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Theory of fluorescence in photonic crystals
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We present a formalism for the description of fluorescence from optically active materials embedded in a
photonic crystal structure possessing a photonic band gap or pseudogap. An electromagnetic field expansion in
terms of Bloch modes of the crystal is used to develop the equations for fluorescence in terms of the local
density of photon modes available to the emitting atoms in either the high or low dielectric regions of the
crystal. We then obtain expressions for fluorescence spectra and emission dynamics for luminescent materials
in photonic crystals. The validity of our formalism is demonstrated through the calculation of relevant quan-
tities for model photon densities of states. The connection of our calculations to the description of realistic
systems is discussed. We also describe the consequences of these analyses on the accurate description of the
interaction between radiative systems and the electromagnetic reservoir within photonic crystals.
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[. INTRODUCTION would serve to decohere the systgdi. Additionally, local-
ized and extended defects can be engineered in the otherwise
Photonic crystal{PC9 are periodic dielectric structures optically empty PBG in order to waveguide lightO], and to
that use a carefully engineered combination of microscopiproduce strongly localized states of light that can serve as
scattering resonances from individual elements of the periextremely highQ microcavities for microlaser and cavity
odic array and Bragg scattering from the dielectric lattice toQED application§11,12.
strongly modify the dispersiofenergy-momentuinrelation Since the first demonstration of a PBG material operating
of light [1]. From a fundamental perspective, these materialst microwave frequenciegl3], experimental efforts have
are of interest for their ability to drastically alter the nature ofbeen focused on creating such materials at the optical—
the propagation of light2,3]. Of even greater current interest near-IR frequencies relevant to optical communications. To
is the potential that such materials offer for significantly im- produce a full PBG typically requires a connected network of
proving the emission characteristics of active optical devicesigh index material containing a periodic array of air voids
[4], such as diodes, optical switches, and low power lasef43]. The periodicity of these voids should be comparable to
systems. the relevant wavelength of light. Clearly, these conditions are
The most drastic modification of light propagation, and ofdifficult to achieve on the micron length scale of optical
the associated ability to modify the emission properties oftrystals. However, in the past two years, advances in microli-
active optical devices, occurs when a PC is designed so th&tography{14], and in the fabrication of self-organizing col-
the propagation of light within it is prohibited in all three loidal systems[15] have produced materials with strong
directions for a continuous range of frequencies. Thigpseudogaps in the optical. More recently, materials that sug-
propagation-free frequency range is known as a photonigest a full photonic band gap at frequencies in the near-IR
band gap(PBG) [3,4]. An active material with a free space have been produceld0,16. In particular, an inverse opal
radiative transition that lies deep inside a PBG will be unable®BG material[16] can be constructed by infiltrating the
to emit a photon when placed inside a PBG material; insteadjoids in a colloidal synthetic opal crystégrown by self-
a photon-atom bound state is formé&d. For transitions near assembly with a dielectric materialsuch as Sj and then
the edge of a PBG, the emission dynamics will be modifiecetching away the initial colloidal template. The result is an
relative to free space, due to the restricted number of photoaptical PBG material that can be made highly ordered over
modes available at the band ed®. The resulting non- hundreds of lattice constants, and that can eventually be pro-
Markovian atom-field interaction has been predicted to giveduced in a cost-effective manner.
rise to a number of quantum optical phenomena, such as Recently, there has been considerable experimental work
rapid multiatom switching with low quantum noi$&], la-  on radiative emission from active materials embedded in op-
serlike collective atomic emissid8], and atomic states that tical PCs with photon propagation pseudogaps, i.e., materials
can be readily generated and protected from processes thiat prohibit photon propagation in only certain directions
[17-20. These studies are important precursors to future
studies in PBG materials, so that one might optimize the
*Present address: Woodrow Wilson School of Public and Internaemission properties of active materials in the latter struc-
tional Affairs, Princeton University, Princeton, NJ 08544-1013.tures. Furthermore, certain types of quantum optical phe-
Email address: nvats@princeton.edu nomena, such as improved optical switchiig, in fact do
"Email address: kurt@tkm.physik.uni-karlsruhe.de not require a complete band gap, but only a strong
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pseudogap. This along with the fact that pseudogap strudzed system are discussed in Sec. VI.

tures are simpler to fabricate than those with a full PBG The Hamiltonian for an electron in an electromagnetic
means emission studies of pseudogap structures are of intdield may in general be written in the form:

est in their own right for device applications.

It is the aim of this work to provide an efficient formalism
for interfacing realistic calculations of the photon dispersion
relation (and the associated spatial distribution of the EM
modes$ in a PC with calculations of the emission propertiesp andm, are the momentum and mass of the atomic transi-
of active media embedded in these materials. In particulatjon electron, respectively, andl(r) and ¢(r) are, respec-
we treat the phenomenon of fluorescence from a dilute distively, the electromagnetic vector and scalar potentials. Us-
tribution of active elementge.g., atoms, moleculgplaced ing Maxwell's equations and their relations to the associated
within the high or low dielectric fraction of a PC. The study potential functions, the equations of motion for the classical
of fluorescence from within a PC is of considerable interesscalar potentiab and the vector potentigh can be written
for a number of reasons. Firstly, it provides an important toolas[24]
for the characterization of a PC. Active elements within the
crystal may couple to modes that are inaccessible from out- [V2A(r,t)=V[V-A(r,1)]]
side the crystal due to the mismatch in symmetry between
Bloch modes within the crystal and external plane waves
[21,22. As a result, fluorescence from a PC may prove to be c? ot2
a more reliable means of determining the presence of a full
PBG than reflection and transmission experimdi;,19. IA(r,t)
Secondly, our formalism permits an evaluation of qualitative ~ V&(r)- V@ (r,t)+e(r)VZ®(r,t)+ Ve(r)- p
treatments of radiative emission from a photonic crystal
based on model photon dispersion relations. Furthermore, d
our method enables a quantitative description of the interac- +e(r) = V-ArH=0, (2.3
tion between an atom and the electromagnetic modes avail-

able in a PC, which is central to the description of quantumyhere the dielectric permittivity is given by(r)= €o(r) €0,
optical phenomena in these materials. and in the present study is assumed to be linear and
The outline of this paper is as follows. In Sec. Il we frequency-independent in the frequency range of interest.
develop a quantum description of the atom-field interactionthe spatially varying dielectric functiog,(r) describes the
in a realistic PC in terms of the naturdloch) modes of a  periodic modulation of the dielectric constant within a pho-
periodic crystal. In Sec. Il we derive the integro-differential tgnic crystal,e,(r) = €,(r+R), whereR is a vector of the
equation desgribing fluorescence from active media. In thgjrect Bravais latticeR=3;n;a, n;el, the a; being basis
process, we introduce the concepts of the projected locglectors of the periodic lattice. To simplify our expression for
density of states, and the orientationally averaged local derny e choose to work in a gauge in whidh=0. Equation

sity of states, which describe the local electromagnetic field§2_2) reveals that this condition can be satisfied provided
seen by radiating atomic dipoles in this system. Section \pat:

derives the expressions for fluorescence spectra and dynam-

ics starting from the local photon density of states, including V-[e(r)A]=0. (2.9

a detailed treatment of the Lamb shift in a PC. We then test

our formalism on idealized models of the dispersion relationThe consequences of this constraint are discussed below.

in a PC in Sec. V. Finally, in Sec. VI we give a qualitative A classical theory for the electromagnetic field in a pho-

discussion of how our formalism may be applied to interprettonic crystal based on the above equations is developed in

actual fluorescence experiments in PCs. detail in Refs[24] and[25]. The classical equations may be
quantized in the usual manngR4,26]; the appropriately

quantized solution of Eq2.2) for the vector potential may
Il. ATOM-FIELD COUPLING IN A PHOTONIC CRYSTAL be expanded in the genera| form

1
[p—eA(r)]?—ed(r). (2.1

HeI:2m
e

2
_ &) MJF%VCD(M) -0, (2.2

We aim to describe the fluorescence spectrum and emis-
sion dynamics of an active material placed in either the high  A(r,t)= >, Ci{Ay ,(1)ay () +AF (raf (1)},
or low index region of a photonic crystal. Physical realiza- k.o
tions of such a system include, for example, dilute solutions 2.9
of fluorescent organic dyes in the void regid29| and lu- - - ot o
minescent rare-earth ions embedded in the dielectric backvhereay .(t)=a,(0)e '“ is the annihilation operator for
bone of an air-dielectric crystéR3]. The active material is @ field mode with wave vectok and with polarization
modeled as a collection of two-level atoms situated at rang=1,2, and satisfies the boson commutation relation
dom positions. These atoms are, furthermore, assumed to Ibak,(,,aly(,]= Sk k' 050 - The mode functions\ ,(r) may
present in a sufficiently low density so as to eliminate thein general be any complete set of basis functions spanning
possibility of collective coherent emission. The differencesthe region under consideration. In free space, where there is
between realistic active elements and our somewhat ideabomplete translational symmetry, it is natural to choose as
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basis functions simple plane waves, ,(r)=¢€'*'e ,, &, . €. .

being a unit vector in the direction of the polarization state Hine=— EP'A(VO), 2.9

for a given wave vectok. In a photonic crystal, the period-

icity of the dielectric breaks this full translational symmetry. wherer g is now understood to be the position of the atomic
As a result, the field seen by an active atom varies from poinhucleus. Alternatively, we may simply note that the spatial
to point within a unit cell of the crystdl27]. One may ex- variation in the dielectric constant occurs over the length
pressA(r) at a specific point using a plane-wave basis; how-scale of the lattice constant of the crystal, which is orders of
ever, such an approach would not elucidate or take advantag@agnitude larger than the spatial extent of the individual
of the symmetry properties of the periodic crystal. It is there-active atoms. As a result, we may tredt) as a constant
fore highly advantageous to use a basis of Bloch modegver the length scale of the active elements, thus validating

which satisfy the Bloch-Floquet theorem, Eq. (2.9.
_ At this point, we proceed to rewrite the interaction term in
A(r+R)=e*RA(r), (2.6 the form D-E [29] in the electric dipole approximation,

whereD is the usual electric dipole operator, akdis the

as we may then conveniently restrict our attention to a Singl%lectric field operator obtained from E.7). We note that
Wigner-Seitz cell of the lattice. If we then adopt a reduced. . . . I . .
in principle one may derive thB- E form of the interaction

zone scheme fdk [28], we may write the vector potential in . . ) -
[28] y P directly from the Hamiltonian(2.1), without recourse to the

a photonic crystal as approximation scheme presented here, thereby avoiding is-
RN 7 sues relating to the acausal nature of the vector potential
Arr,n=> \/ {An (12 k(1) (see, e.g., Refi30]). Nevertheless, our approach results in
n Jez(2m)® ¥V 2€qwn VT ’ the correct form for the atom-field coupling.
In a rotating-wave approximation, the full Hamiltonian

+AR (N3] (D}, (2.7 for a two-level atom and the electromagnetic field in a pho-
tonic crystal can now be written as

whereV is the volume of a unit cell of the lattice is the
energy band index in the first Brillouin zone, and the wave-
vector integration is over each band in this regiok apace.
Mode functions labeled by are henceforth understood to be
Bloch modes of the crystal. Unlike in free space, different

f
_ T
Hiot=%5 w10, + ﬁz w,a,8,
I

2

i T A%
polarization states for a given wave vector are not necessar- +'h% (9,8,0--0,0.8,). (2.10
ily degenerate in energy. Therefore the band indealso
counts the polarization states for a given wave vektor The indexu labels the energy band and wave vector of a

From Eg. (2.1, we see that the quantized interaction given field modeu={n,k}, and theos; (j=+,—) are the
Hamiltonian of the atom and field for an atomic electron atusual Pauli operators for a two-level atom with(laare
positionr, is given by atomic resonance frequenay;. We have also dropped the

circumflexes denoting operators, as in what follows the dis-
. e . . A ~ tinction between operators and ordinary functions should be
Hiﬂt:_ﬁ[p'A(r0)+A(r0)'p]' (2.8 self-evident. The position-dependent atom-field mode cou-
pling constantg,, are given by
In this expression, we have neglected the term involVidg

in the Hamiltonian(2.1), as it describes photon-photon inter- 9.(d,r) =0, = wyd [ 1 d-E*(ry)
actions, which are negligible at low energies. Note that in p 0TSk AN D g, VA O
general the electron momentum and the vector potential do (2.11

not commute[A(_r),p]—.|hV-A(r). I;owever, 'R aspaélglly where d,; and d are, respectively, the magnitude and the
honjogeneous dielectric, E@.4) re uces t? the condition direction unit vector of the dipole matrix element for the
V-A=0, and we recover the well-knowp- A form of the  4tomic transition. Whereas the conditidh-A=0 in free
minimal coupling Hamiltonian. Clearly, this is not the case inSpace implies that the plane-wave modes are transverse
a periodic dielectric. We may, however, assume that the ele k.A=0), condition (2.4) for a photonic crystal does not

tromagn.etic field varigs little over the spatial extent of thenecessarily give transverse polarization states for Bloch
electronic wave function, thus allowing us to keep only theygges.

dipole contribution of the electronic charge distribution. As
pointed out by Kweon and Lawandy4], when such an
approximation is valid, we may then evaluate the vector po-
tential at the position of the atomic center of mass. Since the We wish to analyze the atomic emission in a Sclmger
electron mass is very small compared to that of the atomiequation formalism6,31]. Atom-field interactions that in-
nucleus, this is equivalent to evaluatidg at the atomic volve more than one photon are more easipd often nec-
nucleus, whose motion is independent of the electronic moessarily described by a density matrix or by Heisenberg op-
tion. We may then write erator equations, and much of our analysis can be carried

III. EQUATIONS OF MOTION
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over to such systems; see Sec. IV C. In the single photofined only over positive frequencies, as there are no negative
sector, the system wave function for a two-level atom withenergy photon modes. Note that E§.6) does not contain
dipole momend,.d is within it a conventional total density of staté30S), which

counts the number of modes available at a given frequency,
|W)=b,(d,ro,t)[2,{0})

+> by (Ao h|1{uhe ¥ 3D N(w)=2 f 1o 0@ @n. S

b,(d,ro,t) andby ,(d,ro,t) label the probability amplitudes Such a DOS fails to account for eith@y the relative orien-

for the excited atom plus an electromagnetic vacuum statdation of the atomic dipole and a given field mode(ior the
and a deexcited atom with a single photon in modere- local contribution of theuth mode at the positiom,. It is
spectively, at a given positior, of a Wigner-Seitz cell in a therefore more useful to consider a projected local density of
photonic crystalA , =, — w; . In a frame that is corotating St&t€S, defined as
with the bare atomic resonance frequeney;, Eg. (3.1
a}long with the quiltoniarﬁz.l() give the equations of mo- Np(d,Fo,@)= 2 f dk8(w— wp )|d- Eq k(ro)|2
tion for the amplitudes, n Jiez ’ ‘
(3.9

giPa(diro)=— 2#‘4 9.01,.(dro, e, (32 Eorq specific atom, or for coherent, collective emission from
a group of atomse.g., lasing or superradiant emissjipane
d . must explicitly consider the relative orientation of the atomic
&bl(d,ro,t)=gMb2(d,r0,t)e'An‘. (3.3  dipole and the various Bloch modes in K8.8). In the case
of fluorescence, however, we have a collection of indepen-
dently emitting atoms with essentially random dipole orien-
tations. As a result, in order to describe the “mean” emission
characteristics of the system, we averaj@ver all solid
angles, giving a factor of 1/3. We may further introduce a
d t distribution function,p(r), which describes the density of
&bz(d,ro,t)z—f G(d,rg,t—t")by(d,rg,t")dt’. fluorescing atoms at a given point in the crystal. We shall
0 assume that the atomic distribution is the same for each unit
(3.4 cell. Performing an average over both dipole orientation and
the atomic distribution within the crystal, we obtain an ex-
g;_)ression for the fluorescence Green function,

Formally integrating Eq(3.3 and substituting the solu-
tion into Eq.(3.2), we arrive at an equation for the excited
state amplitude,

G(d,rot—t") is a time delay Green function, or memory
kernel, which describes the mean effect of the electroma
netic vacuum on the atomic systd| at positionr; it is _
defined as Gf(T)—<G(d,r,7')>r,ﬁ

_ p(r) (= Ni(r,o)
G(d,ro, 7)=0(7)> [g,(d,ro)[%e 4", (3.9 _®(T)'Bfwscdr Ne fo do—0
w

e—i(w—wzj_)ry

(3.9
Here® () is the Heaviside step function, which ensures that
G(d,ro,7)=0 for 7<0, as required by causality consider- where, after performing the angular integration, the local
ations. density of state$LDOS) is defined as
Making explicit the band and wave-vector contributions

to the wave-vector sum, E¢3.5 becomes 3
QS N|(r,0))EE<Np(d,r,(1))>g

e_iAn,kT
G(dr0.n=0(naZ [ a e P
n JiBz = Onk :ZJ dkd(w—wn )| Enk()]? (3.10
. n JiBz
e—l(w—wZI)T

=®(7‘)a§n: f:dwT

() and( ), are used to denote the spatial and orientational
averages, respectively, and in £8.9), we hz;lve2 absorbed all
_ . 2 numerical factors into the prefactgs= w5,d5,/12% 2.
8 Lszdké(w onild-Enx(roll* (3.6 The spatial integration is performed over the density distri-
bution function for the active atoms in a Wigner-Seitz cell,
where a=w3,d3,/16% 7%, and the k-space integration is such thatfdrp(r)=N,, the total number of active atoms
over the first Brillouin zone. Here we have added a fre-within this unit cell. The replacement &(r,7) by G;(7) in
guency integration over a Diraé function, which does not Eq. (3.4) gives the equation of motion for the probability
affect the value of5(d,rq, 7). The frequency integral is de- amplitude of the excited state population in fluorescent emis-

3
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sion; we denote this normalized fluorescence amplitude bgrystal comprised of many unit cells, we are still justified in

b¢(t). The resulting fluorescence equation is then performing an average over dipole orientations, as the dipole
orientations of the single atoms in each unit cell are uncor-

d t related.
abf(t):_fon(t_t’)bf(t,)dt,- (3.11 Central to our analysis is the Fourier transform of the

probability amplitudeb¢(t), which is given by

As discussed in Ref$27] and[32], it is the local density
of states(3.10 that one must evaluate in order to determine
the electromagnetic modes in a given frequency range avail-
able to the active atoms in fluorescence, as the Bloch mode
of a periodic dielectric for a given band tends to reside The factor ofe'“21! in the integrand accounts for the fact
preferentially in either the high or low dielectric region of thatb;(t) has been defined in a rotating frame in E811).
the crystal. Different modes may therefore have very differ-Evaluating Eq.(4.2), we obtain
ent spatial distributions, and accordingly can couple very dif-
ferently to an active atom at a given position in the crystal.
We note that Eq(3.10 corresponds to the local radiative
DOS of Ref.[27]. However, because we have made a field L ) )
expansion in terms of the natural Bloch modes of the crystall Which G(€) is the Fourier transform of the memory ker-
in our case the distinction between a local DOS and a locde! (4.1);
radiative DOS does not arise. The relation between the
LDOS and the total DOS is given by the expression

Bf(Q—wﬂ)zf dt’by(t’)el (@t (4.2

bi( Q= wp) =[Gy, (A= wa)—1(Q-w)] !, (43

~ » » Ni(w) . ,
Gy (Q—w21)=ﬁf dT'f dw@(T')—'( g
1 —% 0 o)
N(w)=f dre(nN((F ), (3.12 .4
wse Changing the order of integration and performing the time

which shows that for a small dielectric modulation in the integration in Eq(4.4) yields
crystal, which implies a weak interaction between the dielec-

tric and the electromagnetic field, the total DOS can provide _ = Nji(w) . 1
a reasonable description of the field at any point in the crys-Gfl(Q—w21)=ﬂfo do—— [775(9—0))“'3 m”
tal. Clearly, such a condition is not satisfied by a crystal
exhibiting a strong pseudogap or a full photonic band gap N(Q) (= N;(w)
[33]. =BT Q +Ipfo dwm . (4.5
IV. EVALUATION OF FLUORESCENCE SPECTRA P denotes a Cauchy principal-value integral. We may thus re-
AND DYNAMICS express Eq(4.3 in the form

Below, we describe the method of calculation of experi-
mentally measurable quantities from fluorescence experi- ~ Ni(Q)
ments for a given LDOS. For convenience, we shall pres- bf(Q_‘”Zl):[B“ _'[Q_“’Zl
ently consider the case of a single radiating atom in each unit
cell at the positiorr, such that > Ni(w) H -t

- BP f do—i—— (4.6
o o(Q-o)

p(r)=a(r—ro),
We see that the last term on the right-hand sithe) of this
andNg=1. The fluorescence Green functi@®9) is then expression appears to shift the bare atomic frequency, and is
in fact the source of the atomic Lamb shift, as described
©  Ny(w) below.
Gfl(7)=®(r),3fo dwTe_'(‘“““m)T, (4.2
A. The Lamb shift

where it is understood tht, () is evaluated at the position As is well known from the theory of free space spontane-
ro. This simplification is made only to make our subsequent,;g emission, the dressing of an atom by virtual photons
analysis more transparent; spatial averages over more Colads to a shift of its bare atomic resonant frequeigy. In
plicated atomic density distributions may be introduced in aynotonic crystals, the modified electromagnetic vacuum near
straightforward manner, due to the linear nature of the avery photonic band gap or pseudogap may produce an anoma-
aging process. Because of the complexity of calculatingoys Lamb shift[5]. In particular, calculations for simple
_l\h(r,w) throughout the active_ fraction of the crystal, it may yggel systems have suggested that near the edge of a full
in fact prove to be more practical to evalu@e, (7) atafew gap, the strong dressing of an atomic system by real, Bragg
representative points within a unit cell. We note that for areflected photons may be sufficiently strong so as to split a
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formerly degenerate atomic level into a doublet that is re-only slightly shifted from its undressed value, which

pelled from the band edge both into and out of the gap. Thigmounts to settings,,;= w,;, on the right-hand side of Eq.

effect could then give rise to fractional localization effects(4_9)' This pole approximation, along with the free space
and vacuum Rabi oscillations in the atomic emission dynampng N(w)=w?/c3, gives the usual Wigner-Weisskopf re-

ics [6]. The possibility of detecting such effects in realistic sult for the free space Lamb  Shift, 8 amp=
photonic crystals is discussed in Sec. V B. _ 3 . ' Lam i
The energy eigenvalue equation for the dressed atomic @218 In(we/wyy)/C*. Near a photonic band gag is un

U . changed from its free space value; howeWi,w) can in
freﬁuen%ﬁe(s; 1S ?tlven b): a,n equgtlon lfor the real pa:t offthe principle vary sufficiently strongly as to modify the Wigner-
poles ofb({2) after analytic continuation to a complex fre- ‘Weisskopf picture. We therefore retain the full expression

guency space; the |ma;]g|n_ary|_p§rt 1S resplon5|ble f(_)r a;[com|%4.9) in our consideration of the Lamb shift in photonic crys-
ecay. From Eq(Af'6)’ the 'mp 'C,'t eigenvalue equation for ;g Finally, we note that because of the explicit functional
the dressed atomic frequenay; is dependence of the Lamb shift on the bare atomic frequency
and the DOS in a photonic crystal, we canaqtriori trans-
Ni(w") form the equations of motion for the fluorescence dynamics
(4.7)  to a rotating frame at a constant Lamb-shifted frequency, as
is commonly done in free space. It is for this reason that we

where the principal-value integration is assumed when thjuave chosen to work in a rotating frame at the bare atomic
dressed frequency lies in the allowed electromagnetic con! €4UENCY.:
tinuum, N;(w) #0.

Because the density of states for large frequencies should
approach the free space DOS, il (w)>*w? for large w,
we see that the right-hand side of this equation is formally The fluctuation or emission spectrum for fluorescent
divergent. A complete treatment of this divergence wouldemission as a function of frequenc§), is given by the
require a relativistic quantum field-theoretic approach; in-Wiener-Khintchine relatiori29],
stead we appeal to the nonrelativistic prescription of Bethe
[34]: The right-hand side of Eq4.7) can be written in the

S(Q)=2 Re{ J

2)21_ wZIZBPj dw'
0

o' (0y—o')’

B. Emission spectra

alternative form dt'by(t')el (@~ w2t

Ni(o) =2 Rgbi(Q—wy)]. (4.10

o' (0x—o')

,BPJ do’
0

_ o Ni(w') Extracting the real part of Eq4.6), the emission spectrum
:w21BPf do'——o— (4.10 for an arbitrary DOS is given bf31]
0 (o) (w21~ 0")
- Fd Mo’ 4.8
Plo 4 o | _ ON,(Q)
S(Q)=2p (4.1

ar pos .
N o : , [B7N(Q)]?+ Q% Q - wp1)?
The last term in this equation is linearly divergent, and is

related to the fact that the bare electronic mass is also

dressed by the electromagnetic field. It can thus be removelqere, we have again denoted the Lamb-shifted atomic fre-

from the equation if we include a mass renormalization Vo). = > 1O
counterterm in our initial Hamiltonian. This leaves only the AUENCY BYwa=wy1+ BPfodw[N(w)/w()—w)]. We see

first term, which is at most only logarithmically divergent. €XPlicitly that the form of the emission spectrum is com-
This latter divergence can be treated by introducing a cutofP/€tély determined by the LDOS in the crystal, and by the
in the frequency integration at the electron's Compton trePosition of the(dressed atomic transition frequency. The

quencyw,, as higher energy components would probe the€mission spectrum thus defined corresponds to the total spec-
e K . . NS . .
relativistic structure of the electron and can therefore be nelfum obtained by considering the radiation emitted into all
glected in our analysis. The Lamb shift is thus given by thedirections from the active medium.

solution(s) to the equatiori35]

C. Emission dynamics and electromagnetic reservoir

Ni(w") 4.9 correlations

(o) (w1~ ') The dynamics of fluorescent emission are given by the
, . . evolution of the excited state atomic populatighg(t)|2.

In free space, the atom-field coupling strength, given byBecause our input parameter is the LDOS of the crystal, we
B, is weak (Rw,1), andN;(w) is a smoothly varying func-  wish to evaluatd(t) from the inverse Fourier transform of

tion. As a result, we may assume that the poldgiQ) is  b(Q), i.e.,

~ ~ We
Wy~ W= w21,8Pj do’
0
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1 (= . V. FLUORESCENCE FOR MODEL PHOTON DENSITIES
be(t)= ZJ dwbi(w— wyy)e (@™ @20t OF STATES

We now apply the methods of Sec. IV to simple models of
1 (= —i(w-wot Ni(w) the photon dispersion relation and of the associated density
“on %dwe Br— —0(w) of states as a test of our method. We explicitly consider three
cases: free space, a model DOS for an anisotropic photonic
Ni(o') band edge, and a model DOS for a pseudogap in a photonic
Py crystal. For simplicity, the DOS in these models is chosen to
(@) (w-o’) be position independent. Nevertheless, in light of the com-
-1 putational complexity of calculating a realistic LDOS, such
, (4.12  idealized models provide an invaluable means of developing
a qualitative and quantitative understanding of the atom-field
interaction in a photonic crystal. While the chosen models
where we have transformed back to a rotating frame, and wprovide an analytic form of the DOS, we note that our
have made explicit the fact th&(w) is defined only for method does not require that such an analytic form exists, in
positive frequencies by the use of the step functi®ifw). contrast to previous attempts to describe the spontaneous
From this expression, we see that for 0, the fact that emission of an atom in a P[®,36).
N, (Q)<Q? for large frequencies means that the memory
kernel will be logarithmically divergent. However, we are A. Free space
only interested in the behavior of this function on the time . . .
scale of the atomic dynamics; this is, in general, much longer. A_S 1S well kn0\_/vn, the_ fr_ee space photon dlspersuon_ rela-
than the natural time scale in E(.9), which is set by the tion is linear and isotropic, |.ea,>k=c|I2<|.;I'he corresponding
atomic resonance frequency,,. We therefore impose a DOS IS therefore given biX(w) =2w*/c*, where the factor

: _ : f 2 has been included to account for the two photon polar-
high-frequency cutoff on Eq4.12 for t=0 without any loss ' < : X .
of information on the time scale of atomic emission. We'Z&lons that are Qegeneratg in energy. The Lgmp shift for th'§

22 case has been discussed in Sec. IV A, and is given approxi-
choose to apply a smooth cutoff of the foem® '“c, and we mately by 6, amp= 0218 IN(@u/w7)/ 3=y IN(welwy) /27,
choosew, such that our result is insensitive to perturbationshere w.~m.c2/4. and m. is the electron mass. Foy
about this choice of cutofin practical termsw,=3w;1).  —10f sec? and w'Zl: 105 sec® we arrive at a value of
This transform is then well defined for a givéfi(w), and 5 —2 2% 108 sec’. Sinced, . is essentially constant,
can be efficiently calculated by standard Fourier integralye jncorporate it into our definition of the atomic resonant
methods. We note that in contrast to the Lamb shift, Wh'Chfrequencyw21.
probes the high-frequency behavior of the LDOS and the rhe exact spectrum evaluated from E4.11) is given by
associated virtual photon contribution, the presence of the
phase factoe™'(“~ @29t in Eq. (4.12), coupled with the fact

+iw,8Pf do
0

—i(w—wyq)

that the remaining argument of the integrand falls off at large a0

frequencies implies that the emission dynamics are deter- S(Q)=2 5 > (5.0
mined only by the LDOS the vicinity of the atomic fre- (aQ)*+ (0~ wzy)

guency.

wherea= y/2w,,. For atomic transitions in the optical and
Lr]ear—ir regions, we have/w,,~10 7, so that we may ap-

may also be referred to as the temporal autocorrelation fun . ; L
tion for the electromagnetic reservoir. As previously men_proxmate by the usual free space Lorentzian emission spec-
trum with a linewidth given byy,

tioned, this function plays a central role in the description of
the atom-field interaction and therefore allows us to charac-
terize the nature of this interaction in a given photonic crys-

We may also evaluate the memory ker@&(7), which

tal. From Eq.(3.9), G(7) may be defined in terms &, (w) S(Q)= Y , (5.2
as (712)*+(Q = w;1)?
in agreement with the result obtained in the Markovian ap-
= N(w) . proximation. As expected, the corresponding emission dy-
G(T)Z(T)/J’fo dwTef'(“’f‘”zl)T- (4.13  namics show the decay of the upper atomic state to be highly

exponential in nature, with a decay rate pf Both in free

. . . space and in the case of a PC, our results are obtained in the
Upon the evaluation of Eq4.13), the rgsu_ltmg funct|_on absence of a Markovian memory kerfid].
G(7) may be used to evaluate the emission dynamics by

direct integration of Eq(3.11) in the time domain. This
method is numerically more straightforward than the evalu-
ation of Eq.(4.12); however, it is considerably more compu-  In order to describe the atom-field interaction near a pho-
tationally intensive, as it requires that we explicitly integratetonic band-edge, we consider an anisotropic effective mass
over all previous values di;(t") in order to obtairbs(t). model for the photonic dispersid8,36]. The band edge of a

B. Anisotropic band-edge model
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three-dimensional photonic crystal is associated with a set o

n high symmetry points on the surface of the first Brillouin 0% 5

zone of the crystal, whose positions in reciprocal space are 038 |
given by the vectorgg, i =1,n. For example, in an inverse

opal PBG material, the band edge for the PBG between the 04 &
8th and 9th bands occurs at theé point, which is highly

degenerate. 2 0T

& (oB)"*

We expand the photon dispersion relation about the uppe
band edgew,,, to quadratic order ik, giving

~0.44 -

h -0.46 -

=0, +Alk—kg|?. (5.3

-0.48

We note that by choosing to expand the dispersion relatior

about the upper band edge, we are describing field mode 02 09 0.995 1 1005 o1

that reside predominantly in the void region of the crystal o/,

(the “air” band) [39], a fact that is borne out by an explicit
calculation of the LDO$32]. Accordingly, this expansion is

applicable to the description of emission from active ele-

ments in the void regions at frequencies near the upper band

FIG. 1. Plot of the Lamb shift as a function of frequency near an
anisotropic band edge.

edge. In this case, we may neglect the influence of the lower w2.d2
band. Similar considerations may be used to motivate an i/2:$_ (5.5
expansion about the lower band edge for active elements in 8 €owy(TA)>?

the dielectric fraction of the crystal. - thi ion. it is clear that the determinati fth
In a PBG material, the degree of curvature of the disper;, rom this expression, 1t 1S clear that the detérmination ot the

sion relation near the band edge will be strongly depender{ equegcy and time S(t:altcejstfor par][q-edgfetrflluorescen_ce will
on the specific structure and dielectric material being consid= epen :? an accur_? ePBeC(;armlna '.0? ?h € ?xpansmn pa-
ered, as well as on the direction of the expansion about thifMeterA for a specific material. The valye, may

band edgd37]. Therefore, it is more accurate to express thet us be deduced from a careful calculation of the LDOS in

expansion coefficient as a tensor quantity, to be determinedthe vicinity of the band edge of a given crystal. In the present

from a microscopic calculation of the dispersion near a ban(‘}f/ork’ we shall instead resc_al_e the reIeyant qyantities to the
edge: this is, however, beyond the scope of the present worl€AUENCY scaleBa; ‘;‘ prelerlnlar)]/c (Ialst|mr?te Ihn Ref40], .
For our purposes, we shall therefore assumeAfiata scalar NoWever, suggests tha, should fall within the range o

constant, a condition that is satisfied exactly for crystal ge9-01y<Ba<10y. The ambiguity inherent to this simple

ometries in which the band-edge wave vector possesses c{nodel demonstrates the need for a more realistic calculation
bic symmetry within the Brillouin zong5], and is otherwise of the LDOS in order to obtain a quantitative evaluation of

a reasonable approximation for the dispersion relation near %1€ atom-field interaction in a PBG material.

band edge after averaging over all directions. From(E), The Lamb shift computed from E¢4.9) is shown in Fig.
the DOS can be written as 1. We see that the shift is frequency dependent near the band

edge, showing that the standard Wigner-Weisskopf approach
o is not applicable. In order to obtain a quantitative estimate Qf
N(w)= u O(w—w,). (5.4) the Lamb shift at the band edge, we take the representative
A3 values of y=10° sec!, B,=0.0ly and w,=1
X 10" sec’!, which gives a value of 8 amu®@y)=2
The (0—w,)Y? dependence oN(w) is characteristic of a x10° sec!; this value is an order of magnitude larger than
three-dimensional phase spa88], and is in agreement with the free space Lamb shift. The accuracy of our calculation is,
the band edge LDOS computed for an inverse opal PBGiowever, compromised by the fact that we have neglected
material[32]. The physical quantities we wish to compute the contribution of the lower band edge to the frequency
require the evaluation of the prodyéN(w), which may be integration. Additionally, the density of states for our model

expressed as does not accurately take into account the structure of the
DOS at frequencies well above the band edge. Nevertheless,
BN(w)=w?BY*olw,—1. our model captures the qualitative behavior of the Lamb

shift, and should give a rough estimate of its band-edge value
Here, B, is the characteristic frequency for band-edge dy-in a real PBG material.

namics in the anisotropic model, and is given by The spectrum is derived from E@.11), and has the form
|
2b\Vwl/w,—1
S(w)~ Pa - O(wlw,—1). (5.6)

@ub(wlw,=1)(Bal 0y) + (0l 0) H{[ 0= 0o+ 8L amp @/ @)/ 0y}
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Here,b=3/7/2. We see from this expression that the func-ization of the upper state population fes, within the gap is
tional form of the Lamb shift contribution ensures that theinfluenced by the DOS in the continuum of modes, even for
spectrum is finite for all values of the bare atomic frequencyatomic transitions well within the gap, as the relevant inte-
w51, including the valuaw,;= w, . This spectrum is plotted grals extend over all frequencies. This accounts for the ab-
in Fig. 2. As expected, there is no emission of radiation in thesence of a completely localized stdtxcited state popula-
forbidden band gap, and the emission goes to zero at thgon of unity) for w,, deep in the gap within our model. Our
photonic band edge due to the absence of electromagnetiesults for the band-edge dynamics are very similar to those
modes atw,. We see that the amount of emitted radiationof Yang and Zhy36], which were obtained by the method of
increases as the atomic resonance frequency is moved farthieaplace transforms. However, there are quantitative differ-
out of the gap, and there is radiation emitted evendigy ~ ences, likely owing to the fact that their treatment used an
inside the gap. The form of the spectrum is non-Lorentzianapproximate form of the memory kernét.13 associated
implying a nonexponential decay of the excited atomic statavith the DOS for the anisotropic model. Here, we have made
population. We, however, find that for larger detunings ofno such approximation. As discussed in Sec. IV C, the fact
w», into the allowed band the spectrum approaches a Lorenthat the emission dynamics probe only the DOS near the
zian shape centered at the atomic frequency that is cut off foatomic resonant frequency implies that the results we have
frequencies in the gap. We observe a long spectral tail thaabtained should not be greatly affected by the inaccurate
extends far into the allowed electromagnetic continuum forigh-frequency limit of the DOS in our band-edge model.
all detunings ofiw,; near the band edge. This is a result of the  Finally, it is straightforward to show th&(t—t") evalu-
Jo— o, dependence of the DOS, which results in a slowated from Eq(4.13 for the DOS(5.4) has the form
decay of the spectrum at higher frequencies when compared
with free space. We expect that this spectral tail would be
diminished when using a more accurate model of the DOS,
in which the slowly increasing square root dependence of the
DOS does not extend throughout the allowed band.

We now turn our attention to the dynamics of the popula- - J;[l—q)(viwu(t—t')]] : (5.7
tion of the upper atomic state for an initially inverted active

medium. The excited-state population is plotted in Fig. 3 forwhere(b(x) is the error function,(l)(x)=(2/\/;)f’5e*12dt.

various values of the detuning of the atomic transition fre- his result is in agreement with the previously derived result
guency from the band edge. We observe a nonzero popula- 9 P y

tion in the steady state fas,, within the gap. This is a result or the anisotropic model8]. This may be compared with

of the fractional localization of the emitted radiation aboUt;[/Cr?icfltueiemsFIJiiZetrll\g?raoew:tnorrneiiugfs(:;nfn i)n:f(rgtla 2)55(;(:_; gés no
the atom in the steady state. Fep,; at the band edge, or P Y P

within the allowed band, we find that the excited state popumempry of IS state at previous times on the time scale of
tomic emission. We therefore observe that the nonzero tem-

lation decays to zero in the steady state. The population dé&

cay becomes exponential for sufficiently large detunings inté)Oral correlations contained in EG.7) are the source of the

the continuum of modes, with a decay rate proportional tod-ewatlons from the Markovian behavior for atomic emis-

the density of states, as one would expect from a perturbativiio" N generaiG(t—t’), or where appropriatés(d,ro, 7)
solution for atomic decay. We note that the degree of local* g.(3.8)] fully characterize the interaction between an ac-

e iloy(t=—t')+m/4]

Vo (t—t’)

Gf(t—t’)=wﬁ’zﬁi\’zei<5+wu><t—t’>|

1
500
— 5=—108, — =56,
N P G T 8=_BA
; \ — === 3=0
4 ,I . =0 0.75 -
o _! \‘\ -0 6=5BA | - 6=BA
I N —-—- 3=10B,
z |
5 300 ! P N o
~ = 4
g Iy o N s 0.5
= I/ AN N = ‘}\
2 "/ ~ N K
= 1/ - AN ~ \\\\ .........
— 200 # Tl N ~ A e
E?{ b \\ AN
/ 0.25 A AN
NN
N Tl
No T e,
e
\~\
oL . Tz = - —
o . ‘ ‘ 0 1 2 3 4
0 20 40 60 80 Bat

(0-0,)/p,
* FIG. 3. Temporal evolution of the excited state population for an

FIG. 2. Emission spectrum near an anisotropic band edge fomitially excited two-level atom near an anisotropic band-edge for
various values of the detuning of the atomic frequency from thevarious values of the detuning of the atomic frequency from the
band-edge frequency= w,;— w,, . band-edge frequencyg= w,1— w,, .
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2.5 4

— h=02
oL ~em h=05
---- h=0.98

AL, (107 s6C7")

0.8 0.9 1 1.1 1.2

FIG. 5. Plot of the difference between the pseudogap Lamb shift
FIG_. 4. Plot of the DOYEQ. (5.8)] for the pseudogap model. gnd the free space Lamb shifh, ,p for system parametery
The width of the gap is set by the paramelé#0.05w,, which - 108 sec?, w,,=10' sec! and '=0.05»,. Plots for various
implies that the pseudogap width is 10% of its central frequencyygjues ofh are shown.

Various depths of the pseudogéget byh) are shown.

tive element and the electromagnetic reservoir. This memory In Fig. 5 we plot the difference between the Lamb shift
kernel is therefore of relevance to the description of quantuncomputed for the pseudogap model and the free space Lamb
optical phenomena within a PC, as it describes the spontanehift A,,,,,. We see that in the vicinity of the bare atomic
ous decay contribution to the evolution of a quantum opticafrequency,w,,~ wg, the Lamb shift is frequency dependent,
system. as was the case near the anisotropic band edge of Sec. V B.
As we have preserved the correct high- and low-frequency
C. Pseudogap model behavior of the DOS in the present model, we can infer that
We now treat the case of a pseudogap, for which the stofhe frequency variation in the Lamb shift in the band edge
band does not extend over all propagation directions, thugase is not an artifact of our band-edge model which does not
resulting in a suppression of the DOS rather than the formapossess the correct high- and low-frequency behavior. There-
tion of a full PBG. In contrast to the two cases treated abovefore, it is clear that both pseudogap and band-edge emission
it is not a straightforward matter to develop a model disperphenomena cannot simply be treated by means of a Wigner-

2

w
N(cu)= g

(5.9

sion relation for a pseudogap, as this would require a mor&Veisskopf approximation, as has been suggested in Refs.
explicit treatment of the directional dependence of the phof41].
ton dispersion relation. Instead, we propose a model DOS At w,;=w, we find that the Lamb shift for the
which recaptures the basic qualitative features of gyseudogap model is identical to the free space value, inde-
pseudogap; it is plotted in Fig. 4, and has the form pendent of the values &f andT". This is attributable to the
symmetry of N(w) about wy for frequencies within the
) pseudogap, which negates the contribution of the pseudogap
1—h ex;{ Ok wo) in the evaluation of the Cauchy principal-value integral, Eq.
r (4.9. The calculated shift may be greater or less than the free
space value, depending on whethgy is greater or less than
Here,h (which is dimensionlessandI" (in units of wy) are  wq, and, as expected, the deviation of the pseudogap Lamb
parameters describing the depth and width of the pseudogaghift from the free space value increases as the strength of
respectively, andw, is the central frequency of the the pseudogap is increased by enlarging the value tfis
pseudogap. We see that the pseudogap is assumed to havit&resting to note that the maximal positive and negative
Gaussian profile, and approaches the free space DOS awsglues of A, for fixed values ofl’ and h occur at the
from wq, i.e., N(0)=0 and N(w> w,)=w?/c®. Further- “edges” of the pseudogap, which occur at the values
more, we obtain the free space DOS et 0, allowing usto  =wp=*I". This is clearly due to the fact that the DOS exhib-
unambiguously compare results obtained for the pseudogdfs the greatest asymmetry about these frequencies, thereby
model with the corresponding values in free space. We notgiving the largest variation when performing the Cauchy
that this model is more realistic than the choice of a Lorentprincipal value integration in Eq4.9. This fact suggests
zian, whose more sharply peaked profile is better suited tthat the maximal variation of the Lamb shift from the free
describe the suppression of a single mode, rather than the tispace value for a system exhibiting a full PBG should occur
suppression of the range of frequencies contained within at the band edges, as we have demonstrated in the previous
pseudogap. section. For a sufficiently strong pseudogap, the maximal
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value of |A ,my May be on the order of 15% of the free are presented in Figs(® and Gb), respectively. Here, we

space valuésee Fig. 5, a difference that should be measur- have incorporated the free space Lamb shift into our defini-

able using conventional measurement techniques.
Spectral and dynamical results for the pseudogap modedase is given by the expression

2a

1 h W — Wo 2
ex T

tion of w,y, SO thatws= o1+ A amp. The spectrum for this

(w/ o)

S(w)~

a2

1 h W — Wo 2
—nex T

2

) (5.9

(0l wg)?+{[ 0= war+ AL amp( @/ wg) [/ wo}?

wherea= y/2w,. The resulting spectrum is highly Lorentz- increase in thg peak of the emission spectrum for a fixed
ian in nature, with a linewidth that depends on the DOS invalue of w,; within the pseudogap as the value fofs in-
the vicinity of the atomic transition. As a result, we see thatcreased. This is in contrast to the case of an atomic transition
there is a narrowing of the linewidth and a Correspondindn the V|C|n|ty of a PBG, for which the fractional localization

1000 ;

800 -

— h=02
e =04
---- h=06

of light in the vicinity of the emitting “atoms” means that

the integrated emission intensity is not necessarily preserved
as the parameters of the system are changed. As expected,
the corresponding curves for the emission dynanjfsg.

6(b)] are highly exponential, with a decay rate equal to the

!
'
'
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i
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'
1
'
{
|

|
'
1
|
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1
1
[l
1
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i
g

i spectral linewidth for a given set of system parameters. We
i thus see that, in contrast to the case of a PBG, the spectral
i and dynamical characteristics of active media with radiative

! transitions within a pseudogap may be treated using a pertur-
bative approach, in which we define a decay rate propor-
tional to the DOS at the atomic resonant frequency. Such an
approach is valid in the present case because of the smooth-
ness of the DOS in our pseudogap model within the vicinity
of the atomic transition frequency. A more accurate charac-
terization of the LDOS in a strongly scattering PC, however,
shows that even in the absence of a PBG, there will be a
number of sharp features in the DOS and the LDOS, in par-
ticular van Hove singularitief32], whose effect on the ra-
diative properties of an active medium cannot be described
by such a perturbative treatment. Our formalism is therefore
useful in obtaining a complete characterization of the present
problem, including the Lamb shift, and in a broader sense
allows us to describe the effect of virtually any feature of the
DOS within a PC on radiative emission within the same,
straightforward framework.

600 r

400 r

S(Q) (arbitrary units)
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.
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04t .
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\\\ T VI. DISCUSSION
02 \ ~~~~~~~~~~~~~ The formalism developed and applied in the preceding
— " sections applies exactly to the case of a system of two-level
b~ e atoms in a defect-free photonic crystal. Clearly, real systems
0 2 LAV 8 10 will in general differ significantly from this idealized con-
(b) figuration. Any large-scale PC microfabricated at optical

FIG. 6. (a) Emission spectrum for a two-level atom with reso- Wavelengths will likely posses a significant number of de-
nant frequency coincident with the central frequency of af€cts, which may take the form of point defects, dislocations,
pseudogapmwa,= wy. I'=0.050,. (b) Temporal evolution of the and grain boundaries within the bulk of the crystal. The ex-
excited-state population for an initially excited two-level atom with Plicit incorporation of these effects into our formalism,
resonant frequency coincident with the central frequency of ahough possible in principle, would be extremely computa-
pseudogapw,;= wy. I'=0.05m,. Plots for various values df are  tionally intensive. Qualitatively, we expect that there may be
shown. emission into directions for which photon propagation is pro-
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hibited in a perfect crystal. This is a result of the scattering ofeffects[30,42. These effects are a result of the microscopic
radiation into the direction of a PC stop band by defects thainteraction between individual active elements and the con-
are close enough to the crystal surface so that the scatterstlituent atoms of the dielectric material, which results in a
light passes through only a small number of crystal layergadiation reaction on the active elements. Local field effects
before reaching the crystal boundary, and therefore does nétay then serve to modify the time scales for the emission
feel a significant Bragg scattering effect. As discussed byynamics, as well as the value of the Lamb shift. Therefore,
Megenset al.[18], this “defect-assisted” emission would be ©0ur description will apply most accurately to active elements
eliminated for an atomic transition frequency deep inside 4ocated within the void region of a PC, away from dielectric
PBG, as the active elements would not be able to emit intgurfaces. It is cllear that each of the.eﬁects outlined above
any direction within the bulk of the crystal. Therefore, the should be cons]dered when interpreting the' resul'ts of fluo-
absence of emitted radiation at frequencies within the ban scence experiments. However, such considerations do not

gap is a strong signature of the existence of a full PBG, eve etract significantly from the usefulness of our formalism in
in the presence of defects. It is also interesting to note thaf'€ characterization of fluorescence from active media in

the presence of a small number of defects may actually aid i Cls. h developed 't lism f
the characterization of a PC via fluorescence experiments, N summary, weé have developed a general formalism for

the presence of defects breaks the exact mode symmetry ofae description of fluorescence from active media in photonic

given Bloch mode. This may permit us to observe emissior?ryStaIS' We have used a Bloch mode expansion of the elec-
tromagnetic field modes in order to express the fluorescence

from a Bloch mode of the crystal that may otherwise be . . )
uncoupled to externally propagating modes properties of the system in terms of the local density of
i odes available to the active elements. In the process, we

We have also made certain idealizations with respect t . . : )
our description of the active medium. First, we have nel'ave derived general expressions for the Lamb shift, emis-

glected the effects of various broadening mechanisms. Th¥on SPectrum, and emission dynamics in PCs that are readily
effect of a small amount of homogeneous broadening WiIIamenable to numerical calculation in the absence of an ana-

not modify the qualitative behavior of the system, and ma))yt'c form for the local density of states. Our formalism was

be minimized by considering an active medium at low tem_then applied to model densities of states in order to demon-

peratures. Inhomogeneous broadening effects may be intrgtrate the validity.of the_approaph. Most notably, we treateq
duced into our formalism by convolving our results with athe case of an anisotropic effective mass model of a photonic

probability distributionF(w) over the transition frequencies band edge. We showed that while this simple model provides

of the constituents of the active medium being considered. I? reasonable characterization of band-edge emission behav-

has been pointed out that certain active media, such as oer, the limitations of the model motivate a more accurate

ganic dyes, possess both a small degree of homogeneoggtermination of the band-edge density of states in order to

broadening, along with substantial inhomogeneous broaderﬁ’—rov'def a quantitatively 'accu'rate deSCF'pF'O”- Finally, we
ing [19]. The narrow linewidth of the individual molecules in have dlscu_ssed how our idealized desc_rlptlon may be modi-
such a dye allows one to probe the LDOS over small fre_f|ed by_ various effects inherent to experl_mental systems. The
guency ranges, whereas the broad distribution of emissioﬁ)r.rm’“.Ism presenteq here may f_md application to the pharac-
frequencies permits one to scan the full range of frequencietfrlzatlon of photonic crys'gals via quo_rescenpe experiments,
for which a modification of the emission properties may bedS well as to the descrlptlon of the mterag:ﬂon between an
expectedfor a full PBG, this may correspond to 5—20 % of atom and the electromagnetic reservoir, which is of relevance
the midgap frequency, depending on the structure being corf@ Virually any radiative phenomenon within a photonic
sidered. Such dyes are therefore ideal candidates for thé:ryStal'
characterization of PCs via fluorescence experiments, and ACKNOWLEDGMENT
their emission may be well described using our formalism.

Finally, we note that for active elements located near di- K.B. acknowledges financial support from the Deutsche
electric surfaces, and within the bulk of the dielectric, theForschungsgemeinschaft under Grant No. Bu 1107/2-1

atom-field coupling may be modified by so-called local field(Emmy-Noether program
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