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We demonstrate a trimodal waveguide architecture in a three-dimensional(3D) photonic-band-gap(PBG)
material, in which the local electromagnetic density of states(LDOS) within and adjacent to the waveguide
exhibits a forklike wavelength filter characteristic. This facilitates the control and switching of one laser beam
with other laser beams( ,1 mW steady-state holding power and,5 nW switching power) through mutual
coherent resonant interaction with quantum dots. Two waveguide modes provide narrow spectral windows
where the electromagnetic LDOS is enhanced by a factor of 100 or more relative to the background LDOS of
a third air-waveguide mode with nearly linear dispersion. This “engineered vacuum” can be used for
frequency-selective, atomic population inversion and switching(by coherent resonant optical pumping) of an
inhomogeneously broadened collection of “atoms” situated adjacent to the waveguide channel. The “inverted”
atomic system can then be used to coherently amplify fast optical pulses propagating through the third wave-
guide mode. This coherent “control of light with light” occurs without recourse to microcavity resonances
(involving long cavity buildup and decay times for the optical field). Our architecture facilitates steady-state
coherent pumping of the atomic system(on the lower-frequency LDOS peak) to just below the gain threshold.
The higher-frequency LDOS peak is chosen to coincide with the upper Mollow sideband of the same atomic
resonance fluorescence spectrum. The probing laser is adjusted to the lower Mollow sideband, which couples
to the linear dispersion(high group velocity part) of the third waveguide mode. This architecture enables rapid
modulation(switching) of light at the lower Mollow sideband frequency through light pulses conveyed by the
linear dispersion mode at frequencies corresponding to the central Mollow component(lower LDOS peak). We
demonstrate that LDOS jumps of order 100 can occur on frequency scales ofDv<10−4vc (wherevc is the
frequency of the jump) in a finite-size 3D photonic crystal(PC) consisting of only 10310320 unit cells.
When the semiconductor backbone of the PC has a refractive index of 3.5 andvc corresponds to a wavelength
of 1.5 mm, this vacuum engineering may be achieved in a sample whose largest dimension is about 12mm.
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I. INTRODUCTION

Photonic crystals are periodically ordered dielectric mate-
rials, which, in analogy to electrons in an atomic lattice,
exhibit a band structure in the light spectrum. When this
band structure exhibits a complete and omnidirectional gap
in three dimensions(3D), the crystal is referred to as a
photonic-band-gap(PBG) material. Inside the PBG, light
cannot propagate, leading to some fundamentally new opti-
cal phenomena, such as the localization of light[1] and the
inhibition of spontaneous emission[2]. During the past de-
cade, a great deal of progress has taken place both theoreti-
cally and experimentally[3]. For example, three-dimensional
photonic crystals with a complete band gap at 1.5mm have
been successfully fabricated using silicon on a very large
scale using low cost processes[4].

In the “strong-coupling” regime of photon-atom interac-
tions, where nonradiative extinction rates and dipolar
dephasing rates are made sufficiently small, some spectacular
effects are predicted to arise. One such phenomenon is the
photon-atom bound state[5]. Furthermore, if the transition
frequency of the atom is near a photonic band edge, the atom
can be coherently driven by a pump laser beam to an almost
totally inverted atomic state[6]. This kind of atomic popula-
tion inversion by coherent resonant pumping cannot be real-
ized in ordinary vacuum, where the Einstein rate equations

[7] forbid such behavior in the steady-state limit.
If the above two-level atom is replaced byN identical

two-level atoms, collective switching and inversion behavior
are obtained[8]. Near the threshold value, the modulation
intensity of the pump laser required to “switch” the atomic
population decreases linearly as 1/N. Even in the presence of
dephasing interactions(which would eventually smear out
the single-atom population inversion), the collective atomic
population inversion remains large and sharply defined. Fur-
thermore, under certain conditions, i.e., when the concentra-
tion of active atoms is high enough and the dephasing effects
are relatively small, the statistics of the excited atoms can be
strongly sub-Poissonian. Based on this type of atomic popu-
lation inversion, both sub-Poissonian laser emission[8] and
all-optical microtransistor action[9] have been proposed.

Considerations of all-optical transistor action have been
presented over the past 30 years. In very early work, optical
gain was achieved using a sodium-filled Fabry-Perot interfer-
ometer[10,11]. The idea, here, was to make use of a narrow
Fabry-Perot resonance that can be shifted in frequency by
pumping of a nonlinear medium within the Fabry-Perot cav-
ity. In this manner, a small change in the pump field could
switch the transmission behavior of a probe beam through
the cavity. However, this method has a fundamental
drawback—the switching time(cavity buildup time) has an
inverse relationship to the switching intensity threshold. In
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other words, an intense laser beam is required to obtain a
quick switch; or a slow switch is inevitable if it is operated
under a weak laser beam. Similar considerations have been
presented in the context of nonlinear microcavity resonators
in photonic crystals[12]. Other approaches to realize all-
optical transistor action have been proposed, such as by
transferring the energy between the fundamental and the
second-order harmonic waves[13] (cascaded second-order
nonlinearities) and by photoinduced stress in semiconductors
[14]. Unfortunately, these methods either require a large-size
device or a high-intensity laser, which make them impracti-
cal for certain applications.

Collective atomic switching in a PBG[8], which origi-
nates from coherently induced atomic population inversion,
is not constrained by the inverse relationship between
switching time and switching threshold, inherent in high
Q-factor cavity resonances. Instead, collective atomic
switching requires that the local electromagnetic density of
states(LDOS) exhibits a jump of order 100 over a very nar-
row frequency range spanning roughly one part in ten thou-
sand of the frequency of the jump itself. In conventional
photonic materials, such a large discontinuity in the LDOS is
associated with a high-qualityQ-factor microcavity resona-
tor. For light at frequencyv0 (corresponding to a vacuum
wavelength ofl=1.5 mm), a microcavity exhibiting a large
LDOS jump over the frequency scaleDv /v0<10−4 requires
a cavity buildup timeDtù10 picoseconds. The slowing
down of light propagating in a waveguide, resonantly
coupled to a microcavity, is depicted in Fig. 1(a). In the
dispersion diagram for the waveguide mode, the microcavity
resonance appears as a horizontal(dispersionless) line which
attempts to cross the dispersion curve of the waveguide. The
interaction between the localized cavity mode and the ex-
tended waveguide mode leads to a local distortion(also
known as level repulsion or anticrossing) of the waveguide
group velocity on resonance. In contrast, a multimode wave-
guide(with no coupling to a microcavity) can provide a large
LDOS jump when one of the waveguide modes exhibits a

cutoff [see Fig. 1(b)]. This does not require direct mode cou-
pling and disruption of high group velocity in the first wave-
guide mode near the cutoff frequency of the second mode.
Waveguide cutoffs in conventional dielectric waveguides
typically do not achieve the required LDOS contrast because
of the overwhelming presence of the background free-space
density-of-states continuumrsvd=v2/ sp2c3d [15]. In hollow
metallic waveguides[16], it is possible to expel the free-
space density of states. However, the jump in the LDOS
between the lowest waveguide mode and the next waveguide
mode is limited by resistive losses in the walls of the wave-
guide channel. While large jumps may arise in a frequency
range compatible with the superconducting gap of the metal,
it is practically impossible to achieve the required LDOS
jump at near infrareds1.5 mmd or visible frequencies. More-
over, it is impractical to couple these waveguide modes to
resonant two-level atoms.

Unlike a classical high-Q microcavity that requires sig-
nificant buildup time for light to enter and exit, an atom is a
quantum resonator which absorbs and emits single photons
from and to an optical mode containingn photons with a rate
proportional ton [7]. Moreover, if N identical and equiva-
lently situated atoms experience the same optical field, even
the spontaneous-emission rate of a single photon from the
atomic system is enhanced by a factor ofN [17]. These facts
facilitate ultrafast response of an atomic system to rapid
modulations in an optical driving field. Moreover, rapid
transfer of energy from one optical beam or pulse to another
pulse can be mediated by the atoms. We suggest that with
suitable mode engineering in a PBG material, this provides
the possibility of ultrafast control of light with light with a
relatively low powers,1 mWd holding laser beam and low-
powers,10 nWd laser pulses that modulate the steady-state
coherent pump[18].

In practice, quantum dots(instead of the two-level atoms)
may be more suitable for an optical transistor device. Re-
cently, experimental techniques to grow and precisely posi-
tion quantum dots on structured semiconductor surface have
emerged[19]. It may also be possible to integrate quantum
dots into a PBG heterostructure[20], either within a 2D mi-
crochip layer sandwiched above and below by 3D PBG clad-
ding or as an additional thin, solid membrane layer between
the 2D microchip layer and one of the 3D PBG cladding
layers.

In practice, an ensemble of quantum dots will exhibit an
inhomogeneously broadened atomic resonance frequency.
Although a weak inhomogeneous broadening may improve
the switching characteristics by enlarging the spectral range
over which the switching occurs, a strong inhomogeneous
broadening hinders the overall switching effect because a
large number of atoms(improperly detuned for the coherent
pump frequency) may remain in the absorbing rather than
amplifying state. One possible solution is to design a fork-
shaped LDOS to produce a filter effect[21]. Atoms detuned
from the prescribed LDOS cannot couple to either the exter-
nal fields or the electromagnetic(vacuum) reservoir, and as a
result the deleterious part of the atomic distribution is
quenched.

The 3D photonic band gap provides the most versatile
environment in which to engineer the electromagnetic

FIG. 1. Schematic picture of(a) anticrossing of a waveguide
mode and a cavity mode, in which the dashed lines are the wave-
guide (cavity) mode with the presence of the cavity(waveguide);
(b) two waveguide modes, in which the dot-dashed line indicates
the cutoff frequency of the high-frequency mode. The upper and
lower photonic bands are shaded to show the photonic band gaps.
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LDOS. Within the PBG, the LDOS is zero. This provides a
“blank page” to design the required LDOS by introducing
defects into the structure. Various kinds of defects, such as
point defects, line defects, and planar defects, have been in-
vestigated[3]. Line defects(waveguides) in 2D photonic
crystals have been intensively studied because of their poten-
tial to mold the flow of light in planar microcircuits[22].
However, in 2D slab and membrane photonic crystals, sig-
nificant attenuation of the guided optical signal occurs due to
leaky modes into the third dimension and the propensity of
weak disorder to induce small-angle forward scattering into
the third dimension. Moreover, the electromagnetic LDOS is
dominated by the free-space 3D continuum above and below
the 2D membrane.

Recently, a 3D photonic-band-gap heterostructure has
been introduced which overcomes the limitation of the 2D
photonic crystal, while retaining the design flexibility of a
planar optical microchip[20]. In addition to facilitating “dif-
fractionless flow of light” in waveguide circuits over a large
s150 nmd bandwidth, this architecture provides an unprec-
edented opportunity for vacuum LDOS engineering within
the optical microchip.

The band structure of the heterostructure with semi-
infinite 3D PBG cladding regions(above and below the 2D
microchip layer) is calculated by the plane-wave expansion
method[23] as well as the supercell method[24]. The wave-
guide mode frequencies are shown to be adjustable by the
thickness of the 2D microchip layer and the radii of rods
inside the 2D microchip. Near the cutoff frequencysvcd, the
group velocity of light approaches zero, leading to a square-
root divergence in the LDOS in an infinite sample. This di-
vergence of the LDOS is interrupted by either the finite size
of the sample or the finite length of the engineered wave-
guide section. We demonstrate that the desired forklike shape
LDOS can be engineered using a trimodal waveguide archi-
tecture in a PBG microchip using suitable cutoff frequencies
for two of the three waveguide modes.

The LDOS of a photonic crystal is proportional to the
energy emitted by an oscillating dipole[25,26]. When a di-
pole emitter is inside a finite structure, the spontaneous-
emission rate is calculated by integrating the electromagnetic
energy flux on a surface surrounding the dipole using the
finite-difference time-domain(FDTD) method[27,28].

The paper is organized as follows. In Sec. II, we review
the conceptual basis of atomic switching near an LDOS dis-
continuity. In Sec. III, the band structure of a waveguide-
engineered 3D heterostructure is calculated. The LDOS of
the waveguide-engineered 3D heterostructure is presented in
Sec. IV. In Sec. V, 2D photonic crystal engineering is used to
discuss the desired fork-shaped LDOS. Finally, a summary is
presented in Sec. VI.

II. OPTICAL SWITCHING OF DRESSED ATOMS
IN AN ENGINEERED VACUUM

Here we briefly review the mechanism of the population
inversion of two-level atoms in an engineered vacuum using
a near-resonant classical laser field. The details can be found
elsewhere[6,8,9]. When a coherent laser beam interacts with

a two-level atom, the Hamiltonian of the system has the form
H=H0+HAR+HAL. The noninteracting Hamiltonian of the
bare atomic and the photonic reservoir isH0="DALs3
+ol"Dlal

†al, where DAL=vA−vL, Dl=vl−vL, vA is the
transition frequency of the two-level atom,vL is the fre-
quency of the laser field, andvl is the frequency of a mode
l. The interaction between the atom and photonic reservoir
is HAR= i"olglsal

†s12−s21ald and the interaction between
the atomic system and laser field isHAL="ess12+s21d. Here
si j = uilk j usi , j =1,2d are the atomic excitation and deexcita-
tion operators, ands3=s22−s11 is the atomic inversion op-
erator. The coupling constantsgld describes the coupling be-
tween the atom and the reservoirl mode. The resonant Rabi
frequencye=m ·E /" describes the interaction between the
atom and the laser field, wherem is the dipole moment of the
atom andE is the applied laser field amplitude.

The Hamiltonian can be simplified by introducing the
dressed atomic stateshu1̃l , u2̃lj, defined byu1̃l=cu1l+su2l and

u2̃l=−su1l+cu2l, that diagonalize H0+HAL. Here, c2

;cos2sfd;f1+sgnsDALd uDALu / s2Vdg /2 and s2;sin2sfd
;f1−sgnsDALd uDALu / s2Vdg /2, where the generalized Rabi
frequency is defined byV;Îe2+DAL

2 /4. In the dressed-state

basis, the total Hamiltonian becomesH=H̃0+H̃I. Here,

H̃0=ol"Dlal
†al+"Vs̃3, and H̃I = i"olglfal

†scss̃3+c2s̃12

−s2s̃21dg+H.c., where s̃i j = uĩlk j̃ usi , j =1,2d are the dressed
atomic excitation and deexcitation operators, ands̃3=s̃22
−s̃11 is the dressed inversion operator. Then we introduce the
time-dependent interaction picture generated by the unitary

operator U;exps−iH̃0td. The interaction Hamiltonian be-

comes H̃Istd;UH̃IU
†, where H̃Istd= i"olglfal

†scss̃3e
iDlt

+c2s̃12e
isDl−2Vdt−s2s̃21e

isDl+2Vdtdg+H.c.
When the laser field amplitude(described by"e) is strong

enough so that the Mollow frequenciesvL, vL−2V, and
vL+2V are pushed way from the DOS discontinuities, the
Mollow spectral components atvL±2V experience very dif-
ferent densities of states and can be described by spontane-
ous emission decay ratesg±=2polgl

2dsvl−vL72Vd.
The steady-state solution of the expectation value of the

inversion operator is(see Ref.[9] for details) ks̃3lst=sg−s4

−g+c4d / sg−s4+g+c4d. For the caseDAL.0, coefficient

c2.s2. The dressed stateu2̃l is mostly comprised of the bare

excited stateu2l. When g−s4.g+c4, the dressed stateu2̃l is
more populated in the steady-state regime, which corre-
sponds to an accumulation of atomic population on the bare
excited stateu2l. In other words, at a pump intensity thresh-
old, ethr, defined by the condition tan4f=g+/g−, the atom
switches from being in an absorptive state on the lower Mol-
low sideband at frequencyvL−2V to one that provides gain
to an optical pulse at the same frequency. In the absence of
any LDOS jump (i.e., g+=g−), we recapture the atomic
population behavior predicted by the Einstein rate equations.
Namely, it is impossible to achieve population inversion by
coherent resonant pumping. Unlike population inversion in
conventional lasers, achieved by incorporating additional
level structure into the atom(i.e., three- or four-level atoms),
population inversion in the context of our two-level atom is
achieved by incorporating nontrivial structure into the
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vacuum. Moreover, the steady-state atomic switching occurs
through entirely coherent processes. The larger the LDOS
jump (as determined by the ratiog+/g−), the lower the
switching threshold. Moreover, it has been shown that for a
collection of N indistinguishable atoms, the width of the
switching intensity regime(corresponding to the required in-
tensity of a pump pulse over and above a steady-state pump
“holding field”) is proportional to 1/N.

As argued in Ref.[18], when the PBG waveguide archi-
tecture provides a factor of 100 jumps of the LDOS over the
frequency range of 1–10 GHz, a 100 nW continuous laser
beam passing through a micron-scale waveguide channel,
with suitable field enhancement effects in certain locations,
is sufficient to induce steady-state atomic inversion at those
locations. The precise relation between peak electric-field
amplitudes and power passing through a waveguide channel
depends sensitively on the precise photonic crystal architec-
ture. A 100 nW continuous-wave laser beam guided through
a waveguide channel of cross section 1mm by 1 mm pro-
duces an average intensity of 10 W/cm2. However, in a real
photonic crystal waveguide, the field intensity is not uniform
over the cross section of the waveguide, but highly concen-
trated in specific regions(see Fig. 4). The intensity in these
“hot spots” can be more than 10 times the average. If the
quantum dots are placed in these specific(periodically re-
peating) “hot spots,” the effective Rabi frequency associated
with a 50–100 nW laser beam can be in the 10–20 GHz
range. In the present paper, we describe specific photonic
crystal waveguide architectures that approach these earlier
estimates. Moreover, the quantum dots, placed in these opti-
cally equivalent positions, are expected to respond collec-
tively (i.e., as though they were confined to the same cubic
half-wavelength region of space). By spreading the “atomic”
system over the length of the trimodal waveguide channel
s*10 mmd, the atom-field interaction is expected to be domi-
nant compared to direct resonance dipole-dipole interaction
between the atoms.

As can be seen from the above expressions, the atomic
switching process depends on the detuning,DAL, of the
atomic resonance frequency from the pump laser frequency.
In an inhomogeneously broadened atomic distribution, im-
properly detuned atoms will continue to be in an absorbing
state, thereby offsetting the gain provided by other atoms that
have undergone switching. It is the aim of the remainder of
this paper to demonstrate that(i) LDOS engineering can be
performed in a 3D PBG optical microchip to achieve very
large LDOS jumps,g+/g−, over very narrow frequency in-
tervalss&Vd, and (ii ) additional LDOS engineering can be
implemented to retain only relevant parts of inhomoge-
neously broadened atomic distribution that contribute to gain
at a particular pump intensity,e, whereas improperly detuned
atoms in the same distribution can be quenched(prevented
from absorbing and decoupled from the electromagnetic res-
ervoir).

III. BAND STRUCTURE OF A MULTIMODE WAVEGUIDE
3D PBG HETEROSTRUCTURE

Our architecture for controlling light with light consists of
three parts: upper and lower cladding sections, consisting of

3D PBG material, sandwiching a lattice-matched 2D photo-
nic crystal chip, as depicted in Fig. 2. Within the microchip
layer, optical air-waveguide channels are created by remov-
ing one or more lines of dielectric rods. For concreteness, we
consider rods adjacent to the waveguide channel that contain
two-level atoms(quantum dots). We evaluate, in this paper,
the LDOS profiles in the vicinity of such light emitters.

The upper and lower 3D PBG cladding material can con-
sist of any structure with a large 3D photonic band gap, such
as inverse square spirals[29], woodpiles[30], slanted pores
[31], etc. The middle part is a lattice-matched 2D photonic
crystal slab with a waveguide created by removing one or
more lines of a dielectric rod. The structure with one line
(three lines) of rods removed is denoted as a W1(W3) wave-
guide. The 2D slab plane is chosen as thexy plane with the
waveguide along they direction, and the direction perpen-
dicular to the 2D slab is thez direction.

For concreteness, inverse square spiral structures[20,29]
are used as 3D PBG material cladding sections. They have a
lattice constanta along thex andy axes, and 1.7a along the
z axis. The structure consists of spiral air arms that interleave
in silicon (dielectric constant 11.9): the transverse arm length
is 1.5a and the circular cross section is 0.33a. This photonic
crystal has a PBG to a center frequency ratio of about 24%
[29]. The intercalated 2D PC slab consists of silicon rods
arranged in a square lattice with lattice constanta and rod
radius 0.17a. The heightshd of the 2D slab(along thez
direction) is 0.4a. For light of wavelength near 1.5mm pro-
viding the “atomic” switching, the 2D lattice constant isa

FIG. 2. The heterostructure with woodpile structure as the upper
and lower 3D PBG cladding sections. The middle part is a W3
waveguide with highlighted rods in which quantum dots(or two-
level atoms) are integrated. The ends of the W3 waveguide are
connected by W1 waveguides.(a) Bird’s eye view with the upper
cladding section removed.(b) Side view with both upper and lower
cladding sections.
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<600 nm and the thickness of the microchip layer ish
<250 nm. The detailed precess of fabricating this hetero-
structure is described in Ref.[20]. We emphasize, however,
that this serves only as a concrete illustration. The concepts
described in the present paper can equally well be applied to
nearly any 3D PBG material and its associated 2D-3D mi-
crochip heterostructure[20].

The evaluation of the electric-field amplitude in a super-
cell of the 2D-3D PBG heterostructure(using plane-wave
expansion) is described in Appendix A. The supercell is cho-
sen to be as follows: In thex direction, there are five unit
structures on each side of the waveguide, i.e., 11a s13ad for
the W1(W3) waveguide. In they direction, there is only one
unit. In the z direction, there are three unit layers of the
inverse spiral structure both above and below the 2D slab,
i.e., the height of the waveguide supercell along thez direc-
tion is 1.7a33+h+1.7a33=10.2a+h, whereh is the height
of the 2D slab. Plane waves satisfyinguGu ø2.5s2p /ad are
used in the field mode expansion. This corresponds to(i)
using 4427 plane waves for the W1 waveguide whenh
=0.4a; (ii ) using 5187 plane waves for the W3 waveguide
when h=0.4a; and (iii ) using 5147 plane waves for W3
waveguide whenh=0.3a.

The band structure of the W1 heterostructure is given in
Ref. [20]. The relevant features are summarized below.
When there is no on-chip waveguide inside the intercalated
2D microchip, some 2D planar waveguide bands[upper
shaded regions in Figs. 3(a) and 3(b)] will occupy the upper
fraction of the original 3D PBG. However, a complete on-
chip 3D PBG is retained[unshaded region between horizon-
tal dashed lines in Figs. 3(a) and 3(b)] below these planar
modes. The size of this on-chip band gap decreases with the
thickness of the 2D microchip layer, disappearing completely
if the thickness is 0.8a. Meanwhile, removing one line of

rods in the 2D microchip will create a linear air-waveguide
(W1) mode inside the on-chip band gap. The bandwidth of
this single-mode waveguide also depends sensitively on the
thickness of the 2D microchip. Light localization by the PBG
materials surrounding this air waveguide enables flow of
light without diffraction through micron-scale bends in air. It
was found[20] that when the thickness of the 2D microchip
is 0.5a, the single-mode region of diffractionless light flow is
about 130 nm(for a band centered at 1.55mm). However,
the defect mode can be further engineered by modifying the
radiussr1d of rods adjacent to the air waveguide. As shown
in Fig. 3(a), whenr1 decreases, the waveguide mode within
the on-chip 3D PBG is raised in frequency. Here, the de-
creasing ofr1 decreases the total amount of dielectric mate-
rial in the 2D microchip. By adjusting the thickness of the
2D microchip to 0.4a andr1 to 0.12a, the single-mode region
increases from about 130 nm to 160 nm(for a band centered
at 1.55mm).

When the wave vectorky=0.5s2p /ad, the W1 mode ex-
hibits a sharp frequency cutoff. In a 3D photonic crystal, a
local maximum or minimum frequency in the band corre-
sponds to a peak in the DOS at that frequency. However, in
an infinite one-dimensional waveguide, this peak is in fact a
divergence in the LDOS: Near the cutoff frequency, the
waveguide mode dispersion relation can be approximated by
a parabolic function, i.e.,v=vc−Asky−kcd2, wherekc is the
wave vector corresponding tovc andA is a fitting constant.
Consequently, the photon DOS will ber1svd=s1/2dAsvc

−vd−1/2, which is divergent atvc. However, in practice, the
size of the heterostructure(and length of the corresponding
waveguide) is always finite. As a result, the LDOS diver-
gence is replaced by a large but finite discontinuity near the
cutoff frequency. Nevertheless, this architecture provides the
maximal contrast,g+/g−, over the narrowest possible fre-
quency interval, as required for low threshold atomic switch-
ing.

Near the cutoff frequency of the waveguide mode de-
scribed above, the group velocity vanishes. As a result, this
mode is useful for carrying a steady-state “holding” laser
field that pumps(“biases”) the atomic system to just below a
specified, switching threshold. Due to the long buildup time
in this slow mode, it cannot be used for rapid modulation of
the pump from below to above the switching threshold. For
modulation, a second high group velocity mode(“gate”) is
required. This second waveguide mode can also be used for
sending a rapid stream of data(modulated intensity) that
“probes” the pumped atomic system. Depending on the state
of the atomic system(as determined by the bias and gate
optical fields), the probe pulses can be amplified or attenu-
ated. An additional linear dispersion waveguide mode for the
probe and gate optical fields can be engineered by removing
three lines of rods from the 2D photonic crystal slab(W3
waveguide). In practice, the W3 waveguide may be engi-
neered as a short(20 unit cells) segment of a longer W1
waveguide. In order to avoid scatterings and Fabry-Perot
resonance effects at the boundary between W1 and W3
waveguides, a gradual reduction of the adjacent rod size of a
W1 waveguide to zero may be very efficacious.

The band structure for a W3 heterostructure is plotted in
Fig. 3(b). There are two waveguide modes inside the on-chip

FIG. 3. Band structure of(a) W1 heterostructure whenh=0.4a,
and r1=0.12a; (b) W3 heterostructure whenh=0.3a, and r1

=0.12a. Shaded areas are 2D and 3D bands, respectively. The on-
chip PBG is shown by dashed lines. The group velocity of the
second mode at the cutoff frequency of the first mode is 0.24c,
wherec is the speed of light in the vacuum.
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band gap, which are called the first(with a lower frequency)
and the second(with a higher frequency) mode in the fol-
lowing text. By changing the thickness of the 2D microchip
to 0.3a, the on-chip band gap can be enlarged. Meanwhile,
the cutoff frequency of the first mode can be tuned to the
middle of the on-chip 3D PBG. This adjustment of the on-
chip PBG and the position of the cutoff frequency help make
the structure robust to some forms of disorder introduced
during the fabrication process.

Near the cutoff frequency of the first modesvcd, the fre-
quency of the second mode depends almost linearly on the
wave vectorky. The group velocity of the second mode near
the cutoff frequency of the first mode is 0.24c, wherec is the
speed of light in the vacuum. Since the cutoff frequency is
inside the band gap, no other modes contribute to the photon
DOS in the vicinity of vc, i.e., the photon DOS near the
cutoff frequency of the lower waveguide mode is the sum of
only two modes:rsvd=r1svd+r2svd, where 1s2d stands for
the first (second) waveguide mode. The first termr1svd
~ svc−vd−1/2 is divergent atvc, whereasr2svd remains rela-
tively small nearvc. The total effect is a LDOS peak super-
imposed on a weak, nearly constant background.

The electric-field distributions of the waveguide modes at
the z=0 (middle of the 2D microchip) plane are plotted in
Fig. 4. Since the electric fields are mostly parallel to thez
direction, i.e., electric fields are perpendicular to the 2D slab
plane, only thez components of the fields are shown here.
Almost all the fields are localized near the waveguide(near
x=0). Away from the air waveguide, the fields concentrate
on the adjacent dielectric rods. To enhance the interaction
between the quantum dots and the field, the quantum dots
can be placed in multiple layers inside these rods adjacent to
the air waveguide or above and below the 2D microchip
layer near the air waveguide.

Near the cutoff frequency of the defect mode, the wave
vector is almostk=s0,0.5,0ds2p /ad, which means the phase

angle of the field will change byp from one unit cell to the
next along the waveguide, i.e., the field intensity will be
almost the same for each unit cell along the waveguide di-
rection. This is helpful to achieve collective switching be-
havior when a large number of atoms(or quantum dots) are
distributed over equivalent, periodically repeating positions.

We estimate the power of the pump laser beam passing
through the waveguide in Fig. 4 to realize atomic population
inversion. The Rabi frequency can be obtained by the for-
mula uV u =2.23108ÎIfW/cm2g ud ·eu / sea0d [33], where I
;sc/8pd uEu2 is the intensity of the laser beam in units of
W/cm2, uEu is the electric-field amplitude,ud ·eu is the pro-
jection of the dipole moments in the electric-field direction,e
is the electron charge, anda0 is the Bohr radius. Usually,
ud ·eu ,0.1–10sea0d. When ud ·eu =10sea0d and the light
wavelength is 1.5mm, one nanometer shift(133 GHz shift)
of a Mollow sideband from the central frequency of the Mol-
low spectrum requires an electric amplitude of about
104 V/cm at the location of the atom(quantum dot). If a
jump within 10−4vc is achieved in the DOS(0.15 nm or
20 GHz shift for l=1.5 mm), the laser electric amplitude
required for atomic switching in the simple model(the single
two-level-atom case) of Sec. II is about 1.63103 V/cm. Al-
though the electric-field amplitudes required for atomic
switching are moderate, the total energy and power require-
ment for switching are very small due to the submicron-scale
confinement of the optical fields within a typical photonic-
band-gap waveguide geometry. For a PBG centered near
1.5 mm, the required photonic crystal lattice constanta
,0.4l<600 nm. One unit volume of the waveguide direc-
tion is about 5a30.3a31a<0.3 smmd3. The energy stored
along one unit cell of the waveguide channel, at the atomic
switching threshold, is about 0.6310−11 nJ for the zero
group velocity mode (first mode) in Fig. 4(b) or 1
310−11 nJ for the high group velocity mode(second mode)
in Fig. 4(a). In Fig. 4, it is suggested that the steady-state
holding field passes through the zero group velocity mode
(b) and pumps quantum dots in the adjacent rods. In this
case, there is no net power flow in the holding field, and
small modulations in a weaker pump field passing through
the high group velocity mode(a) enable collective “atomic”
switching of the adjacentQ dots between absorbing and am-
plifying states. An alternative pumping mechanism is to re-
quire both the steady-state holding field and the weaker
modulation field to pass through the high group velocity
mode (b). In the latter scenario, the power of the holding
field (near switching threshold) can be estimated as the mode
group velocitys<0.25cd multiplied by the energy contained
per unit length along the waveguide direction. In this case,
the required power for switching is about 1mW. When a
large s,1000d number of quantum dots responds collec-
tively, the amplitude of the switching laser is about 5% of the
holding field amplitude. In this case, the power of the modu-
lating pump laser passing through the high group velocity
(linear dispersion) waveguide mode can be 3 nW, provided
that the steady holding laser intensity is just below the
switching threshold.

FIG. 4. Electric field distributions of the W3 structure withh
=0.3a, and r1=0.12a, on thez=0 plane for(a) the second(group
velocity of about 0.25c) waveguide mode atk =s0,0.3,0ds2p /ad,
where the corresponding frequency is near the cutoff frequency of
the second(holding field) waveguide mode;(b) the first(zero group
velocity) waveguide mode atk =s0,0.5,0ds2p /ad. The y axis is
shifted to plot the figure. The shaded circles are 2D dielectric rods.
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IV. THE LOCAL DENSITY OF STATES
NEAR A MULTIMODE WAVEGUIDE
IN A 3D PBG HETEROSTRUCTURE

The local electromagnetic density of states(LDOS) is de-
fined as

rsv,r 0d =
1

Vd0
2o

n

ud ·En
sTd*sr 0du2dsv − vn

sTdd, s1d

whereV is the volume of the structure,d0 is the magnitude of
the dipole momentumd, and En

sTdsr 0d is the eigenvector of
the electric field(quasitransverse mode) at positionr 0 with
an eigenvaluevn. The LDOS can be obtained from the en-
ergy U emitted from a dipole inside the structure(see Ap-
pendix B),

rsv,r 0d =
e0

pv2d0
2U. s2d

To focus on the LDOS of a waveguide mode near its
cutoff frequency, we study the W1 waveguide since there is
only one mode near the cutoff frequency. The upper and
lower cladding layers of the 2D-3D heterostructure used in
this section consist of inverse square spiral photonic crystals.
Each cladding layer has three unit cells in thez direction.
The height of the 2D microchip layer sandwiched between
the cladding layers is 0.4a. The total height of our supercell
in thez direction is 1.7a33+0.4a+1.7a33=10.6a. In thex
direction, there are five lines of rods on each side of the
waveguide, i.e., the length in thex direction is 5a+a+5a
=11a. The length of the waveguide(in the y direction) is
varied to determine its influence on the LDOS. Several
waveguides are used, for example 7a in the y direction (de-
noted asy7), 9a in the y direction (denoted asy9), etc.

In order to determine the LDOS within the microchip, a
dipole is placed near the center of the rod adjacent to the
waveguide halfway along the length of the waveguide. The
direction of the dipole is parallel to thez direction. In our
numerical calculations, a cubic FDTD grid1 is used with 10
points per lattice constanta, i.e., Dx=Dy=Dz=D=0.1a. The
finite-size structure is placed in vacuum, which we simulate
with the second-order Mur absorbing boundary condition
[34].

The LDOS of the heterostructure is shown in Fig. 5. Near
the cutoff frequency(corresponding to the infinite structure),
vc<0.38s2pc/ad, there is a peak in the LDOS that becomes
more pronounced as the waveguide becomes longer. As the
length of the heterostructure along they direction increases,
the peak valuermax of the LDOS increases rapidly. At the
same time, the peak width decreases. When the length of the
waveguide goes to infinity, the peak in the LDOS will even-
tually become a divergent point atvc, as discussed in Sec.

III. Below the cutoff frequency, the lowest value of the
LDOS, rmin, is almost the same for structures with different
lengths in they direction. This is due to the linear dispersion
of the second waveguide mode nearv=0.36s2pc/ad, as seen
in Fig. 3(b).

Besides the peak nearvc, there are some smaller fringes
in the LDOS whenv,vc due to finite-size effects. This is a
Fabry-Perot effect arising from the photonic crystal to free
space boundary at the edges of our sample. Light that is
reflected by the ends of the heterostructure(in they direction
that the light can propagate) exhibits constructive and de-
structive interference fringes along the length of the wave-
guide.

When the dipole is placed in the center of a waveguide
sx0d, the distance that the reflected light travels, fromx0 to
one end of the waveguide and back tox0, will be L (the
length of the waveguide). If the field emitted by the dipole
has a form ofeiskyy−vtd, the phase difference between the field
emitted by the dipole and the fields reflected by the ends will
beDf=kL. When the wave vectorkm (corresponding tovm)
satisfies

kmL = Df = n2p sn = 0,1,2, . . .d, s3d

constructive interference occurs, which increases the total
electric fieldE at x0. Since the energy emitted by the dipole
is proportional to the total electric field, i.e.,U~ ud ·Eu, U
will be maximum atvm. Consequently, the LDOS also has a
maximum value atvm. In Table I, some wave vectors that
satisfy Eq.(3) are shown. From these wave vectors, the cor-

1The time interval is chosen to beDt=0.95D / scÎ3d. These param-
eters are within the stability bound[28]. For light propagating in
vacuum, more than 20 grid points per wavelength, ie.,v
ø0.5s2pc/ad if D=0.1a, will lead to an intrinsic grid velocity an-
isotropy of less than 0.2%. The numerical wave propagating in
vacuum will grow exponentially whenDt.D / scÎ3d.

FIG. 5. The LDOS of the finite heterostructure with different
length in the waveguide direction( y direction). The dipole is
placed atr =s−0.7,0.3,0da. The origin of the coordinate is the cen-
ter of the structure.

TABLE I. Wave vectors satisfy Eq.(3).

L Wave vector Df Frequency

9a 0.33s2p /ad 6p 0.359s2pc/ad
11a 0.36s2p /ad 8p 0.365s2pc/ad
15a 0.33s2p /ad 10p 0.359s2pc/ad
15a 0.40s2p /ad 12p 0.372s2pc/ad
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responding frequencies are obtained approximately from Fig.
3(a). Clearly, the estimated frequencies of the fringes in
Table I agree well with those in Fig. 5.

When the dipole is placed away from the middle of the
waveguide, the distancel that the reflected light travels will
be changed. Consequently, the wave vector that satisfies the
constructive interference condition is also changed. This is
seen in Fig. 6, in which the secondary peaks of the LDOS
change from 0.358s2pc/ad to 0.368s2pc/ad. Beside the
fringe near 0.368s2pc/ad in Fig. 6, there is another small
fringe near the frequency of 0.358s2pc/ad. The position of
the fringe is the same as that when the dipole is placed in the
middle of the y9 structure. This can be explained by the
constructive interference between the light emitted by the
dipole and the light reflected twice by two ends, i.e., fromx0
to one end, then to another end, and back tox0. Now the
distance that the reflected light travels isl =18a. By setting
L=18a in Eq. (3), we havek=0.33s2p /a) when n=6. This
has the same wave vector as that of they9 structure in Table
I. Consequently, the fringe will not change position when the
dipole is placed away from the middle of the structure. Since
light is reflected two times by both ends, respectively, before
it interferes with the light emitted by the dipole, the reflected
light will be much smaller than that reflected only once, lead-
ing to a smaller peak.

We now consider in greater detail the properties of the
dominant peak arising from the waveguide cutoff. If the fre-
quency of the peak LDOS,rmax, is vm, and the frequency at
0.5rmax (bigger thanvm) is vr, the peak width is simply
defined as Dv=vr −vm. For waveguides with different
lengths, the peak value and peak width can be fitted to ana-
lytic functions, as shown in Fig. 7. The peak value can be
fitted asrmaxsLd /rmin=a0+a1L+a2L

2, wherea0, a1, a2 are
fitting parameters. Likewise, the peak width can be fitted as
DvsLd /vc=be−aL. Here b, a are fitting parameters and the
cutoff frequencyvc is chosen to be 0.38s2pc/ad.

The LDOS changes slowly nearrmax. As a result,rmax is
insensitive to the location ofvm, i.e., a small error invm has
little effect on the value of the LDOS. Therefore, the peak

value is obtained with negligible error and it can be fitted
well [see Fig. 7(a)]. In contrast, the LDOS changes quickly
near 0.5rmax. Consequently, it is sensitive to the location of
vr. This explains the slight deviations of the data points from
the fitting function[see Fig. 7(b)]. Nevertheless, the evolu-
tion of the peak width with the length of the waveguide is
clearly discernible.

Since the evaluation of the LDOS of a long waveguide by
FDTD methods is very time consuming, it is useful to infer
the desired properties by extrapolation. For a W3 waveguide
(three missing rows of rods) suitable for atomic switching,
the ratiormax/rmin [shown in Fig. 7(a)] describes the ratio of
the peak LDOS arising from a mode cutoff to the back-
ground LDOS of a linear dispersion mode. When the length
of the W3 waveguide is 20a, the ratiormax/rmin is about 100,
suitable for low threshold switching. Meanwhile, the LDOS
peak width decreases rapidly with waveguide length. In par-
ticular, the ratioDv /vc is as small as 10−4 when the wave-
guide length is 20a.

The accuracy of our numerical FDTD results can be de-
termined by varying the size of the grid used to represent a
given unit cell. In Fig. 8, two different grid spacings,D, are
used to calculate the LDOS of a W1 waveguides9yd and
compared. The dashed line with square symbols results from
a coarse meshD=a/10, and the solid line with circular sym-
bols results from a fine meshD=a/20. The peak of the
LDOS exhibits a blueshift as the mesh is made finer. How-
ever, the shape of the peak and the position of the lowest-
order fringe remain relatively unchanged. In our calculations,
we average the dielectric constant in the discrete mesh. For
light of 1.5 mm wavelength, the lattice constanta<600 nm.
In this case, the FDTD grid spacing used in Fig. 8 corre-
sponds to 60 nm(coarse mesh) and 30 nm(fine mesh). Ac-
cordingly, our results are insensitive to surface randomness
of the 2D microchip on these length scales.

FIG. 6. The emission power when the dipole is placed at differ-
ent positions inside ay9 structure. The line with rectangular sym-
bols is the case in which the dipole is placed atr =s−0.7,0.3,0da
(same as the dash line with rectangular symbols in Fig. 5); and the
line with circular symbols is the case in which the dipole is placed
at r =s−0.7,−0.7,0da. FIG. 7. Analytic functions fitted for(a) peak value and(b) peak

width.
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V. DESIGN OF A LDOS FILTER FOR SWITCHING
IN AN INHOMOGENEOUSLY BROADENED

ATOMIC DISTRIBUTION

In the previous section, we have studied the nature of the
LDOS jump in a finite-size 3D structure designed for switch-
ing of a collection of identical quantum dots. In practice, a
collection of quantum dots in a real semiconductor is char-
acterized by a size distribution, leading to an inhomogeneous
broadening of the “atomic” spectrum. As described in the
Introduction, such a distribution of “atomic” transitions rela-
tive to a single LDOS jump can result in a washing out of the
overall switching effect. Switching depends sensitively on
the detuning of the atomic transition relative to the LDOS
jump and the pump laser. In this section, we introduce a new
microchip architecture that provides an LDOS filter. Here,
only those quantum dots whose Mollow components are
driven by the external laser into resonance with prescribed
peaks in the LDOS can participate in the switching process,
whereas improperly detuned quantum dots are effectively re-
moved(quenched) from strongly influencing the probe laser
beam. Since the LDOS peaks have a prescribed frequency
separation, this architecture also fixes the intensity(Rabi fre-
quency) of the pump laser to cause “atomic” inversion. Our
new architecture consists of a trimodal waveguide in which
two waveguide modes exhibit closely spaced cutoffs and the
third waveguide mode exhibits nearly linear dispersion. For
simplicity, we limit our attention to a 2D photonic crystal
with the understanding that the corresponding 2D microchip
layer will be embedded in a 2D-3D heterostructure.

We use a square lattice with circular rods and consider
only the E-polarization mode(electric field parallel to the
rods), because the field pattern in the 3D heterostructures
closely resembles theE-polarization mode in a 2D photonic
crystal. The lattice constant isa and the radius of rods is
r0=0.25a. The configuration of the waveguide structure is
depicted in Fig. 9. We demonstrate that this structure exhibits
a forklike LDOS suitable for selecting suitably pumped “at-
oms” for switching, while filtering out other “atoms” from an
inhomogeneously broadened distribution.

A. Band structure

To obtain the waveguide modes, the plane-wave expan-
sion and supercell method are used. The 2D supercell con-

tains 19 units in thex direction and 1 unit in they direction.
The expansion plane waves are chosen byuG u ,8s2p /ad,
corresponding to 3757 plane waves. The dielectric constant
of each rod is 11.9. When the rod radiussr0d is 0.25a, the
structure has a full stop gap from 0.251–0.355s2pc/ad for
the E-polarization mode. As plotted in Fig. 9, three rows of
rods are modified to create a trimodal waveguide and the
desired shape of the LDOS. By completely removing one
line of rods, an air-waveguide mode is created with its lower-
cutoff frequency(mode 3) near the center of the gap. By
reducing the radiussr1d of one line of rods, another wave-
guide mode(mode 1) is created with upper-cutoff frequency
near the center of the gap. Finally, by reducing the radiussr2d
of another line of rods, we create a waveguide mode(mode
2) with a linear dispersion relation near the center of the gap.
The group velocity of mode 2 near the cutoff frequencies(of
mode 1 and Mode 3) is 0.24c, wherec is the light velocity in
vacuum. The corresponding band structure is plotted in Fig.
10, in which r0=0.25a, r1=0.17a, and r2=0.14a. The
electric-field distributions of these waveguide modes are de-
picted in Fig. 11. Near the center of the rods adjacent to the
air waveguide(point P in Fig. 9), the electric fields of all the
waveguide modes are strong enough to guarantee the cou-
pling between quantum dots and these modes for the switch-
ing behavior.

The lower-cutoff frequency,v3, of the air waveguide
(mode 3) can be adjusted by the radius,r0, of the background
2D rods. Whenr0=0.25a, v3 is near the center of the gap.

FIG. 8. Emission power calculated by the FDTD method using
two different meshes.

FIG. 9. Architecture for an LDOS filter for switching in an
inhomogeneously broadened “atomic system.” The two-level atoms
or quantum dots are placed at pointP and other equivalent points.
The 2D photonic crystal has a square lattice with rod radiusr0.

FIG. 10. The band structure of the 2D photonic crystal with
three waveguide modes. Mode 1(solid line) and mode 3(dashed
line) exhibit cutoffs within the PBG and contribute to sharp LDOS
peaks, whereas mode 2(dotted line) exhibits nearly linear disper-
sion in the same vicinity. The probe laser frequency(position of
lower Mollow sideband) is indicated asv2, the pump laser fre-
quency is indicated asv1, and the position of the upper Mollow
sideband is indicated asv3.
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The upper-cutoff frequency,v1, of the waveguide(mode 1)
can be adjusted by changing the rod radiusr1. The depen-
dence of the cutoff frequencies onr1 is plotted in Fig. 12.
Whenr1 increases, the cutoff frequency of the air waveguide
(mode 3) is almost invariant(it actually decreases very, very
slowly), while the cutoff frequency of the waveguide(mode
1) decreases noticeably. This makes the relative position be-
tween these two cutoff frequencies adjustable by changing
r1. The waveguide(mode 2) carries the probing laser and has
a high group velocity(0.24c, see Fig. 10) enabling a quick
response for ultrafast switching.

B. Local density of states

Finally, the LDOS of the waveguide architecture de-
scribed by Fig. 9 is calculated by the FDTD method. The
result is plotted in Fig. 13. In our calculation, we choose
Dx=Dy=D=0.05a andDt=0.8D / scÎ2d. We have confirmed
that no obvious improvement is achieved when higher-
resolution meshes are chosen. Whenr1=0.166a and r2
=0.145a, the peak near 0.29s2pc/ad corresponds to the cut-
off frequency of the air waveguide. The height of this peak
decreases when the pointP moves from the center of the rod
toward the air waveguide. The peak near 0.287s2pc/ad cor-
responds to the cutoff frequency of the waveguide(mode 1).
The height of this second peak increases when the pointP
moves from the center of the rod toward the air waveguide.
When the pointP (indicated in Fig. 9) is away from the

center of the rod by 0.1a (toward the air waveguide), those
two LDOS peaks have comparable heights. There is a shal-
low peak near 0.284s2pc/ad. This is also a Fabry-Perot ef-
fect due to the finite size of our sample(see Sec. IV). The
steady-state pumping laser frequency is adjusted to the left
LDOS peak(mode 1), and the higher frequency peak(mode
3) is chosen to coincide with the upper Mollow sideband of
the atomic resonances fluorescence spectrum. The probing
laser is adjusted to the lower Mollow sideband. Since the
probing laser couples to a linear dispersion(high group ve-
locity part) of the second waveguide(mode 2), rapid modu-
lation (or switching) is possible for such an all-optical tran-
sistor device.

VI. CONCLUSION

In summary, we have presented a heterostructure consist-
ing of a 2D photonic crystal microchip embedded in a 3D
PBG material in which the electromagnetic vacuum LDOS
has been engineered with suitable jumps within a narrow
range of frequencies in order to implement all-optical
switching and transistor action. For a particular 2D micro-
chip architecture, it is possible to create a fork-shaped
LDOS, which provides a filter function in the presence of an
inhomogeneously broadened “atomic” system. When the
length of the waveguide in a 3D heterostructure is 20a
s12 mmd, the LDOS can have a jump of an order of 100
within a range of relative frequencies about 10−4vc, where
vc is the cutoff frequency of the waveguide mode.

One valuable feature of waveguide structure is that near
the waveguide cutoff frequency, the field is almost the same
for rods along the waveguide direction. Therefore, atoms that
are placed on adjacent rods along the waveguide direction
will experience the same coherent field. This facilities very
large scale collective response. Collective atomic switching
can greatly enhance the optical switching effect. For ex-
ample, collective response drastically reduces the width of

FIG. 11. Electric-field distributions of the waveguide modes in
Fig. 10. (a) Mode 1 atk =s0,0ds2p /ad; (b) mode 2 atk =s0,0.3d
3s2p /ad; and (c) mode 3 atk =s0,0ds2p /ad.

FIG. 12. The dependence of the cutoff frequencies on the rod
radiusr1.

FIG. 13. The local density of states for 2D photonic crystal
waveguides with the length 15a. The radii of rods arer0=0.25a,
r1=0.166a, andr2=0.145a, respectively. The dipole is placed at the
point P in Fig. 9. To use this waveguide architecture for atomic
inversion and switching, pumping laser beams whose frequency
coincides with the left LDOS peak are used to drive the upper
Mollow sideband of an atom to the peak frequency of the right
LDOS peak. Meanwhile, the same pump laser beams drive the
lower Mollow sideband of the atom into the low LDOS region to
the left of the leftmost LDOS peak. A probe beam whose frequency
coincides with the lower Mollow sideband can then be amplified by
the inverted atom.
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the switching intensity regime and makes the system much
less sensitive to dephasing interactions[8,9,18]. Unlike a
collection of atoms that are all confined within a cubic wave-
length, a collection of quantum dots that is spread over the
length of a 10 microscale waveguide channel is less suscep-
tible to competing effects such as direct resonance dipole-
dipole interactions(RDDI). Instead, the “atoms” interact
more strongly with the high-intensity peaks of the periodi-
cally repeating pump laser field that passes through the
waveguide. Other structures such as a single defect(or cav-
ity) may also have a big jump of the LDOS within a small
range of frequencies. However, they have little potential to
integrate a large number of atoms or quantum dots inside or
near the single defect(or cavity). Furthermore, the interac-
tion of the cavity mode with the waveguide mode leads to
the conventional tradeoff between switching intensity and
switching speed. It would be of considerable interest to
simulate in detail the propagation of light in the engineered
vacuum of the trimodal waveguide, including the resonant
nonlinear dielectric response of the “atomic” system to ob-
tain a full picture of all-optical switching.
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APPENDIX A: FORMULATION OF FIELD-MODE
EVALUATION

The Maxwell wave equation in the frequency domain is
[23]

= 3 F 1

esr d
¹ 3 Hsr dG =

v2

c2 Hsr d, sA1d

whereHsr d is the divergence-free magnetic field which sat-
isfies = ·Hsr d=0. In Eq. (A1), the periodic dielectric con-
stant at positionr , esr d, can be written as

esr d = o
G

esGdeiG·r . sA2d

Here, G is a reciprocal-lattice vector. The Fourier coeffi-
cientseG are given by

esGd =
1

VEWSC

dresr de−iG·r , sA3d

whereV is the volume of the Wigner-Seitz cell. The mag-
netic field can be also expanded as

Hsk,r d = o
G

o
l

hG
l eG

l eisk+Gd·r , sA4d

whereeG
l (with l=1,2) are two unit vectors perpendicular to

k +G. These three vectors,eG
1 , eG

2 , and k +G, form an or-
thogonal triad. Using Eqs.(A2) and (A4), Eq. (A1) can be
rewritten as

o
G8

uk + Guuk + G8ue−1sG − G8dS eG
2 ·eG8

2 − eG
2 ·eG8

1

− eG
1 ·eG8

2 eG
1 ·eG8

1 DShG8
1

hG8
2 D =

v2

c2 ShG
1

hG
2 D . sA5d

Here,e−1sG−G8d is the inverse matrix ofesG−G8d, whose
elementsesG ,G8d;esG−G8d [32]. After the eigenvector of
the magnetic field is obtained by diagonalizing Eq.(A5),
there are two ways to calculate the electric field from the
magnetic field. One is

Esk,r d =
− i

vnskde0esr d
= 3 Hsr d =

1

vnskde0esr doG
uk + Gu

3 shG
1 eG

2 − hG
2 eG

1 deisk+Gd·r ; sA6d

the other is[25]

Esk,r d =
1

vnskde0
o
G,G8

uk + Gue−1sG − G8dshG
1 eG

2

− hG
2 eG

1 deisk+Gd·r . sA7d

Equation(A6) is simple. However, due to the Gibbs phenom-
enon, the results will oscillate near the interface of two dif-
ferent media. On the contrary, Eq.(A7) is complicated and

more time-consuming, but the results have no such oscilla-
tions near the interface. In this paper, Eq.(A7) is used to
calculate the electric-field distribution inside the structure.

APPENDIX B: ELECTROMAGNETIC LDOS
OF A FINITE STRUCTURE

When a dipole is placed inside a photonic crystal, the
energy emitted by the oscillating dipole is proportional to the
LDOS [25]. A similar relation is true when the dipole is
placed inside a heterostructure without periodicity. We fol-
low the method described in Ref.[26].

Maxwell’s equations are

= ·Dsr ,td = − = ·Psr ,td,

= ·Hsr ,td = 0,

= 3 Esr ,td = − m0
]

] t
Hsr ,td,
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= 3 Hsr ,td =
]

] t
fDsr ,td + Psr ,tdg, sB1d

whereDsr ,td=e0esr dEsr ,td andPsr ,td is the extrinsic polar-
ization field. If we define another function

Qsr ,td ; Îesr dEsr ,td sB2d

from Eq. (B1), we have

HQsr ,td = −
1

c2

]2

] t2
Qsr ,td −

1

c2e0
Îesr d

]2

] t2
Psr ,td, sB3d

whereH is a Hermitian operator defined by

HQsr ,td ;
1

Îesr d
= 3 S= 3

1
Îesr d

Qsr ,tdD . sB4d

When there is no extrinsic polarization, i.e.,Psr ,td=0, Eq.
(B3) becomes

1

c2

]2

] t2
Qsr ,td +

1
Îesr d

= 3 S= 3
1

Îesr d
Qsr ,tdD = 0.

sB5d

Suppose the functionQsr ,td has the forme−ivt. Then,

1
Îesr d

= 3 S= 3
1

Îesr d
Qnsr dD =

vn
2

c2 Qnsr d. sB6d

There are two kinds of solutions for Eq.(B6). The first kind
are quasilongitudinal solutions, which have zero eigenvalues,
i.e., (vn=0). Then, Eq.(B6) becomes

= 3 S 1
Îesr d

Qn
sLdsr dD = 0. sB7d

These solutions are not propagating waves because the cor-
responding eigenfrequencies are zero[see Eq.(B6)]. How-
ever, these solutions are important mathematically because
they are needed to construct a complete set of the eigenso-
lutions. The second kind are quasitransverse solutions, which
have nonzero eigenvalues,

1
Îesr d

= 3 S= 3
1

Îesr d
Qn

sTdsr dD =
vn

sTd2

c2 Qn
sTdsr d. sB8d

The eigenfunctions are renormalized as the following:

E
V

Qn
a*sr d ·Qn8

b sr d = Vdabdnn8, sB9d

whereasbd=TsLd, andV is the volume of the system. The
completeness of the eigenfunction leads to

o
n

Qn
sTdsr d ^ Qn

sTd*sr 8d + o
n

Qn
sLdsr d ^ Qn

sLd*sr 8d = VIdsr

− r 8d, sB10d

where ^ is an operation that results in a tensor from two
vectors, i.e.,sA^ Bdi j =AiBj, andI is the unit tensor.

A retarded Green’s(tensor) function Gsr ,r 8 ,td satisfies
the following equations:

− S 1

c2

]2

] t2
+ HDGsr ,r 8,t − t8d = Idsr − r 8ddst − t8d,

Gsr ,r 8,td = 0 for t , 0. sB11d

The Green’s function in frequency spaceGsr ,r 8 ,vd is de-
fined by the Fourier transform ofGsr ,r 8 ,td,

Gsr ,r 8,td ;
1

2p
E

−`

`

dvGsr ,r 8,vde−ivt. sB12d

Then,Gsr ,r 8 ,vd satisfies the following equation:

Sv2

c2 − HDGsr ,r 8,vd = Idsr − r 8d. sB13d

From Eqs.(B7), (B8), (B10), and(B13), we have

Gsr ,r 8,vd ; E
−`

`

dtGsr ,r 8,tdeivt

=
c2

V o
n
S Qn

sTdsr d ^ Qn
sTd*sr 8d

sv − vn
sTd + iddsv + vn

sTd + idd

+
Qn

sLdsr d ^ Qn
sLd*sr 8d

sv + idd2 D , sB14d

where d is a positive infinitesimal. Fortù0, the inverse
transform of Eq.(B14) gives

FIG. 14. The integration contourC in Eq. (B15).
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Gsr ,r 8,td =
c2

2pVo
n

Qn
sTdsr d ^ Qn

sTd*sr 8d
2vn

sTd E
C

dvS 1

v − vn
sTd + id

−
1

v + vn
sTd + id

De−ivt

+
c2

2pVo
n

Qn
sLdsr d ^ Qn

sLd*sr 8dE
C

dv
e−ivt

sv + idd2 = −
c2

V o
n
Ssinvn

sTdt

vn
sTd Qn

sTdsr d ^ Qn
sTd*sr 8d + tQn

sLdsr d ^ Qn
sLd*sr 8dD ,

sB15d

whereC is the integration contour shown in Fig. 14. The solution of Eq.(B3) can be obtained by a convolution integral of the
Green’s function,

Qsr ,td =E
V

dr 8E
−`

`

dt8Gsr ,r 8,t − td
1

c2e0
Îesr 8d

]2

] t2
Psr 8,t8d

= −
1

e0Vo
n
E

V
dr 8E

−`

t

dt8Ssin vn
sTdst − t8d
vn

sTd Qn
sTdsr d ^ Qn

sTd*sr 8d + st − t8dQn
sLdsr d ^ Qn

sLd*sr 8dD 1
Îesr 8d

]2

] t2
Psr 8,t8d,

sB16d

where the extrinsic polarizationPsr ,td is assumed to be introduced adiabatically, i.e.,Psr ,−`d=0. Carrying out thet8 integral
by parts, we obtain

Qsr ,td = −
1

e0Vo
n
E

V
dr 8E

−`

t

dt8fcosvn
sTdst − t8dQn

sTdsr d ^ Qn
sTd*sr 8d + Qn

sLdsr d ^ Qn
sLd*sr 8dg

1
Îesr 8d

]

] t
Psr 8,t8d

= −
1

e0Vo
n
E

V
dr 8fQn

sTdsr d ^ Qn
sTd*sr 8d + Qn

sLdsr d ^ Qn
sLd*sr 8dg

1
Îesr 8d

Psr 8,td

+
1

e0Vo
n
E

V
dr 8E

−`

t

dt8svn
sTdsinvn

sTdst − t8dQn
sTdsr d ^ Qn

sTd*sr 8dd 1
Îesr 8d

Psr 8,t8d

= −
Psr ,td

e0
Îesr d

+
1

e0Vo
n

Qn
sTdsr dE

V
dr 8E

−`

t

dt8
Qn

sTd*sr 8d ·Psr 8,t8d
Îesr 8d

vn
sTdsin vn

sTdst − t8d. sB17d

Replacing the functionQ by the electric fieldE, we finally obtain Eq.(B18),

Esr ,td +
Psr ,td
e0esr d

=
1

e0Vo
n

En
sTdsr dE

V
dr 8E

−`

t

dt8En
sTd*sr 8d ·Psr 8,t8dvn

sTdsin vn
sTdst − t8d, sB18d

whereEn
sTdsr ,td are quasitransverse solutions of Eq.(B1) with eigenfrequencyvn when the extrinsic polarizationPsr ,td=0. If

the dipole oscillates with frequencyv at r 0, the extrinsic polarization will be

Psr ,td = ddsr − r 0des−iv+ddt, sB19d

whered is the dipole moment andd is a positive infinitesimal. The functionedt is used to obtain an adiabatic switching for the
extrinsic polarization. Inserting Eq.(B19) into Eq. (B18), we have

Esr ,td +
Psr ,td
e0esr d

=
e−ivt

2e0Vo
n

vn
sTdEn

sTdsr dfEn
sTd*sr 0d ·dgS 1

v + vn
sTd + id

−
1

v − vn
sTd + id

D . sB20d

The energy emitted by the dipole is characterized by Poynting’s vector,

Ssr ,td = fEsr ,td + E*sr ,tdg 3 fHsr ,td + H*sr ,tdg. sB21d

The time-averaged Poynting vectorSsr ,td is

Ssr ,td = fEsr ,td + E*sr ,tdg 3 fHsr ,td + H*sr ,tdg. sB22d

Since bothE andH are proportional toe−ivt, the time-averaged Poynting vector can be simplified as

Ssr ,td = fEsr ,td 3 H*sr ,tdg + fE*sr ,td 3 Hsr ,tdg. sB23d

Taking the divergence of both sides of Eq.(B23), we have
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= ·Ssr ,td = hH*sr ,td · f= 3 Esr ,tdg − Esr ,td · f= 3 H*sr ,tdg + Hsr ,td · f= 3 E*sr ,tdg − E*sr ,td · f= 3 Hsr ,tdgj

= ivfE*sr ,td ·Psr ,td − Esr ,td ·P*sr ,tdg. sB24d

Substituting Eqs.(B19) and (B20) into Eq. (B24) and using
the identity

1

v − v0 ± id
= P

1

v − v0
7 pidsv − v0d, sB25d

where P denotes principal value, we have

= ·Ssr ,td =
pv2

e0V
dsr − r 0do

n

ud ·En
sTd*sr 0du2dsv − vn

sTdd.

sB26d

If the volume containing the dipole is denoted asV1 and the
corresponding bounding surface is denoted asS1, the energy
U emitted by the dipole is given by the surface integral of the
surface normal component of Poynting’s vector,Sn;S·n̂ ( n̂
is a unit vector normal toS1),

U =E
S1

dSSnsr ,td =E
V1

dr = ·Ssr ,td

=
pv2

e0V o
n

ud ·En
sTd*sr 0du2dsv − vn

sTdd. sB27d

The LDOS is defined as

rsv,r 0d =
1

Vd0
2o

n

ud ·En
sTd*sr 0du2dsv − vn

sTdd, sB28d

where d0 is the magnitude of the dipole momentd. From
Eqs.(B27) and (B28), we have

rsv,r 0d =
e0

pv2d0
2U. sB29d
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