, this expansion for the reduced
atomic operators preserves the trace of the Bloch vegtor Hi=i%2, gy(ajon—ayos),
(o11+05,=1), ensures the positivity of the atomic popula- »
tions [sinceod} = (¢{9) ], and converges to the exact solu- \ith A =w,— o, andAy =wr— o, .
tion as n—o. The zeroth order corresponds to time-

independent atomic operatorsyy (t) = 0,(0), a$2(t) B. Heisenberg equations of evolution
=$2(0)0$9(0)=0,5(0), while, in the next order, the ex- _ _ N _
cited atomic population is given by2(t) = o @(t)c2(t). 1. Heisenberg equations of evolution: Bare picture

Here,o(zzl)'12 are the solutions of the equations of motion in ~ With the usual procedure of “adiabatic” elimination of
which one keeps terms up to the second-ordeAitBorn  the field variables, the Hamiltoniaf.3) generates the fol-
approximation, as in the previous section. The second-ordedowing Heisenberg equations of motion for themode of
expansion yields identical resultsee Appendix Cwith the  the radiation field, the atomic system polarizatiog,, and
variational Schrdinger equation approach described earlierthe atomic population inversioss:
[6]. t
IV. SINGLE ATOM DRIVEN BY AN EXTERNAL LASER A= m(t)+Adet Gt=thodth), (443
FIELD

A. Model Hamiltonian %Uzl(t):AﬂT(t)Us(t)_i80’3(t)+iAAL0'21(t)
We now consider a single stationary atom driven by an

external single-mode laser field. We assume that the laser is
in a coherent statga exp(—iwt)), with a=|ale” ', and
that the occupation number of the laser madie=|a?| is
high enough such that one can disregard the influence of the d . 5 (s,
atomic system on the laser-field radiation and average over g;73(1)= ~2A02(1) 7(t) —2ie oy () —2A fodt
the laser-field degrees of freedom. Under these assumptions,

+AZJOtdt'G(t—t')O.Zl(t,)gg(t), (4.4

the interaction Hamiltoniai 5, can be brought to the usual XG(t—t")oo(t)oa(t")+H.c. (4.40
RWA form of the interaction between a two-level atom and a
classical coherent monochromatic laser field: Since the noninteracting Hamiltonian contains the atomic

operatorso;, 012, 02 With different factors A, , €, re-
spectively, oyj(t)~e -0~ ")qy (1)} cannot be decou-
pled in a simple form. The bare picture perturbation theory
Here, e=d,£/% is the Rabi frequency, the laser electrical of the resonance fluorescence is tedious since the leading

HAL:ﬁ8(021e_i(th+¢T)+Ulzei(th+¢T)).
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approximation ofoj;(t) contains combinations of all atomic ¢ . Aty 2ot (A 20t
operatord 18]. Another possibility{16] is to displace one of §Rzl(t)=/\; or{—2csa Rye' " +ca Rt ™

the vacuum modes, such that it contains the external laser

field. Then the corresponding noninteracting Hamiltonian be- +2csRa e M+ s?Rya, e (AT 2NN
comes diagonal and the Born approximation may easily be

applied. In this paper, we choose to diagonalize the noninter- (4.8D
acting part of the Hamiltonian by transforming to the dressed

atom basis. In_ the r_esulting Heisenberg picture, the operators ER3(t)= —ZAE g)\{SZaIR21ei(A)\+ZQ)t

no longer retain their atomic or electromagnetic character for dt )

times t>0. Nevertheless, the usual commutation relations ot (A, —20)t

are preserved during the temporal evolution. e R+ He, (4.80

We adiabatically eliminate the field operators by formally
_ integrating Eq.(4.89 and substituting the result back into

The dressed atomic basis is defined|Bs=c|1)+s|2), Egs. (4.8b and (4.80. Further, we average over the field
|§>=—s|1>+c|2), where c= cos¢, s=sing, and sif¢ and atomic variables. We assume that the radiation field
—11-sgn(An)/(4€¥/A2, +1)"2]. The corresponding is initially in its vacuum state, i.e.{a,(0))=(a{(0))

. NS _ =(a,(0)R;;(t))=0. In the Born approximation we retain

dressed atomic operator®;;=|i)(j|(i,j=1,2), Rg=Ry, (3 1
— Ry are related to the bare atomic operators by the relation$MS UP O the second order i, and replace

2. Heisenberg equations of evolution: Dressed picture

0'12205%+02R12_52R21, Rij(t)%eilLO(tit ){le(t’)}lej(t’) (49)

It follows that, in the Born approximatioqR;; (t) Ry (t'))
721~ SRy~ S Rizt C*Ryy, 49 < (R (t")Rmidt)) =(Ric(t')) 8- J
We introduce the memory functionsGy(t—t’)
=Exg§efiA)\(t7t’) and Gt(t_tr)ZE}\g)\efi(A)\tZQ)(tft’)'
These functions characterize the memory effects of the cen-
fral component, the right and left side bands of the Mollow
spectrum, and describe the influence of the driving field on
the atom-reservoir interactiogsee Appendix D for the gen-
Ho=%QRs+ ﬁz Axalax, (4.6) era_ll _equations of _motion The system of equa_tions chara}c-
) terizing the evolution of the atomic operators is further sim-
plified by making the secular approximation; i.e., the fast
with Q=[€?+ A%, /4]' the generalized Rabi frequency.  oscillating terms with frequenciesRand 4) are discarded.
We define the time-dependent interaction picture Hamil-This approximation is valid in the reginf@ > g3, whereg is
tonian ﬁl=U*(t)H1U(t), with the unitary transformation the characteristic time scale of the evolution of the atomic
operatorU(t) = exp(—iHot/%). In this picture, the interac- SYSt€M. _ ,
. b~ Under these assumptions, the temporal evolution of the
tion HamiltonianH, takes the form atomic system is described by the following equations:

3= (c?—s?)R3—2¢S(Ryp+ Ryy).

This transformation leads to the noninteracting dresse
state Hamiltonian

~ . . . _ d t
Hy= IﬁA§ ga[al(CSRee M+ 2Ry (420t F(Rat)= —2czszfodt'eg(t—t')<R21(t')>

— %Ry 2NN 4 H c. (4.7 t
_C4f dt'GE(t—t")(Rp(t"))
The dressed atomic operators in this interaction pic- 0

ture exhibit the time dependence given bR x(t) s ot ) ,

= RyA0)expt-2102), Rys(t) = Roa(0)exp(20), and Ry(t) 26t | d G-t (R
=R5(0). Clearly, Ry(t), Ryx(t), andRyy(t) can be consid- t

ered as source operators for the cel_"ntral component and_ left _S4f dt'G_(t—t")(Ryy(t")), (4.103
and right sidebands of the Mollow triplet at the frequencies 0

oL, o, —2Q, andw,+2Q). Hereafter, we drop the tilde on

the interaction picture operators. The Hamiltonian given by d At , ,
Eq. (4.7) generates the following equations of motion: a(Ra(W: —2c fodt G, (t—t")(RyAt"))
d . . t
&ah(t):gAA{csP@e'Ak%L C?R e (A2t +254f0dt’G,(t—t’)<R11(t’)>+H.c.
— %Ryl (200 (4.8a (4.10h
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p(®) -
ALT Oy T @
o O point of DOS discontinuity
A
FIG. 4. Relevant frequencies and frequency
scales in the case of a steplike density of states.
(»L—ZQ (1)L+2S2
A
o 0, 0
C. Strong external laser field: The Markovian approximation 1
gex I vian approximat <R21(t)>:<R21(0)>eXF{_5(4025270+C47++547—)t )
In general, the memory functionSy(t—t’) and G (t (4.113

—1") are determined by the radiation-field density of states.
For a broadband, smoothly varying density of states of the (Rs(t))=(Rs(0)yexd — (c*y, +s*y_)t]
reservoir (as in ordinary vacuum the dependence of the

4, _ 4
memory functions on the external field can be ignored and _Cve TSy (1 ex— (c*y, +sty )t]h.
Go(t—t")=G.(t—t")=(y/2)8(t—t"). However, the den- cty,+sty_
sity of states of the photonic crystals exhibits band-edge and (4.11b

other Van Hove singularities, as described in the Introduc- . _

tion. In such a system with fast variations of the density of The bare operators are obtained by the transformation of

stes In e spectal ange ghven by, 20,0, +20] £G4, 5 e belrame siten s pouison

(shown in F_|g. 4, the d|st|nct|vg m.emory _functlons mtrq- the ordinary vacuum cad@7,3§ (these results correspond

duced previously lead to qualitatively different behawor,[0 settingyo=y_=17.).

from an ordinary vacuum. _ In Figs. 5a) and 5b), we plot the bare excited atomic
For a strong external laser fie[d], the dressed frequen- population as a function of the scaled time y,t and the

cies w_, o —2Q, and o +2Q may be pushed far away scaled resonance Rabi frequengyA, | for two values of

from the band-edge singularity. In this section we assuméhe decay ratioy_/y, . The first figure corresponds to the

that the photonic-mode density, while singular at one fre-Ordinary vacuum case, with no singularity in the density of

quency, is smoothly varying over the spectral regions surStates = y-), and the second one to a confined photonic

rounding the dressed-state resonant frequenaigs o, material, with an appreciable jump in its density of states

- A . y_ly,=10"3. Both graphs share similar structures but
2(}, and w_+2(). The spectral components will experi- there are some no table differences. For the confined photo-

ence very different densities of states and the memory funGsic material, the time scale of the atomic evolution is given
tions in the Markov approximation are given By(t—t')  py the decay rate of the right side band of the Mollow spec-
=(yo/2)o(t—1"), G (t—t")=(y./2)6(t—t"), and G_(t  trum (r=1y.t). For a given laser-field intensity and fre-
—t")=(y-/2)6(t—t"). The spontaneous emission decayquency, this time scale may be very different from the usual
rates y,=273,028(wy— ), y-=273,0°8(w\—w,_ time scale ¢= vot) encountered in the ordinary vacuum
+20), andy, =273,928(w, — w_—2()) are proportional ~ €ase. In an ordinary vacuum, the atomic system does not
to the density of modes at dressed-state resonant frequenci?%‘h'b't steady-state inversion. Consequently, conventional

The strong-field assumption ensures that the Mollow spectersers require additional atomic levels to achieve atomic in-

ersion. In the confined photonic material, for a given inten-
components are well separated and the overlap between th of the laser field, the atomic system reaches positive

is negligible(in fact this assumption requires a much Stron-inversion[Fig. 5b)]. As shown in Fig. 6, if the jump in the
ger field than the one involved in the secular approximation photonic density of states is quite largeorresponding to

Under these approximations, the temporal evolution of themall ratiosy_ /. ), the atomic system achieves nearly total
dressed atomic polarization and inversion is then given by inversion.
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0.2

FIG. 5. (a) Atomic population inversioqos)
as a function of the scaled time= y,t and the
intensity of the laser fieldk/|A, |, for y_/y.
=vly+=1, sgn@,)=-1, Q/y,=2. (b
Atomic population inversioqo3) as a function
of the scaled timer= y,t and the intensity of the
laser field e/|Ap|, for yolvyi=1, y_ly,
=1073, sgn(Ap)=—1, Q/y,=2.

eflAarl

R
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This behavior is a consequence of the fact that the dressed D. Switching by a moderate external field: Non-Markovian

state[1) (the left Mollow’s sideband at the frequenay case
—2Q) is placed in the spectral region with a low density of For weak and moderate external fields, Mollow’s spectral

states and with slow decay, whereas the dressed|§t)a(the components may remain close to the density of states discon-

right Mollow’s sideband at the frequeney, +2Q) experi- tTLii(t)y af!dh it is necessary rtmo ﬁ/lowlf the Edd.10a andF
ences a large density of states and a rapid decay. In the long-=: b without recourse to the Markov approximation. For

. . ) ~ . is purpose, we introduce Laplace transforms of the atomic
time limit, the population on the dressed stat¢ is much

larger than the atomic population in the dressed sjfé)e variables, x(p):~R3(p):£{<R3(t)>} and z(p):@l(p)
gel pop ) =L{(Ry(t))} and the memory functions Gy(p)

This imbalance of the atomic population between the dressed ~ _ ~ B

states is responsible for the atomic inversion in the bare pic= £1Co(t)}, G+ (p)=L{G. (1)}, and G_(p)=L{G- (1)},

ture. where f(p) = £{f(t)}=[5e P (t). With this notation, the
However, even though the single-atom system reachegolution of the evolution equations is given by

positive inversion, the transition from negative to positive . .

inversion is a smooth and gradual one in this Markov pic- x(p)= Xop+[s'G_(p)—Cc"G.(p)+c.c]

ture; i.e., there is no sharp switching effect as a function of p{p+[c*G,(p)+s*'G_(p)+c.cl}’

applied field. (4.12a9
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0.75

0.5

0.25 FIG. 6. Steady-state atomic population inver-

sion {a3) as a function ofe/|A,.|, for various
discontinuities in the density of states, /vy,
=1 (dot-dashed curye y_/y,.=10"% (long-
dashed curve y_/y,=10"2 (short-dashed
curve, and y,/y,=10"2 (thin solid curve,
y_1vy,=10"% (thick solid curv@. The atomic
detuning is negative, sgi(, )=—1.

<G3>
=}

-0.25

-0.5

-0.75

Z of the atomic population and polarization of a two-level atom
= = - = — , placed in a 3D anisotropic photonic crystal, with the relevant
p+c*GE(p) +5*'G_(p)+2¢*s7 Go(p) + G5 (p)] frequencies shown in Fig. 7.
(4.12h The memory function and the corresponding Laplace
transform for a three-dimensional photonic crystal have been

wherex,=(R3(0)) andzy=(R,,(0)) are the initial values evaluated 6], and in the long-time limit they are given by
of the excited atomic population and polarization, respecEdS- (3:1D and (3.12. The Laplace transforms of the
tively. These are determined by the initial values of the bareMe&mory functions for the anisotropic photonic band edge are
state inversion and polarization through E@E5). The time
evolution of th~e dressed state atomic variables is given by Go(p)=L{Go(t)} =i BX?\po,
(Ra(t)y=L"HR3(p)}=L "Yx(p)}, and their bare-state
counterparts are obtained using E4.5). We will use these

z(p)

. & _ _ [ plr
results to analyze the temporal and the steady-state behavior G (p)=L{G-(1)}=\iB*p-, (4.13
© A= o - o
pl® -
Ac= o= O
O Ape= & — &
A
FIG. 7. Relevant frequencies and frequency
scales in the case of an anisotropic density of
states.
0 —2Q o +2€Q
0 O, ®

033801-11



MARIAN FLORESCU AND SAJEEV JOHN PHYSICAL REVIEW /64 033801

1

FIG. 8. Atomic population inversioko(t))
as a function of the scaled time= Bt, for vari-
ous values of the laser intensitgurves 1.a, 1.b,
1.0: €/Ba=0.25 (1.8, €/B,=0.5 (1.b), and
€/ Bp=1.25(1.¢0). The laser field frequency de-
tuning isA | c/Ba=(w — wc)/ Ba=1.2. Curve 2
corresponds tcee/Bpo=1 and A o/B,=20. The
inset shows the steady-state atomic population in-
version{o3) as a function ofe/B8,, when the
laser-field frequency detuning &, c/Ba=1.2.
The atomic detuning for all curves A, =
—Ba.

where po=p—iA, ¢, pz=p—iA c*2iQ, and A, c=w,  accomplished by starting with a given parametric configura-

—wc. tion in which the left component is placed outside the gap
In the Laplace space, the evolution of the dressed atominear the band-edge frequency, and the intensity of the exter-
population and polarization satisfies E¢$.12: nal laser field is gradually increased. Far outside the gap
(A c>2Q for curve 2, the influence of the band-edge sin-
Xop/ B¥?+25* Re \iVp.1—2¢* R \ip_] gularity becomes negligible, and the system reaches the or-
X(p)= p(p/,8,1\’2+ ot Re[\/i—\/p__]+254 Re[\/i_\/p_+]) , dinary vacuum case regime. The inset shows the steady-state

inversion as a function of applied-field intensity for a specific
(4.143  set of detuning frequencies. The analytical results are given

12 in the next section.
2(p)= ZoBa
Pl B2+ et =iVp_+s*\iVp, +4c?s? R \ivpo] E. Steady-state solution
(4.149 The derivation of a steady-state solution for the atomic
The time-dependent dressed atomic variables are given djversion is facilitated by the identity lim..{F(t)}
the inverse Laplace transformatiofRs(t))=L ~"1{x(p)}, =lim,_o{pf(p)} [40-42, wheref=L{F} is the Laplace
(Rpa(1))=L "YHz(p)}, where transform ofF. Sincez(p) andx(p) have only complexnot
purely imaginary poles it follows that the steady state
i L (et p dressed  atomic  polarization  vanishes: (R,;)""
f=L {f(p)}_ﬁ i dpe’f(p). =lim_.(R,4(t))=0. However, the dressed excited atomic

population,{R3)S'=1im,_..(Rs(t)) has a nontrivial behav-
Here, the real numbes is chosen so thap=e¢ lies to the 10I
right of all singularities(poles and branch pointof the (Rg)S!
function to be integrated. The systdrh12) is simplified by 3

scaling t?/(za)time variable bgx? (the frequency is then scaled 1 it ALc<20,

with 1/8,°). We numerically evaluate the inverse Laplace 4 4

transforms of the atomic variables using an Adams algorithm =) 5 —C€ V(AL +20)/(Ac—20) it ALc>2Q.

[39]. Once the Laplace inversion is performed, the bare-state st+ct(ALct20) /(A c—2Q)

atomic averages are obtained through &q5). 4.15
In Fig. 8, we plot the excited atomic population inversion :

for some specific choices of the system parameters. If the left
Mollow sideband is driven from outside the gap,-<2()
[curve Xa)], to inside the gapA,c>2Q [curves 1b) and
1(c)], the atomic system becomes inverted in the stationar
state [1(b) and Xc)] [the actual stationary values, far

We check the consistency of the solution in two limiting
cases. First, if we place the Mollow spectral components far
outside the gap\| >2(), the system reaches the ordinary
Yacuum behavior:

=tB,>1000, of the atomic inversion arelos)s'= 44 2 22
—0.864 694 for 1a), (05)%'=0.370638 for 1b), and(o3)*! (R)S'=— &> (g st — (e=s)° 4.16
=0.706 475 for 1c)]. The transition described above can be ct+s? c*+s?
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This limiting case is consistent with the Markovian approachplays sharp switching behavior as a function of the detuning
(far away from the density of states singularity, the photonicof the laser-field frequency, for various choices of the applied
crystal reservoir of modes is a Markovian reservoitcord-  laser-field intensity.
ingly, Eg. (4.16 can also be obtained in the Markovian for- A similar switching behavior was found in Réf], in the
malism developed in Sec. IV C, by substituting. = y_ context of collective behavior of an ensemble of two-level
=1y, in Egs.(4.119 and (4.11hH. On the other hand, if we atoms placed in a confined photonic material and driven by
place the left spectral component inside the gap { an external laser field. As the left sideband of the Mollow
<20), the atomic system becomes trapped in[thestate: ~ SPectrum was placed inside the gap of a photonic crystal or
other low-DOS region, while the other spectral components
were placed in a high-DOS region, the atomic population on
(Rg)S'=—1=(0,p)S'=5%— 2, (4.17  the excited state showed a sharp collective jump. The switch-
ing behavior described if7] is a collective effect(for a

Consider a near-resonant laser excitation w,). Ifwe ~ Single-atom case, sharp switching is absesttongly depen-
begin with an atom with resonant transition frequengy dent on the atomic density. The Markov approxmatlon_re—
just outside the photonic band gégay, for instanceA ac quired the use of a strong external laser field which drives
=wp—wc>0), itis possible to drive the system through the e Mollow spectral components away from the photonic
transition described above, simply by increasing the appliet‘]IenSIty of staLes ngqla”t};’ S0 that,. over th((ahwﬂth o;)each
field intensity. For a nearly resonant laser excitatias ( component, the density of states is smoof@>{Ny,,
~w,), the left Mollow sidebandat frequencyw,—2Q) > NY=. Whereyo, y. represent the decay rates of the cen-
passes through the photonic band-edge frequency wh I, right and left components of the Mollow triplet ahdis

Qgit=A /2, while the other Mollow spectral componentst € number .Of atoms In t_he _present_ hon-Markovian case,
we describesingle-atomswitching, which occurs for moder-

remain outside the gap. At this critical laser intensity, the | t the | . i d he f L f
atomic population exhibits switching from a noninverted &€ Va&lues of the laser intensity, due to the fast variation o

state to an inverted state. In the bare picture, the atomif'® density of states near the band-edge frequency, the spec-

inversion can be expressed as tral range carefully avoided in Ref7].
F. Influence of dephasing interactions and nonradiative
[ s?—c? if A c=2Q, relaxation
ALc+20 In order to make closer contact with experiment, we in-
N st—ct\/—— clude phenomenological decay rate¥ii/and 175" associ-
(022)°= 1 (c2—s?) Ac—20 i A ~>20 ated with other(nonradiative decay and dephasing, respec-
) A 120 Le ' tively. Deep inside the gap, where radiative decay is
PV RN i negligible, the nonradiative contribution may become very
A c—2Q

important. In this caseT]" and T3" may be considered as
(4.18 empirical constants. The nonradiative decay may come from

phonon-assisted transitions if the atom is placed in a solid

It is apparent from Fig. @) that, for moderate values of matrix. Dephasing occurs if an atomic vapor is placed in the

the laser intensity, the atomic system switches very sharplphotonic crystal voids and is collisionally perturbed by the
from the ground state to the excited state, at a critical valuether atoms. If the atom is implanted in the dielectric region,
of e. This switching behavior is caused by the very sensitivehe interaction with lattice vibrations of the host dielectric
dependence of the dressed atomic population on the relativeaterial(elastic scattering of the phonons on the atomic sys-
position of the Mollow spectrum components. The magni-tem) will cause dephasing.
tude of this effect depends on the actual value of the laser The effect of these additional decay and dephasing
detuning with respect to the band-edge frequenty:.  mechanisms is investigated in Appendix D. Here, we present
=w_ — wc. This interplay between the control parameters isonly the steady-state results for the dressed atomic popula-
shown in Fig. 9b), where now the atomic population dis- tion inversion and polarization:

(Rg)*!
[—2c*VA c+2Q+(s?—c?)/TI[2¢* VA o+ 20+ 452 TH + (2= c?)2TY 71 if Ac<2Q,

=1 [28*VA c—2Q—2c*/A c+2Q+(s?—c?)/T])[25* VA c—2Q +2¢* VA o+ 20 + 4% TH +(s*— c?)HT]']
if A o>20,

(4.19
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where we introduced the scaled nonradiative decay anby the specifics of the dielectric structure considered. How-
dephasing timesT;" =T} /i/Z, and T) =T} /{\/2, respec-  €Ver, the isot'ropic model is pbtaingd by generalizing the dis-
tively. persion relation of a one-dimensional Bragg stack tokall
Clearly, the additional decay and dephasing mechanism@Pace direction$6], and, implicitly, the dependence of the
tend to weaken the switching effect. The robustness of théme factor scale on the curvature of the dispersion relation
switching effect follows from an estimate of the time scale(A)) is reduced. In the optical domain, an estimategyf

factor in photonic band gap materials. In the case of thgroduces 0.8<p3,<10y.
isotropic model, the time scale fact@f can be expressed as  The situation is quite different for the anisotropic model.
In this case, the time scale factBr can be expressed as
1 1 2[cko\*
'8':“’07.\'1/33 1677(1;%) (w_ks) ’ Ba= 1t 9 l)z
| AT YR, 3 256m

W21

where we introduced the dimensionless const#t and we obtain a much stronger dependence on the curvature
=A,/(c?®/ wc). The values ofuc, ko, andA,, are determined  of the dispersion relation. Moreover, real band structure cal-
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FIG. 10. Atomic population inversiokios),
as a function o/ 8, , and the nonradiative decay
rate 17" . The laser-field frequency detuning is
ALC/ﬁA: 12, AAL/ﬁA: - 1, andAAclﬁA: 02

0.8

05

culations show an extremely sensitive dependence of the cuHeisenberg equations of motion in terms of the coupling
vature of the dispersion relation on the specific direction instrength of the atomic system to the radiation reservoir of
the reciprocal spacek§) and produce a wide range of values modes, we recaptured the most important non-Markovian ef-
for the dimensionless paramei&y. fects caused by the strong variation of the photonic density
We are using in our numerical estimations a time scalef states with frequency. In the context of spontaneous emis-
factor range 0.8<B,=<10y, but point out that a more ac- sion, our approach recaptures the physics of photon-atom
curate estimation has to be obtained by using band structuteound state.
calculations for a real photonic crystalong the lines given Our results provide a clear distinction between the Mar-
in Appendix A). kov approximation and the Born approximation in the con-
Clearly, as shown in Fig. 10 and Fig. 11, a sizable switchtext of photonic band-gap materials. The Markov approxima-
ing effect is present even whenﬁ;/, 1ﬁ'r2" ~pfB,. Itisalso tion is related to memory effects of the photonic radiation
apparent that the nonradiative decay contributieig. 10 is  reservoir, whereas the Born approximation is associated with
much more deleterious to switching effects than the dephaghe strength of the coupling between the atom and the reser-

ing mechanismsFig. 11). voir. In the case of realistic photonic crystals models, the
essential non-Markovian effect leading to the photon-atom
V. CONCLUSIONS E)noautir:)orl1 state can be captured even within the Born approxi-

In this paper, we analyzed the leading non-Markovian We predict that a single atom in a PBG material driven by
corrections to resonance fluorescence in photonic band-gap external laser field with a moderate intensity will exhibit
materials. By means of a perturbative expansion of thewitching behavior as a function of both laser-field intensity

FIG. 11. Atomic population inversiofu ;) as
a function ofe/ B, and the nonradiative dephas-
ing rate 175" . The laser-field frequency detuning
is A c/Ba=1.2, Ap /Ba=—1, and Apc/Ba
=0.2.
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and detuning frequency. The condition that triggers this jumgror a typical optical transitiofwith dipole moments be-
in the atomic population inversion corresponds to driving theween 10! and 16 atomic unity a laser field of 0.5
left component of the atomic spectrum inside the gap, whilenW/mn? intensity will produce a Rabi frequency of 0.1
the central resonance and the right sideband remain outsideHz (which is of the order of magnitude ¢f).

the gap. Our paper describes non-Markovian single-atom switch-

The switching effect described here may be relevant tang in photonic band gap materials using a second-order ex-
ultrafast all-optical switches and all-optical transistor actionpansion of the equations of motion. In the Markovian evolu-
[7]. For this case, our analysis needs to be generalized to thion of a collection of two-level atom$7] (the N-atom
case ofN-atom, non-Markovian collective switching. As a generalization of Sec. IV Zan analogousollectiveswitch-
function of the intensity of the driving fiel@control lasey,  ing effect is present. A full non-Markovian treatment of a
the active region of a photonic materig@he atomic systein  collection of two-level atoms driven by an external field will
sharply switches from an absorptive mediuithe atom lead to a lower threshold and much faster switching rate than
spends most of its time in the ground sjatea gain medium  discussed previouslithe collective time scale factor near a
(higher probability to find the atom in its excited statd  three-dimensional photonic band edge has been shown to be
second probe laser beam will experience a substantial diffeproportional to the square of the number of atdmg.
ential gain when the control laser intensity is in the neigh-
borhood of the threshold value.

Our model system can be experimentally realized either
by pumping a cold atomic gas in the void regions of a pho- We are grateful to Dr. Tran Quang for a number of dis-
tonic crystals or exciting a two-level system in the dielectriccussions. M.F. acknowledges support from the Natural Sci-
region. The electric-field distribution for a laser mode in theences and Engineering Research Council of Canada Scholar-
vicinity of the upper band edggéhe so-called “air” bangl ~ ship Program. This work was supported in part by the
has strong intensity peaks in the void region of the materialNatural Sciences and Engineering Research Council of
which can act as a optical trap for active atofd§]. The  Canada and the New Energy and Industrial Technology De-
trapped atoms will exhibit little interaction with the lattice of velopment OrganizatiofNEDO) of Japan.
the dielectric host, thus minimizing additional decay and
dephasing effect. Alternatively, the radiative transition of the ppENDIX A: MEMORY FUNCTIONS AND PHOTONIC
erbium atom at 1.537m comes from the # atomic shell, CRYSTAL LOCAL DENSITY OF STATES
which is screened by the outer shells from the environmental
influence. At low temperatures, the erbium atoms suitably The projection of the vector potential operatyr along
implanted in a silicon PBG material may have very sharpthe direction of the atomic dipole,, evaluated at the center
single atom-like feature[s44] (the most intense line at 1.537 of the atom R), in the d|po|e approxima’[ion, and in the

#m has a full width of 0.000%xm). In this case, dephasing modified Coulomb gaugé® =0V -[e(r)]=0) [46,47, is
effects associated with the scattering of phonons on thgiven by

atomic system will need to be considered.

ACKNOWLEDGMENTS

Clearly, the experimental observation of atomic switching _ -
X ; X A(R)=A(R)-uyq
depends strongly on the influence of the dielectric host ma-
terial on the active atoms. By including these effects in our dk %
calculations, we have shown that a sizable switching effect is = E f AR v
present even in the presence of nonradiative decay and ns Jkel1BZ(2) €0®nk;s

dephasing contribution (0.98< 1/T}",1/T}'<y). The influ-
ence of dephasing is weaker than that of the nonradiative
decay. Also, the magnitude of the driving field is extremely

important. In our approximations, switching occurs when : ) S .
_ . : : andV the volume of the unit cell. Thk integration is carried
1~ j5, where() is the generalized Rabi frequency, aAds over in the first Brillouin zone(1BZ). The Bloch-mode

the typical time scale of the atomic system evolution. Since o ) _
B depends on the specific photonic crystal used, we Iimi{n:rk’s} e'mnlh|lat|'on(creat|0|j opera}tor IS Qenqted b0 k.5
ourselves to general considerations about the order of ma%an,k,s)' its amplitude at the atomic location is denoted by
nitude of the laser-field intensity, required to produce “‘nks(R),and the mode frequency by, s. The anisotropy
switching. If we neglect the detuning of the atomic fre- of the photonic crystal lifts the polarlzanon degeneragy, and
quency with respect the laser frequency, it can be easil{’® mode energifrequency acquires a supplementary index
shown thaf45] s. The interaction Hamiltonian between the atomic system

and the radiation field reservoir is given by

X [An,k,s( R) : ad]an,k,s+ H.c.

Here,n is the band energy indexs, the polarization index,

|dop-q | [2€%a3 > , T
>—[Hz] = ca sthC\/I[W/m] H:.h; g\(R)al o1+ H.c., (A1)
— |da1- €] 2 where\ denotes the triplein, k,s} and the coupling constant
0.2210 oo VITWI?]. (5.1 R i
()N IS
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h

2eo‘l’n,k,s

wplyy
gn,k,s( R) = A

12
V} An,k,s(R)'ud (AZ)

The memory functior(3.3) becomes

e iAnis(t=t))
S [ g
67T3ﬁ80 ns JkelBz Wn ks

X |An,k,s(R)Ud|2-

242
wyd
G(R,t—t')zﬁ

(A3)
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G|(7)=q eiAACT| \/;)_:3\//2; Jmeieer Erfc(ViweT)
|

1

\/i&)c’T
2

kg
+ el veTErfol J_cﬂ]

2 Cl)cA|

+

Ko . o
+ —€e'“C"Ei(1ljiwcT)
|

(B3)

Here, Erfck) is the complementary error function defined

Clearly, the memory function depends on the actual p03|for all complex X by Erfc(x)=1-Erf(x), with Erf(x)

tion of the atom in the unit cell and on the orientation of the ™ s
atomic dipole with respect to the symmetry axis of the phodim,_ .Erfc(x) = (Imx)e ™
tonic crystal. However, taking into account the randomnesgral

(2m) [Xdte .

This has the asymptotic behavior

. Also, the exponential inte-

Ei(1x) is defined for Re{)>0 by Ei(1x)

of the atomic dipole orientation, we may average the=/7dte *"/t and extended by analytic continuation to the
memory function over all the possible dipole orientations.entire complex plandexcept for the branch point=0).

The orientation-averaged memory function is given by

Ga(Rit—t’ =—<G (Rit—=t"))y,
2.2 . —i(w—wpp(t—t")
wadz; f e 2
=— R,0) —————dw.
1922heqt o Procl ) w®
(A4)

Here,p;oc(R, ) is the local density of statg¢48] defined by

ploc(R,w)= 2

n,s

f dk&(w_wn,k,s)|En,k,s(R)|2;
ke 1Bz
(A5)

with Ep, « (R) =ik s(R)An k s(R), the electric-field Bloch
mode,{n,k,s}, amplitude at the atomic position.

APPENDIX B: MEMORY FUNCTIONS AND THEIR
LAPLACE TRANSFORMS

1. Isotropic model

Using the definition3.3), the memory function becomes

e (oK) —wp)7

G(n)= . (BY

whereo represents the polarization index amds given by
a= widgllﬂwo.

For the isotropic dispersion relatiom(k)=wc+A,(k
—kg)?2, we have

e 1A (k- ko)27

— iIApcT ”
G,(7)=a €'"AC fkodkkzwc—i-A,(k—ko)z’ (B2)

W|th AAC: wWc— Wp and ]

=8a/3m?. By evaluating thek
integral we get

This has the asymptotic behavior lim..Ei(1.x)=e™ */x.
The memory function simplifies considerably in the ap-
proximationA~ wc /k3,

\wc\/; . au .
_ Ap T T
GI(T)_CHWGI AC \;erZe' CTEI(ljweT) |,
(B4)
and, in the long-time limit 7>1), becomes
I(Ac’T—’IT/A)
3/2
T _—, (B5)
with 32— (w3d5,/12e ok %) (K3 wcVA)
~ 7/2d2 /6h 3/2C3
(UA 21/ EQT .

The Laplace transform of the isotropic model memory
function can be evaluated as follows:

(~3|(p)=E[G|(T)]=f;dte_ptGKT)
= Q) J\kodkk2

1
X .
[wc+A(k—ko)Zl[p—i(Aac—Ai(k—ko)?)]
(B6)

The integral in Eq(B6) can be evaluated by contour inte-
gration methods and the memory function becomes

3/2

-1
}. (B7)
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In the long-time limit w1, s/wc<1), the Laplace
transform of the memaory functio(B5) becomes

32g-imtay [T
I(p) B p_iAAC.

2. Anisotropic model

(B8)

In the case of an anisotropic model(k) = wc+A(k
—Ko)?, Eq. (B2) becomes
e 1AA(k—ko)?r

Ga(n=axeitncr [ gk
AlT) = an we+ A(k—Kg)?

Ko

(B9)

with Apc=wc— wa and ap=a/27%. By evaluating thek
space integral, we get

GA(T)=aA\/%eiAACT[\/—Iw —me'cT Erfd ViweT] |

A
(B10)

In the long-time limit @wc7>1), the anisotropic memory
function becomes

eI(AACT+ l4)

Gal(7)= —Bl’z?, (B11)

with B32= (wad2,/16e i 7)) (Lw A

The Laplace transform of the anisotropic model memory

function can be evaluated in a similar fashion:

Ga(p)=LIGA(D)]= f:dte—ptGAm
= C!Afkodk
1

X .
[wc+Ai(k—Ko)?I[p—i(Aac—Ai(k—ko)?)]
(B12)

The integral in Eq(B12) can be evaluated by contour inte-
gration methods and the memory function becomes
-1

ip+A
P (B13)

wc

ApNTT

\/_A3/2 1-

éA(p) = Ac

In order to evaluate the long-time behavior of the Laplace

PHYSICAL REVIEW /64 033801

(square root singularity at7=0 and is thus integrable. In
this paper, we use the regularized version introduced in
[34,43,49, in which the Laplace transform of anisotropic
memory is given by

B,]&lzei w4 /p_iAAC-

APPENDIX C: SPONTANEOUS EMISSION, TEMPORAL
EVOLUTION, AND STEADY-STATE SOLUTION

Galp)= (B14)

1. Isotropic model

For the atomic system evolution is described by B6),
and the atomic polarization is given by

1 e+iw

E— |

—iml4 1
———| . (D
\ p_iAAJ

Here, the real numberis chosen so that the ling= € lies to
the right of all singularitiegpoles and essential singularitjes
of the functionz(p), and the time and atomic detuning have

been scaled so that=3,t andA,c=Axc/B,. The inverse
Laplace transform yields

Sy(71)=

3

Sy(7)= eiZAct| > axdl+ rk)exiT
k=1

3
2
— > alk Erfe( VX2 et
k=1

(C2
where
X1=(A, +A_)e ™, (C3
Xp= (A+efi7'r/6_A_ei w/G)efiﬂ'M, (C4)
Xg= (A+ei l6_ A,e_i“/G) e3i 77/4, (C5)
1 1 4 1/211/3
At:[i 1+27AAC) [ (CG)
X (ki £kkij=13, (C7)
J=———— i ki,j=1,3),
g (X=X (X = Xj) :
re=csgnxy), (C8)

transform of the anisotropic memory function, we have to

deal with the nonintegrability of the memory functioB5).

and Erfci) is the error function[50] and csgnX) is the

However, this is an artifact of the long-time expansion; thegeneralized sign function for real and complex expressions,
exact memory function actually possesses a much weaketefined by

1 if Re(X)>0 or
-1 if Re(X)<O0 or

csgnx) =

[Rex)=0 and
[Rek)=0 and

Imé&) > 0],
Img&) <O0].
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The value ofr, is determined by the atomic detunidg:

.

wherea=2+/3, r,=1, andr;=—1 are independent of the

1
-1

if Apc=—3a/[1+a%]}
otherwise,

PHYSICAL REVIEW /4 033801

2
Su(r) =6t S bhx(1+1,)e%"
k=1

3
— >0 byl Erfc( \/xzkr)exﬁT , (C13
k=1

value of the atomic detuning. The temporal behavior of the Where

atomic operatow,, is then given by

oy 2 2
0'21( T) = 0'21(0)eIAACT[ 2a1X1eX1T+ a.2X2( 1+ rz)eXZT

(C9

3
— > aXyry Erfe( \/xﬁf)exﬁT] .
k=1

For large time, the terms of higher order thar®’? can be
neglected, and EqC9) reduces to

.~ 2 2
oo(7)= 021(0)e'AACT{ 2a;X,€17+ asX,(1+r1,)e%e”
1

The formal solution of the excited atomic population is

3
Ay 1

T (C10
r

k=1 x2

e—iﬂ'/4

p+—F—
Vp_iZAC

1 etio
522(7')=—.f ~ dpe””
27l Je—i»

el T4 -1

Vp+iAac

Since the Laplace inversion of EqC11) requires the for-
mal solution of a sixth-order polynomial equation, we opt for

+ (C1)

X1’2: - g[li \/1_4ZAC:|,

(C14a
bk=xi_xj(k#l#];k,|,1=1,2), (C14b
re=Ccsgnxy). (C140

The value of ; is determined by the atomic detunifg,c
and one can show that

o~ 1
1 if Apc € (—00,0)U<§,00),

)

while r,=—1 is independent of the value of the atomic de-

tuning frequencyA oc. The expression of the atomic opera-
tor o5, is then given by

r1: 1
O’E

S

if ZAc

o(7)= Uzl(o)eiZACT{ 2b1X16X§T

2
—gl byXr' Erfc( \/xﬁr)exif]. (C15

APPENDIX D: NONRADIATIVE RELAXATION AND
DEPHASING EFFECTS

In order to compare our model to experiments, we include

a numerical approach. For each value of the atomic detuninghenomenological decay ratesT1/ and 13" associated

we numerically find the singularities &{p), which are then
used in an Adams algorithrf39], to perform the Laplace
transform inversion.

2. Anisotropic model

By scaling the time and frequency=pBt and Aac
=Aac/Ba, the formal solutions for the atomic population
and polarization become

etio

1 . .
SAm)=55|  dpeIptBRAe ™ p—iAac
+e T p+ida] Y

etin

(C12a

2i e—iw

dpe [p+Br%e ™ p—iAnc] t.
(C12b

S21(7)

The inverse Laplace transform pfp) yields

with other (nonradiative decay and dephasing, respectively.
In the bare picture, Eq$4.4b and(4.49 become

d
a(’zl(t):/\UT(t)Us(t)—ib‘Us(t)+ AN

nr
2

1
)Uzl(t)

A2 f 4Gt ou(t)os(t),  (D1a
0

d
at o3(1)=—2A0(1) n(t) —2ig oy (1)

t
—ZAZLdt’G(t—t’)021(t)012(t’)

(o3+1)+H.c. (D1b)

21y’

Using the dressed-state transformatidrb), the equations
of motion are given by
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d t t t
aRZl(t) =—2c232A2J dt'Gg(t—t’)<R21(t')>—c4A2f dt'Gi(t—t'xRZl(t')>—2c252A2f dt' Go(t—t")(Rpy(t"))
0 0 0

(Rpy(t))+2e 2

4A2f dt'G_(t—t")(Rp(t"))— {i(s +c4)+2T1 s?c?
2

cs3A2f dt’G* (t—t')
t c3s t c t
x(Rll(t’)>+c3sA2f dt’G+(t—t’)<R22(t’)>+7A2f dt’Ga(t—t’)+7A2f dt’Gy(t—t")
0 0 0

sc(sz—cz)( 1 1 )<

SC . t
Ra(t))+ 2T”’] —e 4t czszAZLdt’Gt(t—t’)<R12(t')>

2 T T 1
t 1 1
+0252A2J dt' G, (t—t")(Ryp(t"))—s%c?| — — — | (Ryx(1)) ¢, (D2a)
0 T Ty
d t t 52C2 (C2—52)2 S2_ 2
—Rg(t) =—2c4A2f dt’G+(t—t’)(R22(t’)>+254A2f dt’G_(t—t")(Ryy(t))— + (Ry(t))+
dt 0 0 o0 ol ;
1
—2cse” Z'mAzf dt’ Go(t—t")(Ryy(t")) —sc(c?—s?)e” Z'm(Tm = (Rya(1))
+2c%se” A2 dtG (t=t")(Rpy(t") e - Ryt H. D2b
c’s )(Ray(t')) —sc(c’—s’)e ™ Ty (Raa(1)) C. (D2b)

We now consider certain special cases of these general equations. If the external laser field is sufficiently strong that the
secular approximation is justified, the evolution of the atomic system is given by

d t t t
a(RZl(t»: —ZCzszfodt’Gg(t—t’)(R21(t’))—C4f0dt’Gj(t—t’)(R21(t’)>—ZCzszfodt’Go(t—t’)<R21(t’)>

1 1
fdtG (t—t")(Ryy(t")) — [T s+c4>+2 c? [(Ryy(1)), (D3a)
2 l
d — 4 ! ’ ’ ’ 4 ! ’ ’ ’ Szcz (CZ_SZ)Z 52—(;2
a(Ra(t»—_ZC Jodt Gy (t—t")(RAt"))+2s Jodt G (t—t")(Ryy(t'))— Tor + o7 (Ra(t))+ 2T +H.c.
(D3b)

In the case of a strong external laser field and Markovian approximation, considered in Sec. IV C, the temporal evolution
of the dressed atomic polarization and inverdigqs.(4.11)] is given by

i, . . frct s%c?
(Raa(1)) =(Rp1(0))ex 5| 4CTSTyotCly STy T +2an t], (D4a)
2 1

SZCZ (52 _ CZ) 2

Tﬂl’ + an
2 1

|

cty, —sty_+(s>=cH)ITY"
— ex
cly, +sty_ +4s2c?TY +(s?—cH)UTY"

(Rs(1)) :<R3(O)>GXF{ - ( cty,

J’_

32C2 52_C22
Yy, +sty +!t.(D4b)
T Tl

In the non-Markovian casgec. IV D, when the spectral features are placed in the neighborhood of a photonic band edge,
the Laplace transforms of the dressed atomic inversion and polarization b¢Egsé4.123 and (4.120]
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Xop+[s*G_(p)—c*G, (p)+(s>—c?)/2T) +c.c]
p{p+[c*G, (p)+s*'G_(p)+25%c¥ Ty +(s?—c)?2T) +c.c]}’

X(p)= (D5a)

p+c*G* (p) +5*G_(p) +2¢%s Go(p) + Gi (p) ]+ (s*+cH/Th + 282/ T

z(p) (D5b)

For an anisotropic photonic band gap mate(®éc. IV D), characterized by the photon density of sta@2$), the functions
Go(p), G.(p) are given by Eq(4.13. Equation(4.18 then follows from the identity lim .{(R3(t))} =1im,_o{px(p)}.
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