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Dual audible-range band gaps in three-dimensional locally resonant phononic crystals
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We describe a simple and transparent physical model for local acoustic resonances and their interactions
in three-dimensional phononic crystals. The widely quoted point-mass-in-a-box representation of acoustic res-
onators is systematically generalized to an extended rigid body connected to massive springs, exhibiting multiple
coupled local resonances. Millimeter-sized acoustic resonators over the audible frequency range typically consist
of dense cores coupled to stiff shells through elastically soft material. When the local resonator is small compared
to the acoustic wavelength, an elastostatic equilibrium approximation yields closed-form rational functions for its
frequency-dependent, effective mass and moment of inertia. Our representation allows intuitive and quantitative
analyses of the coupled acoustic modes of lattices of interacting resonators. The existence and the frequency
range of local resonance band gaps are predicted by the concurrence of negative effective mass and moment
of inertia. A large local resonance gap may occur in spectral proximity to a distinct gap arising from Bragg
scattering. The band structure and density of states are determined by solving computationally inexpensive 6×6
matrix eigenvalue equations. These agree with the exact band structures obtained by finite-element method within
3.71%, 2.32%, and 2.38% errors for the simple cubic, body-centered cubic, and face-centered cubic arrange-
ments of the resonators, respectively. Our model enables precise design of locally resonant phononic crystals
with large dual band gaps spanning a significant fraction of the audible spectrum. By increasing the mass contrast
between the core and the shell in spherical resonators, we demonstrate, using a specific phononic crystal, a local
resonance band gap with 126.7% gap-to-midgap ratio. Our model is further extended to a lattice of dumbbell-
shaped resonators, resulting in a dense collection of flat bands over a narrow, predetermined frequency range.
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I. INTRODUCTION

Phononic crystals are periodic composites composed of
several elastic materials. Early proposals concentrated on the
existence of phononic band gaps, over which transmission of
elastic waves is inhibited [1–4]. These conventional nonres-
onant phononic crystals rely on Bragg scattering of elastic
waves, and require substantial sizes of the repeating units to
exhibit its nontrivial phononic properties over the audible fre-
quency range. In context, the wavelength of the A440 tuning
pitch is about 1 m in air and 10 m in typical stiff solids. The
scaling problem is solved by introducing local resonances in
the unit cell. Liu et al. fabricated a three-dimensional, locally
resonant sonic crystal, consisting of dense lead balls embed-
ded in elastically soft silicone rubber. With a lattice constant
of 1.55 cm, a subwavelength band gap from 400 to 600 Hz
is achieved [5]. Locally resonant acoustic metamaterials ren-
der the possibilities of subwavelength manipulation of sound
waves, from acoustic lens and collimators, to waveguides,
polarization beam splitters, and vibration isolation devices
[6–9].

Rapid and high-accuracy fabrication of three-dimensional,
millimeter-sized acoustic metamaterials is increasingly viable
under the technological advances in additive manufacturing
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and direct laser lithography [10–13]. Relevant experimental
studies have focused on nonresonant phononic crystals, with
band gaps in the ultrasonic regime for millimeter-sized unit
cells [11,14,15]. Precise and efficient representations of lo-
cally resonant acoustic metamaterials are essential to broaden
the engineering applications over the audible frequency range.
Matlack et al. proposed lumped element discrete models for
a class of metamaterials with weakly interacting unit cells,
referred to as “perturbative metamaterials” [16]. While the
application was restricted to weakly interacting systems, the
reduced order model faithfully reproduced various novel func-
tionalities of metamaterials, such as negative refraction, zero
group velocity, and topologically protected edge modes in
certain two-dimensional, beam-hole metamaterials.

Previously, an effective inertia spring tensor (EIST) model
was introduced to recapture the coupling between differ-
ent types of local resonances [17,18]. It was applied to
two-dimensional, locally resonant, acoustic materials with
translational invariance along the axial direction. The pre-
dominant degrees of freedom, which describe the coupling
between the resonators and the host medium, are the out-
of-plane translation, in-plane translations in two orthogonal
directions, and in-plane rotation. Since the sizes of the res-
onators are small compared to the acoustic wavelengths, an
elastostatic analysis was utilized to derive analytical expres-
sions of the effective mass and moment of inertia, as rational
functions in the square of frequency [19]. On the other hand,
a wave-vector-dependent spring tensor represents the gener-
alized forces acting on the resonators by the host medium, as
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a result of the relative displacements between the resonators
in the periodic medium. At a given wave vector, the acoustic
eigenfrequencies and eigenmodes are described by a simple
polynomial equation for the out-of-plane modes, and a 3×3
matrix eigenvalue equation for the in-plane modes.

In this paper, we extend the EIST model to three-
dimensional, locally resonant, phononic crystals [18]. We
elaborate the physics of frequency-dependent, effective inertia
and provide a compact formula in terms of the determinants
of the dynamical matrix. The representation is beyond the
conventional mass-in-a-box physical picture, as it accommo-
dates the possibilities of massive springs and multiply coupled
local resonances through a general Hermitian inertia tensor.
In three dimensions, the rigid-body degrees of freedom are
the translations and rotations in three orthogonal directions.
In general, the effective inertia tensor consists of the effective
masses, moments of inertia, and certain off-diagonal cou-
plings. We apply the EIST model to obtain the low-frequency
acoustic band structures of spherically symmetric core-shell
resonators, arranged in simple cubic (sc), body-centered cubic
(bcc), and face-centered cubic (fcc) configurations. The resul-
tant acoustic bands are accurately represented by our EIST
model within 3.71%, 2.32%, and 2.38% errors for the sc, bcc,
and fcc arrangements, respectively, compared to the finite-
element method (FEM) results of the exact phononic crystals.
In the EIST model, the eigenfrequencies and eigenmodes are
governed by a computationally inexpensive 6×6 matrix equa-
tion, allowing efficient evaluation of total vibrational density
of states. Moreover, complete band gaps, caused by local
resonances, occur over comparable frequency intervals across
lattice structures. In specific examples, with centimeter-sized
lattice constants, we demonstrate local resonance gaps from
348 to 620 Hz for the sc lattice, from 337 to 621 Hz for the
bcc, and from 336 to 621 Hz for the fcc. The corresponding
Bragg gaps are from 1300 to 2800 Hz for the sc lattice, from
1000 to 3700 Hz for the bcc, and from 1000 to 3500 Hz for
the fcc. All of these band edge frequencies scale inversely
with the phononic crystal lattice constant. It is transparent
in the EIST representation that a resonance gap occurs over
the frequency range where the effective masses and moments
of inertia are simultaneously negative. The same effective
inertia tensor applies regardless of the differences of the lattice
configurations, whereas the lattice effects are contained in the
spring tensor. The first six bands below the resonance gaps
correspond to coupled in-phase translational and rotational os-
cillations of the core and the shell. In the next six bands above
the resonance gap, the shell and the core oscillate antiphase.
The resonance gap between the in-phase and antiphase bands
is likely very tolerant to lattice defects. Above the antiphase
bands is the Bragg gap that is caused by the macroscopic
resonance of the entire collection of local resonators and is
sensitively dependent on the lattice arrangements.

The EIST model is ideally suited to the study of a lat-
tice of local resonators and the interaction between different
types of resonances across spatially separated units. Using the
results of spherically symmetric core-shell resonators, we in-
vestigate an example with significant mass contrasts between
the heavy core and the light shell. This leads to a complete,
three-dimensional local resonance band gap of 126.7% gap-
to-midgap ratio, just below the frequency range of the Bragg

gap. Both gaps occur at audible frequencies. This suggests
the possibility of a broad range of acoustic wave control. We
further apply the EIST model to dumbbell-shaped resonators,
which require systematic generalizations to a complex Hermi-
tian spring tensor and a nondiagonal effective inertia tensor.
Through connecting two resonators with nearby resonant fre-
quencies, we are able to deterministically engineer a dense
collection of slow-sound flat bands sandwiched between two
predetermined resonant frequencies. These examples demon-
strate the efficacy of our EIST model in designing locally
resonant phononic crystals for audible sound manipulations.

This paper is organized as follows. In Sec. II, we survey
the elastodynamic equations and methods for solving the
acoustic mode spectrum of phononic crystals. In Sec. III,
we introduce the effective inertia spring tensor (EIST) model
for three-dimensional phononic crystals, and determine gen-
eral expressions of frequency-dependent effective inertia. In
Sec. IV, we approximate the elastic components in res-
onators as massless springs to derive algebraic expressions of
frequency-dependent, effective mass and moment of inertia of
spherical resonators. In Sec. V, we apply our EIST model to
simple cubic, body-centered cubic, and face-centered cubic
lattices of spherical resonators. We compare the results of
the EIST model with the finite-element method benchmark.
In Sec. VI, we apply the EIST model to more complex
resonators involving extreme mass contrasts and coupled lo-
cal resonances. In Sec. VII, we discuss open questions and
possible future directions. In Appendix A, we describe a con-
vergent plane wave expansion scheme for three-dimensional
phononic crystals in the presence of material discontinuities.
In Appendix B, we analyze an exactly solvable effective mass
model involving a massive spring. In Appendix C, we sum-
marize the evaluation of the spring tensor by plane wave
expansion. This goes beyond the nearest-neighbor approxi-
mation outlined in the main text. In Appendix D, we present
the detailed elastostatic equilibrium calculation of the rota-
tional modes in spherical core-shell resonators. Similarly, in
Appendix E, details of the elasticity analysis of the transla-
tional modes in spherical core-shell resonators are provided.
In Appendix F, we calculate the parameters required for the
effective inertia tensor of a dumbbell-shaped resonator.

II. BACKGROUND

We begin with a brief review of linear elasticity theory and
band structure calculation for a periodic elastic medium.

A. Linear elasticity

At a given position x=(x1, x2, x3), the field u=(u1, u2, u3)
defines the displacement from the equilibrium of the infinites-
imally small parcel of elastic material. The local deformation
is given by the symmetric strain tensor εi j [20]:

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (1)

Linear elasticity is assumed by dropping the nonlinear term
(1/2)

∑
k (∂uk/∂xi )(∂uk/∂x j ).

A general elastic deformation can be decomposed into the
superposition of a compressional deformation and a shear
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deformation. For an isotropic, linear, elastic material, the elas-
tic restoring forces are defined by two free elastic constants.
Lamé first coefficient λ describes the tendency to resist vol-
ume change, whereas Lamé second coefficient μ is associated
with the elastic restoring force to resist lateral distortion. The
stress tensor σi j specifies the i component of the elastic force
acting on a plane of unit area with the normal vector in the j
direction, and is linearly proportional to the strain tensor εi j

[20]:

σi j = Ci jklεkl = λ Tr(ε↔)δi j + 2μεi j, (2)

where Ci jkl = λδi jδkl + 2μδikδ jl is the fourth-order stiffness
tensor, δi j is the Kronecker delta function, and Tr is the trace
operator.

The dynamical field equation in an elastic material of den-
sity ρ is given by Newton’s second law:

ρ
∂2ui

∂t2
= ∂σi j

∂x j
. (3)

For a finite force acting on each infinitesimal parcel, the stress
tensor σ

↔ must be continuous everywhere. For an isotropic
linear elastic solid, Eqs. (2) and (3) yield the elastodynamic
equation

ρ
∂2ui

∂t2
= ∇ · (μ∇ui ) + ∇ ·

(
μ

∂u
∂xi

)
+ ∂

∂xi
(λ∇ · u). (4)

We express the displacement field in Cartesian coordinates:
u = uxx̂ + uyŷ + uzẑ. Monochromatic oscillation at angular
frequency ω with temporal dependence e−iωt is assumed. The
components of the displacement field are intricately coupled:

∂

∂x

[
(λ + 2μ)

∂ux

∂x
+ λ

∂uy

∂y
+ λ

∂uz

∂z

]
+ ∂

∂y

(
μ

∂ux

∂y
+ μ

∂uy

∂x

)
+ ∂

∂z

(
μ

∂ux

∂z
+ μ

∂uz

∂x

)
+ ρω2ux = 0, (5a)

∂

∂x

(
μ

∂ux

∂y
+ μ

∂uy

∂x

)
+ ∂

∂y

[
λ

∂ux

∂x
+ (λ + 2μ)

∂uy

∂y
+ λ

∂uz

∂z

]
+ ∂

∂z

(
μ

∂uy

∂z
+ μ

∂uz

∂y

)
+ ρω2uy = 0, (5b)

∂

∂x

(
μ

∂ux

∂z
+ μ

∂uz

∂x

)
+ ∂

∂y

(
μ

∂uy

∂z
+ μ

∂uz

∂y

)
+ ∂

∂z

[
λ

∂ux

∂x
+ λ

∂uy

∂y
+ (λ + 2μ)

∂uz

∂z

]
+ ρω2uz = 0. (5c)

The dynamical equations obey cyclic permutation symmetry:
x → y, y → z, and z → x.

B. Acoustic band structure

By discrete translational symmetry, the solution to the dy-
namical equation (4) is a superposition of Bloch waves, which
are plane waves multiplied by a function with the periodicity
of the lattice (Bloch’s theorem):

u(r, t ) = exp(iK · r − iωKt )
∑

G

uK(G) exp(iG · r). (6)

Here, K denotes the Bloch wave vector. G denotes a reciprocal
lattice vector implied by the underlying lattice symmetry.
uK(G) denotes the Fourier coefficient of the periodic mod-
ulation function. ωK denotes the eigenfrequency at the given
wave vector.

A general approach to evaluating the eigenfrequencies is
the plane wave expansion (PWE) method [1,2,21]. The dis-
placement field and material parameters are expanded into
Fourier series. Under the orthogonality and a proper trun-
cation of the plane wave basis, the dynamical equations are
transformed into a finite-dimensional matrix eigenvalue prob-
lem. Across the material boundary, while the strain tensor
and material properties are discontinuous, the stress tensor
is continuous for a finite force to act on each infinitesimal
parcel. There is a well-understood analog in electromag-
netism. Across the surface of a dielectric, while the normal
component of the electric field and the dielectric constant
are discontinuous, their product, the normal component of
the electric displacement, is continuous. To ensure numer-
ical convergence, Fourier series containing complementary

discontinuities are multiplied by the “inverse rule” [22–24].
Algebraic details of an efficient and convergent plane wave
expansion scheme in three dimensions are provided in
Appendix A. In a widely applied reduced Bloch mode ex-
pansion [25–27], the eigensolutions at a general K point are
approximated by linear superpositions of the eigenfunctions
at high-symmetry K points.

The finite-element method (FEM) is another well-
established technique of numerically solving partial differ-
ential equations [28–32]. COMSOL MULTIPHYSICS equipped
with Acoustics Module is a readily available commercial
FEM software for eigenmode analysis of elastic structures.
Throughout this paper, we benchmark the predictions of our
model against the COMSOL FEM results.

The multiple scattering method originates from the super-
position of single-scatterer wave solutions and the boundary
conditions on the surface of the scatterers. The theory was
first proposed for the calculations of electronic band structure
of periodic solids, and is referred to as the Korringa-Kohn-
Rostoker method (KKR method) [33–37]. Readers can refer to
Appendix B in [17] and references therein for further discus-
sion of the formulation of multiple scattering of partial waves
in acoustic mode spectrum calculations of phononic crys-
tals. Present applications are primarily limited to cylindrical
scatterers in two dimensions and spherical scatterers in three
dimensions. Such a method is relatively unpopular because
it involves conditionally convergent lattice sums and nonlin-
ear eigenvalue equations [38], compounded with an extensive
use of special functions. In homogenization approaches, the
entire elastic composite is treated as an effective medium
[39–42], where the effective parameters are determined by
empirically fitting with the transmission spectrum [5] or the
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FIG. 1. A container of mass ms is coupled to an interior mass mc

via a Hermitian coupling matrix κ. The displacements of the box and
the core are xs and xc, respectively. The resonator is harmonically
driven by an external force fbe−iωt .

phononic band structure [40,43]. A similar effective medium
approach is the coherent potential approximation where the
partial waves from a resonator are compared to a nonresonant,
isotropic, replacement medium in the long-wavelength limit
[43,44]. We also mention the transfer matrix method that
specializes in one-dimensional and layered systems [45–47],
as well as the variational method that utilizes the stationarity
of a mixed functional of displacement and stress fields at the
eigenmodes [48,49].

III. EFFECTIVE INERTIA SPRING TENSOR MODEL

The physical idea of the effective inertia spring tensor
(EIST) model stems from Newton’s second law and Hooke’s
law. Inertia is the ratio of the net external force to the ac-
celeration. When extended to oscillatory systems, this gives
rise to the concept of frequency-dependent, effective inertia.
Hooke’s law postulates a general linear relation between the
displacement from equilibrium and the elastic restoring force.
The microscopic formulation is the constitutive relation (2)
between the strain and stress tensors, which is fundamental
to the theory of linear elasticity. From a macroscopic perspec-
tive, there is also a linear map from a set of large-scale degrees
of freedom to the associated generalized forces. This linear
map leads to the concept of the spring tensor. It depends on the
geometry and the stiffness parameters of the elastic material,
but is insensitive to the interior of the objects that the spring
couples to.

A. Effective inertia

Consider a box of mass ms with displacement xs, cou-
pled to an interior mass mc with displacement xc through a
Hermitian coupling matrix κ = ((κ11, κ21)T, (κ12, κ22)T). The
box responds to an external harmonic force fbe−iωt , and all
the components oscillate at the same angular frequency ω.
The setup is schematically shown in Fig. 1. The equations of
motion are given by Newton’s second law:

−msω
2xs = −κ11xs − κ12xc + fb, (7a)

−mcω
2xc = −κ21xs − κ22xc. (7b)

Equation (7b) is rearranged to obtain a frequency-dependent
proportionality factor between the displacements of the box

and the core:

xc =
( −κ21

κ22 − mcω2

)
xs, (8)

which is substituted into Eq. (7a) to yield{
1

−ω2(κ22 − mcω2)
[(κ11κ22 − κ12κ21)

−(mcκ11 + msκ22)ω2 + msmcω
4]

}
ẍs = fb. (9)

The coefficient of the second time derivative of the displace-
ment is interpreted as the frequency-dependent, effective mass
me(ω) of the resonator:

me(ω) = 1

−ω2(κ22 − mcω2)

∣∣∣∣κ11 − msω
2 κ12

κ21 κ22 − mcω
2

∣∣∣∣.
(10a)

In the special case when the internal coupling reduces
to the Hooke’s law for massless springs, κ11 = κ22 = κ and
κ12 = κ21 = −κ , the effective mass assumes the familiar form

me(ω) = κ (mc + ms) − msmcω
2

κ − mcω2
= ms

[
(ω∗)2 − ω2

(ω0)2 − ω2

]
,

(10b)

where ω0 denotes the resonant frequency at which the effec-
tive mass diverges to infinity, and ω∗ denotes the frequency at
which the effective mass vanishes:

ω0 = (κ/mc)1/2, (11a)

ω∗ = (κ/mc + κ/ms)1/2 = (κ/mr )
1/2, (11b)

where mr = mcms/(mc + ms) is the reduced mass. The ef-
fective mass in Eq. (10a) is, in fact, nonsingular at ω = 0.
It is because det(κ) = κ11κ22 − κ12κ21 vanishes at zero fre-
quency, which balances the ω2 term in the denominator. The
cancellation at zero frequency generally holds, as required by
Newton’s third law that the internal forces cancel out identi-
cally. An alternative interpretation is that uniform translational
motion of the entire resonator in the absence of an external
force is a normal mode at zero frequency.

More generally, for a resonator with n internal degrees of
freedom xi of inertia mi, the coupling is represented by a n×n
Hermitian matrix κi j . The determinant of the coupling tensor
vanishes at zero frequency because all the internal forces
cancel out exactly by Newton’s third law. The equations of
motion are governed by Newton’s second law:

−miω
2xi = −κi jx j + fbδi1. (12)

The index i = 1, 2, 3, . . . , n, where i = 1 denotes the res-
onator shell that couples to the external harmonic force
fbe−iωt . The frequency-dependent, effective mass me(ω) is

me(ω) = det(κi j − δi jmiω
2)

−ω2M11
, (13)

where det denotes the determinant of a matrix and M11

denotes the determinant of the submatrix (first minor) of
(κi j − δi jmiω

2) obtained by deleting the first row and the first
column associated with the shell’s degree of freedom. The
n = 2 case is shown explicitly in Eq. (10a). The assertion can
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be proved using the cofactor expansions of determinant and
matrix inverse. Assuming that the system is in mechanical
equilibrium at rest [det(κ) = 0], we cancel out the common
ω2 factors in the numerator and the denominator. Both the
numerator and the denominator in Eq. (13) are degree n − 1
polynomials in ω2. It is customary to express the effective
mass in terms of the zero-mass frequencies ω∗, j and the reso-
nant frequencies ω0, j with 1 � j � n − 1, which are zeros of
the numerator and the denominator in Eq. (13), respectively:

me(ω) = m1

⎛
⎝n−1∏

j=1

ω2
∗, j − ω2

ω2
0, j − ω2

⎞
⎠. (14)

The zero-mass frequencies are the normal mode frequencies
of the resonator, associated with the free vibrations. The ef-
fective mass of the resonator changes its sign across such
frequencies, often signaling a transition from a stop gap
to a pass band. On the other hand, the resonant frequen-
cies are the normal mode frequencies of the interior of the
resonator, when the resonator shell is spatially fixed. The
effective mass diverges near the resonant frequencies because
a small displacement of the shell implies substantially larger
displacements of the interior masses. This generalized form
allows efficient computation when the resonator has numerous
internal degrees of freedom, or when the coupling matrix is
frequency dependent. For example, as a massive spring car-
ries momentum, the propagation of the disturbance from one
end of the spring to another is no longer instantaneous. The
relevant Hermitian coupling matrix is frequency dependent.
Detailed treatment of the resonator with a massive spring is
provided in Appendix B.

Similar order-reduction techniques are extensively ap-
plied in structural engineering under the notion of “dynamic
condensation” [50,51]. The engineering applications mostly
focused on simplifying the numerical finite-element method
(FEM) computations for a variety of complex mechanical
structures, such as vehicle-bridge system [52] and commercial
transport aircraft [53]. In subsequent applications, we demon-
strate the efficacy of the algebraic, frequency-dependent,
effective inertia in analyzing acoustic modes of locally res-
onant phononic crystals.

B. Rod-in-a-box model

The effective inertia tensor acquires a pair of nonzero off-
diagonal components, when the interior of a resonator is not
symmetric about the center of the shell. The mass-in-a-box
model with a pair of identical springs was studied [18]. We
now consider a generalized rod-in-a-box model, depicted in
Fig. 2, where the requirement of identical springs is relaxed.
The resonator consists of a rigid box of mass ms uniformly
distributed along its left sidewall, and transverse moment of
inertia Is about its center of mass. All other walls are assumed
to be massless. The box is coupled to a thin uniform inte-
rior rod of mass mc and transverse center-of-mass moment
of inertia Ic, through a pair of massless springs. The linear
(angular) displacements of the shell and the core are denoted
by xs (φs) and xc (φc), respectively. The springs, located at
(a + d ) and (a − d ) from the center of the left sidewall of the
box, have spring constants κ+ and κ−, respectively. The box is

FIG. 2. A rigid shell is coupled to a uniform rod through a pair of
massless springs. The mass of the box is evenly distributed on the left
sidewall, indicated by the dark shaded region. The translational and
rotational oscillations of the rod and the shell are intricately coupled.
The resonator experiences an external, time-harmonic external force
fbe−iωt and torque τbe−iωt about the center of the left sidewall.

harmonically driven by an external force fbe−iωt and external
torque τbe−iωt . The extensions of the upper ε+ and lower ε−
springs, for small φs and φc, are expressed in terms of the
mechanical variables of the box and the rod:

ε± = −xs + (a ± d )φs + xc ∓ dφc. (15)

All components oscillate at the driving angular frequency ω

in the steady state:

−msω
2xs = κ+ε+ + κ−ε− + fbe−iωt , (16a)

−Isω
2φs =−κ+(a+d )ε+−κ−(a−d )ε−+τbe−iωt , (16b)

−mcω
2xc = −κ+ε+ − κ−ε−, (16c)

−Icω
2φc = κ+dε+ − κ−dε−. (16d)

Using Eqs. (16c) and (16d), we express the mechanical vari-
ables of the core in terms of those of the shell, and eliminate
the variables of the core in Eqs. (16a) and (16b) to obtain a
generalized form of Newton’s second law:(

m11(ω) m12(ω)
m21(ω) m22(ω)

)(
ẍs

φ̈s

)
=
(

fbe−iωt

τbe−iωt

)
, (17)

where the components of the effective inertia tensor mi j (ω)
are

m11(ω) = ms+mc[4κ+κ−d2−Ic(κ++κ−)ω2]/D(ω), (18a)

m12(ω) = m21(ω) = −mc{4κ+κ−d2a − [κ+(a + d )

+ κ−(a − d )]Icω
2}/D(ω), (18b)

m22(ω) = Is + {4κ+κ−d2
(
Ic + mca2) − [κ+(a + d )2

+ κ−(a − d )2]Icmcω
2}/D(ω), (18c)

where D(ω) ≡ (κ+ + κ− − mcω
2)(κ+d2 + κ−d2 − Icω

2) −
(κ+ − κ−)2d2. The translational or rotational oscillation of
the rod excites simultaneously the translational and rotational
oscillations of the box. In general, the resonant modes are
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superpositions of translation and rotation of the rod. Provided
that the two springs are distinct (κ+ �= κ−), the difference
in elastic forces in the upper and lower springs introduces
nontrivial coupling between translation of the rod and rotation
of the box.

In the special case when the springs are identical
(κ+ = κ− = κ/2), the effective inertia tensor of a rod-in-a-
box model with identical springs [18] is recovered:

m11(ω) = ms + mcκ

κ − mcω2
, (19a)

m12(ω) = m21(ω) = − mcaκ

κ − mcω2
, (19b)

m22(ω) = Is + Icκr

κr − Icω2
+ mca2κ

κ − mcω2
, (19c)

where κr = κd2 is the torsional spring constant for rotational
oscillation. Rotational oscillation of the rod is decoupled from
the translation of the box. Nevertheless, the translational os-
cillation of the rod is coupled to the rotation of the box, if the
equilibrium position of the interior rod is off center (a �= 0).

C. Spring tensor

When an object is displaced from the equilibrium in a
linear elastic medium, it typically experiences restoring forces

and torques that are proportional to its displacement and
the elastic moduli of the background medium. In the same
spirit as the generalized Hooke’s law, the i j component of
the spring tensor ki j describes the generalized force of the
i variable, acting on the object, per unit displacement of the
j variable. While the spring tensor is conceptually compara-
ble to the stress tensor σ

↔, there are several key distinctions
that render the spring tensor an ideal, effective description of
phononic crystals. The spring tensor is macroscopically de-
fined, depending on the geometry of the solid inclusions. The
components of a spring tensor are adaptable to the relevant
degrees of freedom. On the other hand, the stress tensor is
microscopically defined, and always has nine components in
three dimensions.

In three dimensions, the predominant degrees of freedom
of a rigid object are its linear displacement (X,Y, Z ) and
angular displacement (�x,�y,�z ). The associated general-
ized forces are the force (Fx, Fy, Fz ) and the torque (τx, τy, τz )
acting on the rigid object by the elastic background. For
convenience, we label by the subscripts i = 1, 2, 3, 4, 5, and
6 as the directions implied by the generalized coordinates
X,Y, Z,�x,�y, and �z respectively. In a three-dimensional
phononic crystal consisting of periodic solid embeddings in
an elastic background, the Bloch wave vector K defines the
relative separations of the inclusions. The interaction is de-
scribed by a 6×6 spring tensor:

⎛
⎜⎜⎜⎜⎜⎜⎝

Fx(K)
Fy(K)
Fz(K)
τx(K)
τy(K)
τz(K)

⎞
⎟⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎜⎝

k11(K) k12(K) k13(K) k14(K) k15(K) k16(K)
k21(K) k22(K) k23(K) k24(K) k25(K) k26(K)
k31(K) k32(K) k33(K) k34(K) k35(K) k36(K)
k41(K) k42(K) k43(K) k44(K) k45(K) k46(K)
k51(K) k52(K) k53(K) k54(K) k55(K) k56(K)
k61(K) k62(K) k63(K) k64(K) k65(K) k66(K)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

X
Y
Z
�x

�y

�z

⎞
⎟⎟⎟⎟⎟⎟⎠

. (20)

The wave-vector dependence of the spring tensor can be
roughly represented by a nearest-neighbor approximation. For
illustration, we consider a lattice of spherical resonator shells
of common radii R in a simple cubic lattice of lattice constant
asc. Suppose the resonator centered at the origin displaces
from the equilibrium by Xsx̂. By discrete translational sym-
metry, the resonator centered at r = ascx̂ displaces at a phase
difference eiK·r relative to central resonator. The setup is
schematically shown in Fig. 3. The elastic strain ε

↔(r′) on

FIG. 3. The elastic strain and stress, and thus the relevant spring
tensor component, arise from the relative displacement between res-
onator shells.

the surface of the central resonator can be estimated by their
relative displacement, per unit distance between the surfaces
of the neighboring resonator shell measured on a line parallel
to r:

εxx(r′) ≈ Re[Xs(eiK·r − 1)]

r − 2Rr̂′ · r̂
. (21)

The elastic stress σ
↔(r′) is linearly proportional to the strain via

the constitutive relation (2), specified by Lamé constants λ and
μ for the isotropic elastic background. The elastic force Fb

acting on the central resonator, arising from the relative mo-
tion with the adjacent resonator, is estimated by an integral of
the approximate stress on the surface of the central scatterer:

Fb =
∫

dS′σ↔(r′) · n̂′

≈
∫ π/2

0
dθ ′2πR2 sin θ ′(λ + 2μ)εxx(r′) cos θ ′x̂

= −(2πR2/bNN)(λ + 2μ)[1 − cos(K · r)]Xsx̂, (22)

where bNN = −2R[1 + (asc/2R) ln(1 − 2R/asc)]−1 ranges
from 0 to 2asc, depending on the size and separation of the
resonators. Similarly analyzed are the elastic forces due to
the relative motion between the central resonator and other
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nearest neighbors at r = −ascx̂,±ascŷ,±ascẑ. Ignoring cross
interactions, we add up the independent elastic forces to
obtain a nearest-neighbor approximation of the spring tensor
component k11(K):

k11(K) ≡ −Fx

Xs
≈ 4πR2

bNN
{(λ + 2μ)[1 − cos(Kxasc)]

+μ[2 − cos(Kyasc) − cos(Kzasc)]}. (23)

The wave-vector dependence of other spring tensor
components can be estimated by symmetry arguments or
similar analyses. The simple nearest-neighbor approximation
recaptures the wave-vector dependence of the spring tensor
(see Fig. 2 in [18]). The actual spring tensor requires a more
precise treatment of the elastic strain and interactions with
more distant spheres. In subsequent applications, the spring
tensor is evaluated numerically by plane wave expansion (in
Appendix C) or finite-element method.

D. Acoustic band structure in the EIST model

In the EIST model, the mode spectrum of an acoustic
metamaterial is determined by the coupling of resonators in
a generic form of Newton’s second law:

mi j (ω)Ẍ j = −ki jXj . (24)

The effective inertia mi j (ω) describes the internal response of
an individual resonator. The spring tensor ki j recaptures the
coupling of spatially separated resonators in the metamaterial.

In a periodic structure, the spring tensor depends on the
underlying lattice symmetry and the wave vector K. The
frequency f = ω/(2π ), measured in hertz, is solved at each
given K to yield the acoustic band structure f (K). The the-
oretically infinite-dimensional eigenvalue problem condenses
into a finite-dimensional matrix equation. The eigenfrequen-
cies are the roots of the characteristic equation:

det[ki j (K) − 4π2 f 2mi j ( f )] = 0. (25)

E. Nonresonant scatterers in the EIST model

We demonstrate the efficacy of the EIST model by cal-
culating the acoustic mode spectrum of one of the simplest
three-dimensional phononic crystals. It consists of solid cel-
lulose spheres, embedded in a background of open-cell foam,
arranged in a simple cubic structure of lattice constant asc =
1 cm. The cellulose spheres occupy ν = 50% by volume and
have the radius R = asc(3ν/4π )1/3 ≈ 0.4924 cm. The unit
cell is depicted in Fig. 4. Cellulose refers to cellulose nitrate
thermoplastics, and is commonly used to make ping-pong
balls for its machinability and molding possibilities [54]. The
background is an open-cell foam manufactured by Foamex
International Inc., containing 0.4-mm pores with 60 pores
per inch [55]. Over the acoustic frequency range of inter-
est, the cellulose (foam) is approximated as an isotropic,
linear elastic solid with density and Lamé parameters given
by ρs = 1350 kg m−3, λs = 1.21 GPa, and μs = 0.519 GPa
(ρ = 30 kg m−3, λ = 23.1 kPa, and μ = 15.38 kPa).

In the EIST framework for an array of rigid, nonresonant
balls in soft elastic foam, the predominant degrees of freedom
are the translations (X,Y, Z ) and rotations (�x,�y,�z ) of the

FIG. 4. The unit cell of a nonresonant phononic crystal consists
of a cellulose ball of radius R ≈ 0.4924 cm, surrounded by open-
cell foam. The lattice constant is asc = 1 cm. The relevant degrees of
freedom are the translation in x/y/z direction X/Y/Z , and the rotation
�x/�y/�z about the respective coordinate axis.

balls in three orthogonal directions. The effective inertia ten-
sor is diagonal, with the translational inertia and the rotational
inertia corresponding to the mass and the moment of inertia,
respectively:

m11 = m22 = m33 = 4π

3
ρsR

3 ≈ 0.6750 g, (26a)

m44 = m55 = m66 = 8π

15
ρsR

5 ≈ 6.546 g mm2. (26b)

By Eq. (25), at a given wave vector K, six eigenfrequencies
are solved by diagonalizing the 6×6 matrix eigenvalue equa-
tion. When solved throughout the irreducible Brillouin zone,
these result in the first six phononic bands, predominated
by the coupled translations and rotations in three orthogonal
directions of the cellulose balls. The acoustic mode spectrum
and the density of states are plotted in Fig. 5. The maximum
percentage deviation from the exact finite-element method
benchmark is 3.25%. The seventh band, determined by FEM,
occurs at over 2800 Hz. The EIST model is physically trans-
parent and computationally efficient in recapturing the first six
phononic bands involving the coupled translation and rotation
in three orthogonal directions of the cellulose balls. On a mid-
range business laptop with a 4-core, double-threaded, central
processing unit (CPU) Intel® i7-10510U@4.9GHz, diago-
nalizing a 6×6 Hermitian matrix in the EIST model takes
an average of 10−5 s. On the other hand, in the commercial
FEM package, about 30 000 degrees of freedom are required
to accurately represent the three-dimensional unit cell. On
the same laptop, the eigenmode analysis at a given K point
involves a sparse 30 000×30 000 dynamical matrix and takes
an average of 10 s.
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FIG. 5. On the left panel, the acoustic bands of the phononic crystal consisting of a simple cubic lattice of cellulose balls in open-cell
foam are plotted in the first Brillouin zone along the path R → � → X → M → R. The first six bands involve superposition of rigid body
translation and rotation in three orthogonal directions of the cellulose balls, and are recaptured in the EIST model (blue crosses) in Eq. (25). The
translational and rotational modes are decoupled at high-symmetry points, indicated by red boxes and cyan circles, respectively. The acoustic
bands of the actual phononic crystal are calculated by finite-element method (solid black line). A large Bragg gap occurs approximately in the
range from 800 to 2800 Hz. The maximum percentage error of the first six bands is 3.25%. On the right panel, the density of states is evaluated
throughout the three-dimensional irreducible Brillouin zone, which is a cube for a simple cubic structure.

The eigenmodes at � and R are triply degenerate, with
each eigenfrequency corresponding to translation or rotation
in three orthogonal directions. At these high-symmetry points,
the translational and rotational modes of the cellulose balls
are decoupled, and the spring tensor is a diagonal matrix.
In general, the translational and rotational oscillations of the
cellulose balls are intricately coupled, and the spring tensor is
represented by a general, irreducible 6×6 Hermitian matrix.
The nontrivial coupling could be appreciated by continu-
ously tracing from the zero-frequency translational mode at �

(labeled by a red square) to the rotational mode at R (labeled
by a cyan circle), and vice versa. Along the path X → M, the
degeneracy is completely lifted, and there are six nondegener-
ate acoustic bands.

Considerable computational effort is saved by exploiting
the lattice symmetry and spherical symmetry of the spherical
scatterers. The system is invariant under reflection about the
coordinate planes: f (Kx, Ky, Kz ) = f (±Kx,±Ky,±Kz ), and
has fourfold discrete rotational symmetry about the coordi-
nate axes, for example, f (Kx, Ky, Kz ) = f (−Ky, Kx, Kz ). In
other words, the system has the same set of eigenfrequencies,
regardless of any coordinate-wise sign reversals and permu-
tations of the Bloch wave vector K. It suffices to consider
a region in the first Brillouin zone, consisting of a triangu-
lar pyramid bounded by the planes: {0 � Kx � π/asc, Kx �
Ky, and Kx � Kz}. The spring tensor and the eigenfrequencies
are evaluated at a grid consisting of 1771 independent K
points.

The density of states ρDOS(ω) is formally defined by the
number of oscillation modes per unit frequency:

ρDOS(ω) = a3
sc

(2π )3

∫
d3K δ(ω − ωK )

= a3
sc

(2π )3

∫
d2K⊥

|∇KωK| , (27)

where δ(ω) denotes the Dirac delta function, and d2K⊥ de-
notes the K-space surface area element perpendicular to the
gradient of the dispersion relation. In three dimensions, when
there is a local extremum or a saddle point in the disper-
sion relation, the gradient of the dispersion relation vanishes
(∇KωK = 0). The density of states, which is a K-space in-
tegral over the isofrequency surface, is not divergent but its
first derivative is discontinuous. It appears as a kink in the
density of states, which is referred to as a Van Hove singu-
larity [56]. The density of states exhibits sharp peaks where
the dispersion relation is flat. A prominent peak occurs at
766 Hz, which corresponds to the flat rotational bands at �.
Moreover, in the zero-frequency limit, the phononic density
of states is proportional to the square of the frequency. It is
because the dispersion relations are linear near the Brillouin
zone center � in the static limit, and the density of states scales
with the surface area of the spherical isofrequency surface in
three dimensions. In numerical computations, a histogram bin
width �ω is specified, and the infinitely sharp delta function
is replaced by an appropriate indicator function with a unit
area. At a given K point, if the frequency lies in a histogram
bin n�ω � ωK < (n + 1)�ω, we replace the delta function
in Eq. (27) by [�(ω − n�ω) − �(ω − (n + 1)�ω)]/(�ω),
where �(ω) denotes the Heaviside step function. Here, the
density of states histogram is plotted with a frequency bin
width of � f ≡ �ω/(2π ) = 5 Hz, under the normalization
condition that the total area under the curve equals the num-
ber of acoustic bands. In order to render a smooth density
of states profile, the dispersion relations are interpolated to
obtain a denser mesh without additional diagonalization and
plane wave summation effort.

Calculations of the acoustic spectrum are repeated for
an array of cellulose balls in body-centered cubic (bcc)
and face-centered cubic (fcc) lattices. To facilitate com-
parison across different lattice structures, the same radius
R ≈ 0.4924 cm and filling fraction ν = 50% are kept. Since
there are 2 and 4 spheres per cube in the underlying cubic
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FIG. 6. On the left panel, the acoustic bands of the phononic crystal consisting of a body-centered cubic (bcc) lattice of cellulose balls
in open-cell foam are plotted in the first Brillouin zone along the path P → � → N → H → P. The first six bands involve superposition of
rigid body translation and rotation in three orthogonal directions of the cellulose balls, and are recaptured in the EIST model (blue crosses) in
Eq. (25). The translational and rotational modes are decoupled at high-symmetry points, labeled by red boxes and cyan circles, respectively. The
acoustic bands of the actual phononic crystal are calculated by finite-element method (solid black line). A large Bragg gap occurs approximately
over the frequency range from 600 to 3700 Hz. The maximum percentage error of the first six bands is 1.52%. On the right panel, the density
of states is evaluated throughout the three-dimensional irreducible Brillouin zone, which is a rhombic dodecahedron for a bcc structure.

system of bcc and fcc systems, respectively, the lattice spac-
ings are adjusted accordingly to retain the sizes of the balls:
abcc = 21/3asc = 21/3 cm and afcc = 41/3asc = 22/3 cm. The
corresponding nearest-neighbor distances are (

√
3/2)abcc ≈

1.09 cm for the bcc lattice, and (
√

2/2)afcc ≈ 1.12 cm for the
fcc lattice.

In the EIST representation, the same effective inertia tensor
(26a) and (26b) applies to both bcc and fcc systems. The
spring tensor, reflecting the interaction among the spherical
scatterers, depends on the geometry and lattice structure. In
plane wave expansion, the lattice system is characterized by a
unique set of reciprocal lattice vectors, over which the plane
wave summation is evaluated. Algebraic details are provided
in Appendices A and C.

The acoustic mode spectrum and the density of states
are plotted in Figs. 6 and 7 for bcc and fcc systems, re-
spectively. Similar techniques involving lattice symmetry and
interpolation of the dispersion relation are applied to reduce
computational demand and to render smooth density of state
profiles. The eigenmodes and the spring tensor are evaluated
at a total of 506 (916) independent K points in the irreducible
Brillouin zone of the bcc (fcc) lattice. Over the first six
acoustic bands, the maximum percentage deviation from the
exact finite-element method benchmark is 1.52% (1.89%) for
the bcc (fcc) system, with the next bands occurring at over
3700 Hz (3500 Hz). The accuracy of the EIST model relies
on the rigidity of the cellulose balls such that their translations
and rotations adequately recapture the low-frequency modes.
Our result is consistent with recent topology optimization
studies [57] of periodic tungsten carbide and epoxy compos-
ites in sc, bcc, and fcc configurations which show that the
largest normalized band gaps are achieved in bcc systems.

IV. ANALYTICAL RIGID CORE SHELL APPROXIMATION
OF THREE-DIMENSIONAL SPHERICAL RESONATORS

In lattices of local acoustic resonators, dual band gaps
can be realized. With suitable parameter choices, both the

Bragg gap and the local resonance gap can be designed to fall
within the audible acoustic frequency range. Simple models
of locally resonant oscillators typically consist of a dense and
stiff core, embedded in an elastically soft medium, encapsu-
lated by a rigid shell. The stiff core and shell are essentially
approximated as rigid bodies, as the strain in the stiff core
and shell are negligible compared to that of the soft medium.
It can be understood from the continuity of the stress tensor
across the material boundary and the constitutive equation (2)
that, for a fixed stress, the strain is inversely proportional to
the stiffness.

On the other hand, the interstitial foam deforms elastically,
and the set of elastodynamic equations (5a)–(5c) are necessary
to fully recapture its behavior. In the resonators that we study,
the core and the shell are orders of magnitude denser than the
interstitial medium. Further simplifications can be made, by
dropping the mass terms in the elastodynamic equations gov-
erning the soft and light interstitial medium. Consequently,
the soft and light medium is approximated as a massless elas-
tic material that satisfies elastostatic equilibrium. A relevant
dimensionless small parameter is εf = ρω2D2/μ, where D de-
notes the typical thickness of soft and light medium. Using the
density of a typical elastic foam ρ ≈ 30 kg m−3, second Lamé
parameter μ ≈ 15 000 Pa, and a thickness of D ≈ 1 mm, we
obtain a frequency scale fT = (1/2πD)

√
μ/ρ ≈ 3600 Hz.

The elastostatic equilibrium approximation is valid, as long
as the frequency in consideration is significantly smaller than
fT. At frequencies near fT, overtone modes with nodes within
the interstitial medium occur, and internal wavelike behavior
cannot be ignored.

These assumptions collectively form the basis of the rigid
core-shell approximation (RCSA) [17,19]. A simple locally
resonant oscillator in three dimensions is spherically symmet-
ric. We consider a dense and stiff spherical core, surrounded
by a spherically annular layer of soft elastic foam, encap-
sulated by a rigid spherical shell. Such resonators exhibit
two types of modes: (1) rotational modes involving the
relative rotation of the core and the shell, and (2) trans-
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FIG. 7. On the left panel, the acoustic bands of the phononic crystal consisting of a face-centered cubic (fcc) lattice of cellulose balls
in open-cell foam are plotted in the first Brillouin zone along the path X → U → L → � → X → W → K. The first six bands involve
superposition of rigid body translation and rotation in three orthogonal directions of the cellulose balls, and are recaptured in the EIST model
(blue crosses) in Eq. (25). The translational and rotational modes are decoupled at high-symmetry points, labeled by red boxes and cyan circles,
respectively. The acoustic bands of the actual phononic crystal are calculated by finite-element method (solid black line). A large Bragg gap
occurs approximately over the frequency range from 600 to 3500 Hz. The maximum percentage error of the first six bands is 1.89%. On the
right panel, the density of states is evaluated throughout the three-dimensional irreducible Brillouin zone, which is a truncated octahedron for
a fcc structure.

lational modes involving their relative translations. Under
spherical symmetry, the mechanics in three orthogonal di-
rections are identical, and all the three translational and the
three rotational modes are decoupled. The spherically sym-
metric resonator and the two types of modes are depicted in
Fig. 8. We derive closed-form, algebraic expressions for the
frequency-dependent, effective mass and moment of inertia
for the translational and rotational modes, respectively. In a
general three-dimensional resonator, the translational and ro-
tational modes are coupled, and closed-form solutions are not
possible. An example is explored in the dumbbell model intro-
duced in Sec. VI. The solution to the boundary value problem
of elastostatic equilibrium is unique, provided that the total
elastic potential energy in the bounded region is finite [58].

A. Rotational resonance

When the core rotates relative to the shell, the spherically
annular layer of interstitial elastic foam provides a restoring
torque. By RCSA, we express the torques acting on the
core and the shell in terms of the angles of rotation of the
rigid bodies and the material parameters of the foam. The
calculation hinges on the strain-stress constitutive relation,
and the divergence-free property of the stress tensor at
elastostatic equilibrium.

Consider a spherical core-shell resonator. The radius of the
core is R1. The inner and outer radii of the spherical shell
are R2 and R3, respectively. The spherically annular region
between the core and the shell is filled with a homogeneous,
isotropic, linear elastic material of Lamé parameters λ and
μ. Suppose the core rotates by the angular displacement �cẑ
and the shell by �sẑ. The directions of rotation are cho-
sen to coincide with the z axis for convenience. The same
analysis applies to an arbitrary direction of rotational axis in
three dimensions by spherical symmetry and superposition in

linear elasticity. The elastic foam deforms from the equilib-
rium under a displacement profile u(r) = b(r) sin θ φ̂, where

FIG. 8. A spherically symmetric resonator is composed of a stiff
and dense spherical core of radius R1, surrounded a spherically
annular layer of elastic material, enclosed by a stiff spherical shell
of inner radius R2 and outer radius R3. By RCSA, the core (shell)
is approximated as a rigid body, and the only relevant material pa-
rameter is its density ρc (ρs). In contrast, the elastic material satisfies
elastostatic equilibrium, and the relevant material parameters are the
Lamé parameters λ and μ. The rigid core (shell) is disturbed from
the equilibrium by a linear displacement Zc (Zs) and an angular
displacement �c (�s).
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b(r) is a twice-differentiable function, satisfying the boundary
conditions

b(R1) = R1�c, (28a)

b(R2) = R2�s. (28b)

The detailed elasticity analysis of the rotational modes is
provided in Appendix D. The strain and stress tensors are
expressed in terms of the displacement field by Eqs. (1) and
(2). Then, the divergence-free property of the stress tensor
under elastostatic equilibrium is applied to obtain an ordinary
differential equation governing the displacement field. The
solution b(r) to the boundary value problem, expressible in
closed form, is integrated on the inner spherical surface inter-
acting with the core, and the outer surface touching the shell
to determine the required torques.

The elasticity calculations in Appendix D result in
the elastic restoring torque per unit angular displacement
[see Eqs. (D7a) and (D7b)]:

κr = 8πμR3
1R3

2

R3
2 − R3

1

. (29)

The equations of rotational motion of the core and the shell
are mapped to a mass-in-a-box model with a massless spring:

Ic�̈c = κr(�s − �c), (30a)

Is�̈s = τ (ω) + κr(�c − �s), (30b)

where Ic = (8π/15)ρcR5
1 denotes the moment of inertia of the

core, Is = (8π/15)ρc(R5
3 − R5

2) denotes the moment of inertia
of the shell, and τ (ω) denotes an external, time-harmonic
torque acting on the resonator shell at angular frequency ω. By
dynamic condensation in Eq. (10b), the frequency-dependent,
effective moment of inertia is

Ie( f ) = Is

(
f 2
∗,r − f 2

f 2
0,r − f 2

)
. (31)

Here, f0,r and f∗,r are the resonant and zero-mass frequencies
of the fundamental rotational mode of the resonator:

f0,r ≡ 1

2π

(
κr

Ic

)1/2

, (32a)

f∗,r ≡ 1

2π

(
κr

Ic
+ κr

Is

)1/2

. (32b)

B. Translational resonance

We now derive the frequency-dependent, effective mass
describing the translational oscillation of the spherical core-
shell resonator. The RCSA analysis depends on the rigidity of
the core and the shell, as well as the elastostatic equilibrium
of the interstitial elastic material.

Suppose the core is displaced from the equilibrium by Zcẑ,
and the shell by Zsẑ. The elastic deformation of the interstitial
elastic material, and hence the restoring forces, only depend
on the relative displacement of the two rigid bodies. By lin-
earity and spherical symmetry, there is no loss of generality
when the displacements are chosen in the z direction. The
elastic foam deforms from the equilibrium under a displace-
ment profile u(r) = cr (r) cos θ r̂ + cθ (r) sin θ θ̂, where cr (r)

and cθ (r) are twice-differentiable functions, satisfying the
boundary conditions

cr (R1) = Zc, (33a)

cr (R2) = Zs, (33b)

cθ (R1) = −Zc, (33c)

cθ (R2) = −Zs. (33d)

We summarize the essential physical ideas of the elasticity
analysis here, and present the detailed calculations in Ap-
pendix E. The strain tensor is expressed in terms of the
displacement field by Eq. (1), and so does the stress tensor by
the constitutive relation (2). When there is no external body
force acting on the idealized, massless, interstitial elastic ma-
terial, the stress tensor is divergence free, which yields a set of
coupled, second-order, linear differential equations governing
the displacement profile {cr, cθ }. The boundary value problem
is solved in closed form, and the forces acting on the core and
the shell are evaluated by the surface integrals of the stress
over the inner and outer spherical surfaces, respectively.

The equations of motion of the core and the shell are
mapped to a mass-in-a-box model with a massless spring:

mcZ̈c = κt(Zs − Zc), (34a)

msZ̈s = f (ω) + κt(Zc − Zs). (34b)

Here, mc = (4π/3)ρcR3
1 is the mass of the core. ms =

(4π/3)ρs(R3
3 − R3

2) is the mass of the shell, f (ω) denotes an
external, time-harmonic force acting on the resonator shell in
the z direction at angular frequency ω, and κt is the elastic
spring constant given in Eqs. (E9a) and (E9b) in Appendix E:

κt = [24πμ(λ + 2μ)(λ + 4μ)R1R2
(
R5

2 − R5
1

)]/
{
(R2 − R1)2

[
λ2(R2 − R1)2

(
4R2

1 + 7R1R2 + 4R2
2

)
+2λμ

(
13R4

1 + 8R3
1R2 + 3R2

1R2
2 + 8R1R3

2 + 13R4
2

)
+5μ2

(
8R4

1 + 7R3
1R2 + 6R2

1R2
2 + 7R1R3

2 + 8R4
2

)]}
.

(35)

By dynamic condensation in Eq. (10b), the frequency-
dependent, effective mass of the resonator is

me( f ) = ms

(
f 2
∗,t − f 2

f 2
0,t − f 2

)
. (36)

Here, f0,t and f∗,t are the resonant and zero-mass frequencies
of the fundamental translational mode of the resonator:

f0,r = 1

2π

(
κt

mc

)1/2

, (37a)

f∗,r = 1

2π

(
κt

mc
+ κt

ms

)1/2

. (37b)

V. LOCALLY RESONANT PHONONIC CRYSTALS
IN THE EIST MODEL

When the solid cellulose spheres in Sec. III E are replaced
by local resonators, it is possible to create two large band gaps
within the audible acoustic frequency spectrum. In addition
to the previously discussed Bragg gap, a large local reso-
nance gap may also appear. This extraordinary dual-band-gap
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configuration may enable a broad range of sound sculpting
over the audible spectrum. We analyze the acoustic band
structure of a lattice of the core-shell resonators introduced
in Sec. IV in sc, bcc, and fcc configurations. In the EIST
model, the frequency-dependent, effective mass in Eq. (36)
and moment of inertia in Eq. (31) constitute the effective
inertia tensor of the resonator. On the other hand, interac-
tions among different types of modes of the resonators are
recaptured by the wave-vector-dependent spring tensor. The
acoustic mode spectrum is governed by a generic form of
Newton’s second law (24). The results agree within 3.71%,
2.32%, and 2.38% in sc, bcc, and fcc systems, respectively,
compared to finite-element method benchmarks. The EIST
framework takes into consideration the internal and external
couplings of the predominant degrees of freedom and pro-
vides a computationally efficient and physically transparent
representation of locally resonant phononic crystals.

We specify the materials and the dimensions of the
core-shell resonator from Sec. IV. Spherically symmetric res-
onators are arranged in sc lattice, with lattice constant asc =
1 cm. In each resonator, a dense and stiff steel ball couple to
a concentric, spherical cellulose shell through an interstitial
layer of open-cell foam. The background is filled by the same
type of open-cell foam. The steel core, interstitial foam, and
cellulose shell occupy νc = 10%, νf = 20%, and νs = 20%
by volume, respectively. The radius of the steel core R1 =
asc[3νc/(4π )]1/3 ≈ 2.879 mm. The inner radius of the cellu-
lose shell R2 = asc[3(νc + νf )/(4π )]1/3 ≈ 4.153 mm and its
outer radius R3 = asc[3(νc + νf + νs )/(4π )]1/3 ≈ 4.924 mm.
The cross section of the resonator is sketched in Fig. 8.
Over the audible frequency range, steel acts as an isotropic,
linear elastic solid of density ρc = 7940 kg m−3 and Lamé
parameters λc = 107.5 GPa and μc = 78.15 GPa [59]. Mate-
rial parameters of cellulose and open-cell foam are given in
Sec. III E.

The steel core and the cellulose shell are orders of mag-
nitude stiffer than the interstitial foam, and behave as rigid
bodies. The mass and moment of inertia of the core (shell) are
mc ≈ 0.7940 g (ms ≈ 0.2700 g) and Ic ≈ 2.633 g mm2 (Is ≈
3.752 g mm2), respectively. Denote by (Xc/s,Yc/s, Zc/s) and
(�c/s,x,�c/s,y,�c/s,z ) the translations and rotations in three
orthogonal directions of the core and shell, respectively. By
RCSA, the interstitial foam acts as a massless spring of linear
spring constant κt ≈ 3210 N m−1 and torsional spring con-
stant κr ≈ 0.01384 N m, given in Eqs. (29) and (35). The
shell couples to the elastic background, so that its general-
ized coordinates (Xs,Ys, Zs,�s,x,�s,y,�s,z ) are chosen as the
predominant degrees of freedom in the EIST model. Since the
translational or rotational motion of the core only couples to
the translation or rotation of the shell in the same direction, the
effective inertia tensor is diagonal. The degrees of freedom of
the core condenses into frequency-dependent mass (36) and
moment of inertia (31) of the resonator:

m11( f ) = m22( f ) = m33( f ) = ms

(
f 2
∗,t − f 2

f 2
0,t − f 2

)
, (38a)

m44( f ) = m55( f ) = m66( f ) = Is

(
f 2
∗,r − f 2

f 2
0,r − f 2

)
, (38b)

where f0,t ≈ 320.0 Hz, f∗,t ≈ 635.3 Hz, f0,r ≈ 364.9 Hz, and
f∗,r ≈ 476.0 Hz, given in Eqs. (32a), (32b), (37a), and (37b).

The wave-vector-dependent spring tensor describes the
coupling of translational and rotational modes of the res-
onators in a periodic structure. It depends on the lattice system
and the material parameters of the background foam, and is
insensitive to the interior of the scatterers. Since the spherical
resonators occupy 50% by volume, at the same locations
as the cellulose balls in the sc lattice with the same lattice
spacing, the same spring tensor from Sec. III E applies.

The mode spectrum is calculated by solving a polynomial
equation (25) in the square of frequency, as a function of the
Bloch wave vector throughout the irreducible Brillouin zone.
As in the case of nonresonant cellulose balls, lattice symmetry
is utilized to trim repetitive computations, and the the disper-
sion relation is interpolated from a grid of 1771 independent
K points to smoothen the density of states. The band structure
and the normalized density of states are plotted in Fig. 9.
The maximum deviation from the exact FEM benchmark is
1.79% for the first six bands and 3.71% for the 7th band to the
12th band. The 13th band occurs at over 2800 Hz, involving
deformation of the cellulose shell.

The calculations are repeated in bcc and fcc arrangements
of the aforementioned core-shell resonators. The lattice spac-
ings are again chosen to retain the filling fraction of 50%, so
that abcc = 21/3asc = 21/3 cm and afcc = 41/3asc = 22/3 cm.
The resonators are represented by the same frequency-
dependent, effective inertia tensor (38a) and (38b) in both the
bcc and fcc systems. The spring tensors are inherited from
those for the bcc and fcc lattices of cellulose balls in Sec. III E
since the resonators occupy the same spaces as the cellulose
balls in the corresponding structures.

The acoustic band structure and the normalized density of
states are plotted in Figs. 10 and 11, respectively. The eigen-
solutions are determined at 506 and 916 independent K points
in the irreducible Brillouin zones of the bcc and fcc structures,
respectively. We take advantage of the reflectional and discrete
rotational symmetry of the lattice systems to truncate repeti-
tive steps. Assuming the continuity of the eigenfrequencies as
a function of the wave vector, we interpolate the dispersion
relations to enhance the sampling for the density of states. For
the bcc (fcc) system, the maximum percentage deviation of
the EIST model predictions from the exact FEM results are
1.62% (2.01%) for the first six bands, and 2.32% (2.38%) for
the 7th band to the 12th bands. The 13th band occurs at over
3700 Hz (3500 Hz), which is associated with deformations of
the cellulose shell.

There is a complete, acoustic, local-resonance band gap
between the sixth and the seventh bands, irrespective of the
lattice structures. The band gap occurs from 348 to 620 Hz
for the sc lattice, from 337 to 621 Hz for the bcc, and from
336 to 621 Hz for the fcc. It coincides with the frequency
range f0,r < f < f∗,r over which the effective mass and the
effective moment of inertia of the resonator are simultane-
ously negative. For a negative-definite effective inertia tensor
and a positive-definite spring tensor, there is no real solution
to the eigenfrequency in Eq. (24). The band-gap formation is
explained by the local resonance of the core-shell resonators.
In addition, there is complete Bragg gap between the 12th and
the 13th bands. The Bragg gap occurs from approximately
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FIG. 9. On the left panel, the first 12 acoustic bands of the phononic crystal consisting of a simple cubic lattice of spherical steel-cellulose
resonators in open-cell foam are plotted in the first Brillouin zone along the path R → � → X → M → R, for the EIST model (blue crosses)
in Eq. (25). The acoustic bands of the actual phononic crystal are calculated by finite-element method (solid black line). The maximum
percentage error of the first six bands is 1.79%, and that of the next six bands is 3.71%. On the right panel, the density of states is evaluated
throughout the three-dimensional, cubic, irreducible Brillouin zone. There is a complete, local-resonance band gap between 348 to 620 Hz.
The Bragg gap spans the frequency range from approximately 1300 to 2800 Hz.

1300 to 2800 Hz for the sc lattice, from approximately 1000
to 3700 Hz for the bcc, and from approximately 1000 Hz to
3500 Hz for the fcc.

There are deep connections between the first 12 acoustic
bands and the coupled oscillations of the core and the shell.
Over the frequency range of the first three bands, both the
effective mass and the moment of inertia are positive, and
these bands are closely related to the coupled in-phase trans-
lations in three orthogonal directions. On the other hand, over
the bulk of the fourth band to the sixth band, the effective
mass is negative while the effective moment of inertia is
positive. Acoustic modes are heavily influenced by the cou-
pled in-phase rotations in three orthogonal directions. There

are secondary local resonance band gaps between the third
band and the fourth band separating the two kinds of acoustic
modes, from 289 to 308 Hz for the sc lattice, from 266 to
310 Hz for the bcc, and from 266 to 311 Hz for the fcc. The
effective mass and the moment of inertia increase monotoni-
cally from the algebraic sum at zero frequency to infinity at the
resonant frequency. The six bands for in-phase oscillations are
redshifted, compared to a nonresonant solid cellulose sphere
described in Sec. III E.

The 7th band to the 12th band are associated with the
coupled antiphase translational and rotational vibrations. The
effective mass changes its sign at f = f∗,t, signaling the edges
of the degenerate, seventh to ninth bands at �, corresponding

FIG. 10. On the left panel, the first 12 acoustic bands of the phononic crystal consisting of a body-centered cubic (bcc) lattice of spherical
steel-cellulose resonators in open-cell foam are plotted in the first Brillouin zone along the path P → � → N → H → P, for the EIST model
(blue crosses) in Eq. (25). The acoustic bands of the actual phononic crystal are calculated by finite-element method (solid black line). The
maximum percentage error of the first six bands is 1.62%, and that of the next six bands is 2.32%. On the right panel, the density of states is
evaluated throughout the three-dimensional irreducible Brillouin zone of a rhombic dodecahedron. There is a complete, local-resonance band
gap between 337 to 621 Hz. The Bragg gap spans the frequency range from approximately 1000 to 3700 Hz.
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FIG. 11. On the left panel, the first 12 acoustic bands of the phononic crystal consisting of a face-centered cubic (fcc) lattice of spherical
steel-cellulose resonators in open-cell foam are plotted in the first Brillouin zone along the path X → U → L → � → X → W → K, for the
EIST model (blue crosses) in Eq. (25). The acoustic bands of the actual phononic crystal are calculated by finite-element method (solid black
line). The maximum percentage error of the first six bands is 2.01%, and that of the next six bands is 2.38%. On the right panel, the density of
states is evaluated throughout the three-dimensional irreducible Brillouin zone of a truncated octahedron. There is a complete, local-resonance
band gap between 336 to 621 Hz. The Bragg gap spans the frequency range from approximately 1000 to 3500 Hz.

to the coupled antiphase translational oscillations in three
orthogonal directions. Except at the high-symmetry points,
the translations and the rotations are intricately coupled. The
effective inertia increases monotonically from zero at the
zero-mass frequency, and asymptotically approaches that of
the resonator shell. Since the effective inertia of the resonator
is consistently smaller than that of the nonresonant counter-
part of the same static inertia at zero frequency, the six bands
for antiphase oscillations are blueshifted.

Potential sources of error of the EIST construction are the
massless spring approximation of the interstitial foam and
deformations of the cellulose shell. Under the RCSA, the thin
layer of interstitial foam is approximated as a massless spring,
providing restoring force and torque, when there are relative
displacements between the core and the shell. In reality, the
foam has a nonzero mass of mf = (4π/3)ρf(R3

2 − R3
1), and

constitutes mf/(mc + mf + ms) ≈ 0.5607% of the static mass.
In addition, a massive spring carries momentum and it takes
time for the disturbance to propagate across the layer of foam,
so that the forces experienced by the core and the shell do
not cancel instantaneously. Analogous arguments apply to the
moment of inertia contribution of the foam and the angular
momentum propagation across the massive torsional spring.
At low frequencies, the translations and rotations in three
orthogonal directions of the rigid resonator shell define the
predominant degrees of freedom. As the frequency increases,
the relative stress across the resonator inevitably excites de-
formations of the cellulose shell. These effects cause larger
percentage deviations of the antiphase bands in comparison to
in-phase bands.

VI. ULTRAWIDE LOCAL RESONANCE GAPS
AND FLAT ACOUSTIC BANDS

Having applied the EIST model to the spherical core-shell
resonators in sc, bcc, and fcc lattices, we extend it to heavier
core-shell resonators and dumbbell-shaped resonators. In the

first example, a wide, local-resonance band gap of a dimen-
sionless gap-to-midgap ratio of 126.8% is achieved through
increasing the mass difference between the shell and the
core. In the next examples, neighboring spherical resonators
are joined to create dumbbell-shaped resonators, requiring
generalizations to nondiagonal effective inertia tensor and
complex Hermitian spring tensor. This enables deterministic
engineering of flat acoustic bands within the band gap of the
original structure of disconnected spherical resonators. These
examples illustrate the simplicity and versatility of the EIST
model in describing complex locally resonant oscillators and
their interactions in a host medium.

A. Core-shell resonator with wide local-resonance band gap

A wide, local-resonance band gap is achieved, in a lattice
of resonators with substantial mass contrasts between the core
and the shell. For any given positive-definite spring tensors,
there is no real solution to the eigenfrequency whenever the
effective inertia tensor is negative-definite. The effective mass
of a core-shell resonator is negative between its resonant fre-
quency and zero-mass frequency, and hence the band gap can
be extended by simultaneously decreasing the resonant fre-
quency and increasing the zero-mass frequency. By Eq. (11a),
the resonant frequency decreases with an increasing mass of
the core. On the other hand, by Eq. (11b), the zero-mass fre-
quency increases with a decreasing reduced mass. Analogous
arguments apply to the effective moment of inertia governing
the rotational modes. By coupling heavy cores to light shells,
it is possible to extend the frequency range over which the
effective inertia is negative, and correspondingly the band gap.

We illustrate local resonance gap widening using a simple
cubic lattice of core-shell resonators developed in Secs. IV
and V. To enhance the mass contrast, the filling fractions of
steel, interstitial foam, and cellulose are modified to ν (w)

c =
30%, ν

(w)
f = 10%, and ν (w)

s = 10%, respectively. The spheri-
cally symmetric resonators are arranged in a sc lattice, with
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FIG. 12. On the left panel, the first 12 acoustic bands of the phononic crystal consisting of a simple cubic lattice of spherical steel-cellulose
resonators of large mass contrast in open-cell foam are plotted in the first Brillouin zone along the path R → � → X → M → R, for the EIST
model (blue crosses) in Eq. (25). The acoustic bands of the actual phononic crystal are calculated by finite-element method (solid black line).
The maximum percentage error of the first six bands is 2.23%, and that of the next six bands is 6.88%. On the right panel, the density of states
is evaluated throughout the three-dimensional, cubic, irreducible Brillouin zone. There is a complete, local-resonance band gap between 315.4
to 1408 Hz. The Bragg gap persists over a frequency range from approximately 2400 to 2800 Hz.

lattice constant asc = 1 cm. The radius of the steel core,
the inner and outer radii of the cellulose shell are now
R(w)

1 = asc[3ν (w)
c /(4π )]1/3 ≈ 4.153 mm, R(w)

2 = asc[3(ν (w)
c +

ν
(w)
f )/(4π )]1/3 ≈ 4.571 mm, and R(w)

3 = asc[3(ν (w)
c + ν

(w)
f +

ν (w)
s )/(4π )]1/3 ≈ 4.924 mm, respectively. The cross sec-

tion of the resonator is portrayed in Fig. 8. Material
parameters of steel, cellulose, and open-cell foam are pro-
vided in Secs. III E and V.

The application of the EIST model parallels that in
Sec. V. The masses of the resonator are concentrated
in the dense and rigid core and the stiff shell. The
translations and rotations in three orthogonal directions
(Xc/s,Yc/s, Zc/s,�c/s,x,�c/s,y,�c/s,z ) of the core and shell are
identified as the principal degrees of freedom. The mass and
the moment of inertia of the steel core are triple the previous
values: m(w)

c ≈ 2.382 g and I (w)
c ≈ 16.43 g mm2. In contrast,

the mass and the moment of inertia of the shell are roughly
halved: m(w)

s ≈ 0.1350 g and I (w)
s ≈ 2.033 g mm2. The inter-

stitial foam is approximated as a massless spring that couples
the steel core and the cellulose shell, with linear spring
constant κ

(w)
t ≈ 16 050 N m−1 and torsional spring constant

κ (w)
r ≈ 0.1107 N m, given in Eqs. (29) and (35). Only the res-

onator shell directly couples to the background material and,
hence, in the EIST construction, its generalized coordinates
(Xs,Ys, Zs,�s,x,�s,y,�s,z ) are chosen to be the predominant
degrees of freedom. The mechanical variables of the core are
realized as frequency-dependent terms in the effective mass
(36) and moment of inertia (31) of the resonator:

m11( f ) = m22( f ) = m33( f ) = m(w)
s

⎡
⎣( f (w)

∗,t

)2 − f 2(
f (w)
0,t

)2 − f 2

⎤
⎦, (39a)

m44( f ) = m55( f ) = m66( f ) = I (w)
s

⎡
⎣( f (w)

∗,r
)2 − f 2(

f (w)
0,r

)2 − f 2

⎤
⎦, (39b)

where f (w)
0,t ≈ 413.2 Hz, f (w)

∗,t ≈ 1784.1 Hz, f (w)
0,r ≈ 413.2 Hz,

and f (w)
∗,r ≈ 1245.2 Hz, given in Eqs. (32a), (32b), (37a), and

(37b). The effective inertia tensor is negative-definite over
413.2 Hz < f < 1245.2 Hz, and hence the acoustic band gap
based on local resonance must contain such frequency inter-
vals. On the other hand, the same spring tensor from Sec. III E
is applicable because the spherical resonators occupy the same
positions as the cellulose balls in the lattice and the spring
tensor is insensitive to the interior of the scatterers.

The acoustic mode spectrum is determined by solving a
degree 12 polynomial equation in the square of frequency,
at each given Bloch wave vector in the irreducible Brillouin
zone. A smooth density of states is rendered by interpolating
the dispersion relations from a mesh of 1771 independent
K-vertex points. The band structure and normalized density
of states are plotted in Fig. 12. Compared to the exact FEM
benchmark, the maximum percentage deviation is 2.23% for
the first six bands, and 6.88% for the 7th to 12th bands. The
frequency of the 13th band is over 2800 Hz.

There is a complete, three-dimensional, local-resonance
band gap from 315.4 to 1408 Hz. The dimensionless gap-
to-mid-gap ratio, defined by the width of the band gap over
the central frequency, is 126.8%. Admittedly, the accuracy
of the EIST model declines at higher frequencies because
the elastostatic equilibrium conditions and the choice of the
predominant degrees of freedom do not incorporate the in-
ertial effects of the interstitial foam. Nonetheless, the EIST
model provides valuable qualitative insights into the acoustic
response of the system. The first (next) six bands are associ-
ated with the coupled, in-phase (antiphase) translations and
rotations of the core and the shell. The band gap properly
contains the frequency range where the effective mass and
the effective moment of inertia are simultaneously negative. In
other words, the band gap which is based on local resonance
can be predicted without detailed information of the spring
tensor.
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FIG. 13. A conformally coated dumbbell resonator consists of
two steel balls of radii R(c)

1 = 2.834 mm connected via a right circular
cylinder of the same material, surrounded by a layer of foam of
radii R(c)

2 = 4.140 mm at the spherical ends, encapsulated by cel-
lulose shell of radii R(c)

3 = 4.924 mm at the two ends. The radii
at the central cylindrical portion of the steel, foam, and cellulose
portions are chosen to be (1/6)R(c)

3 , (1/4)R(c)
3 , and (1/3)R(c)

3 , re-
spectively. At low frequencies, the major degrees of freedom are
the translation and rotation about the center in three orthogonal
directions of the core (Xc,Yc, Zc, �c,x, �c,y, �c,z ), and those of the
shell (Xs,Ys, Zs, �s,x, �s,y, �s,z ).

As it is illustrated explicitly, a large, complete, three-
dimensional, resonance-based band gap is obtained by cou-
pling heavy cores to light shells. In contrast, tiny band gaps
can be designed with small cores and thick shells. It is possible
to create a broad spectral range of “localized modes” within
the local resonance gap, by introducing a random distribution
of core masses and shell thicknesses. A line of identical de-
fects can also serve as a waveguide channel within the local
resonance gap.

B. Conformally coated dumbbell resonator

A dumbbell-shaped resonator is created by connecting two
neighboring spherical resonators by rigid cylindrical rods.
Two steel balls of radius R(c)

1 , separated by a distance a(c)

between their centers, are connected by a cylindrically sym-
metric steel rod of radius (1/6)R(c)

3 , where R(c)
3 is the outer

radius of the spherical shell at either end of the dumbbell.
The dumbbell-shaped compound core is conformally coated
by a layer of interstitial open-cell foam with inner radius
R(c)

1 and outer radius R(c)
2 at the spherical ends, and inner

radius (1/6)R(c)
3 and outer radius (1/4)R(c)

3 at the cylindrical
shaft. The dumbbell-shaped resonator is encapsulated by a
stiff cellulose shell of outer radius R(c)

3 at the spherical ends
and outer radius (1/3)R(c)

3 at the cylindrical handle. The di-
rection of azimuthal symmetry is aligned with the z axis. The
cross section of the conformally coated dumbbell resonator
is depicted in Fig. 13. The conformally coated dumbbell res-
onators are arranged in a tetragonal lattice with a square base
of a(c) = 1 cm and height c(c) = 2a(c) = 2 cm.

In order to facilitate comparison with the results of the
spherical core-shell resonators in Sec. V, the distance between
the steel balls is equal to the lattice spacing of the sc lattice
a(c) = 1 cm, and the filling fractions of steel, cellulose, and
open-cell foam in the composite structure are maintained at
10%, 20%, and 70%, respectively. Owing to the additions
of the cylindrical connecting rods, the radii of the com-
ponents are adjusted accordingly: R(c)

1 = 2.834 mm, R(c)
2 =

4.140 mm, R(c)
3 = 4.924 mm. Relevant material parameters of

steel, cellulose, and open-cell foam are given in Secs. III E
and V. The mass of the dumbbell-shaped core (shell) is
m(c)

c ≈ 1.588 g (m(c)
s ≈ 0.5400 g). The axial and transversal

moments of inertia of the core (shell) are I (c)
c,z ≈ 4.886 g mm2

(I (c)
s,z ≈ 7.586 g mm2) and I (c)

c,x = I (c)
c,y ≈ 42.83 g mm2 (I (c)

s,x =
I (c)
s,y ≈ 21.27 g mm2), respectively. Detailed calculations are

provided in Appendix F.
We apply the EIST model to analyze the acoustic mode

spectrum. Over the acoustic frequency range of interest, the
mechanical response is dominated by the rigid body transla-
tions and rotations about the center of mass in three orthogo-
nal directions of the steel core (Xc,Yc, Zc,�c,x,�c,y,�c,z ) and
the cellulose shell (Xs,Ys, Zs,�s,x,�s,y,�s,z ). By azimuthal
symmetry and reflectional symmetry, the translation or rota-
tion of the core only couples to the corresponding mechanical
variable of the shell in the same direction. The resonator is
encapsulated by the dumbbell-shaped shell, such that only
the shell couples to the background material. The mechanical
responses are mapped to mass-in-a-box models.

We determine the elastic spring constants of the intersti-
tial foam. In the case of the spherical core-shell resonator
in Sec. V, an elastostatic equilibrium approximation is ap-
plied to the spherically annular layer of interstitial foam to
obtain algebraic, closed-form solutions to the spring con-
stants. Similar analytical treatment is unlikely to yield simple,
closed-form results in the dumbbell geometry. We resort to
FEM to calculate the spring constants for the interior cou-
pling. The elastic force is obtained by integrating the traction
vector σ

↔ · n̂ of the stationary solution over the boundary of
the interstitial foam. The relative displacements of the core
and the shell are estimated by averaging the displacement
field of the stationary solution in the respective regions. The
required spring constants of the fundamental translational
resonance are the negative ratios of the elastic forces to the
relative displacements: κ

(c)
t,x = κ

(c)
t,y ≈ 7491 N m−1 and κ

(c)
t,z ≈

6534 N m−1. Similar calculations are repeated for the internal,
rotational motion to yield the torsional spring constants for the
fundamental rotational resonance: κ (c)

r,x = κ (c)
r,y ≈ 0.1853 N m

and κ
(c)
t,z ≈ 0.02658 N m. Compared to the spring constants of

the spherical core-shell resonator in Sec. V, the translational
spring constants and the axial torsional spring constant are
roughly double the corresponding values. On the other hand,
the transversal rotational spring constants are an order of
magnitude larger. Instead of a simple shear, the transversal
rotation also involves compression of the interstitial foam.

The degrees of freedom of the core condense into
anisotropic, frequency-dependent masses and moments of in-
ertia of the resonator by Eq. (10b). As the translation or
rotation of the core only couples to the corresponding mechan-
ical variable of the shell in the same direction, the resultant
effective inertia tensor is diagonal:

m(c)
11 ( f ) = m(c)

22 ( f ) = m(c)
s

⎡
⎣( f (c)

∗,t,x

)2 − f 2(
f (c)
0,t,x

)2 − f 2

⎤
⎦, (40a)

m(c)
33 ( f ) = m(c)

s

⎡
⎣( f (c)

∗,t,z

)2 − f 2(
f (c)
0,t,z

)2 − f 2

⎤
⎦, (40b)
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m(c)
44 ( f ) = m(c)

55 ( f ) = I (c)
s,x

⎡
⎣( f (c)

∗,r,x
)2 − f 2(

f (c)
0,r,x

)2 − f 2

⎤
⎦, (40c)

m(c)
66 ( f ) = I (c)

s,z

⎡
⎣( f (c)

∗,r,z
)2 − f 2(

f (c)
0,r,z

)2 − f 2

⎤
⎦, (40d)

where the resonant and zero-mass frequencies are

f (c)
0,t,x = 1

2π

(
κ

(c)
t,x

m(c)
c

)1/2

≈ 345.7 Hz, (41a)

f (c)
∗,t,x = 1

2π

(
κ

(c)
t,x

m(c)
c

+ κ
(c)
t,x

m(c)
s

)1/2

≈ 686.2 Hz, (41b)

f (c)
0,t,z = 1

2π

(
κ

(c)
t,z

m(c)
c

)1/2

≈ 322.8 Hz, (41c)

f (c)
∗,t,z = 1

2π

(
κ

(c)
t,z

m(c)
c

+ κ
(c)
t,z

m(c)
s

)1/2

≈ 640.9 Hz, (41d)

f (c)
0,r,x = 1

2π

(
κ (c)

r,x

I (c)
c,x

)1/2

≈ 331.1 Hz, (41e)

f (c)
∗,r,x = 1

2π

(
κ (c)

r,x

I (c)
c,x

+ κ (c)
r,x

I (c)
s,x

)1/2

≈ 574.8 Hz, (41f)

f (c)
0,r,z = 1

2π

(
κ (c)

r,z

I (c)
c,z

)1/2

≈ 371.3 Hz, (41g)

f (c)
∗,r,z = 1

2π

(
κ (c)

r,z

I (c)
c,z

+ κ (c)
r,z

I (c)
s,z

)1/2

≈ 476.1 Hz. (41h)

The effective inertia tensor is negative-definite over the
frequency range 371.3 Hz < f < 476.1 Hz, which must be
contained within the acoustic band gap in a lattice of the
conformally coated dumbbell resonators.

We calculate the spring tensor describing the coupling
between the predominant oscillation modes of a resonator
and with those of spatially separated resonators. The spring
tensors for spherical scatterers are determined by plane wave
expansion in Sec. III E and Appendix C. It is unlikely that
a similar plane wave expansion treatment yields a compact
lattice sum in the dumbbell geometry. Here, we resort to FEM
to calculate the required spring tensor. The elastodynamic
equation is solved for the tetragonal lattice where the res-
onators are replaced by rigid, uniform cellulose dumbbells.
Suppose the dumbbell displaces from the equilibrium in the x
direction by Xs. The relative displacements of the dumbbells
are specified by the Bloch wave vector K. A generalized elas-
tic force Fj acts on the dumbbell by the background, which can
be calculated by integrating over the surface of the scatterer
the traction σ

↔ · n̂ and moment r×(σ↔ · n̂). The first column
of the spring tensor, associated with translational oscillation
in the x direction, is given by kdb, j1(K) = −Fj/Xs. Similar
calculations are repeated for other translational and rotational
degrees of freedom to calculate the full 6×6 spring tensor.

FIG. 14. The first 12 acoustic bands of the phononic crystal
consisting of a tetragonal lattice of conformally coated, dumbbell-
shaped, steel-cellulose resonators in open-cell foam are plotted along
the high-symmetry path A → � → Z → R → A in the irreducible
Brillouin zone. The acoustic mode spectrum in the EIST model (blue
crosses) is described by a degree 12 polynomial in Eq. (25). The
bands of the actual phononic crystal are calculated by finite-element
method (black solid line). The maximum percentage error is 3.02%.
There is a local resonance band gap from 354.2 to 625.3 Hz. The
Bragg gap occurs over a frequency range from approximately 1300
to 2800 Hz.

The acoustic band structure is determined by solving a
degree 12 polynomial equation in the square of frequency
by Eq. (25). The band diagram is plotted along the high-
symmetry path in the irreducible Brillouin zone in Fig. 14.
The maximum percentage deviation from the FEM bench-
mark is 3.02%. The 13th and 14th bands occur at 2800 Hz,
involving the c-shaped bending of the steel dumbbell. With a
thinner connecting handle, the bending could occur at a lower
frequency, and introduce additional mixing with the rigid
body translational and rotational motion in the eigenstates.
In this study, the translation and rotation in three orthog-
onal directions of the core and the shell are chosen to be
the predominant degrees of freedom, and coupling to other
oscillation modes is regarded as sources of error.

There is a complete, local-resonance, acoustic band gap
from 354.2 to 625.3 Hz. It properly contains the frequency
interval where the effective inertia tensor is negative-definite,
confirming the inhibition of wave propagation at negative
effective masses and moments of inertia. The width and the
frequency range of the acoustic band gap are comparable
to those of the spherical core-shell resonators in different
lattice configurations. While the mass and axial moments of
inertia are doubled through connecting the components of two
neighboring units, likewise are the translational and rotational
spring constants of the interstitial foam. The characteristic
frequencies of the dumbbell resonators, which are related to
the ratio of the spring constants to the static inertia, are com-
parable to those of the original spherical resonators. The band
structure of the lattice of dumbbell resonators differs from
those of the spherical core-shell resonators in the degrees of
degeneracy. At the high-symmetry points in the first Brillouin
zone, the triply degenerate translational (rotational) modes
split into a nondegenerate axial translational (rotational) mode
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FIG. 15. A conformally coated dumbbell resonator consists of
two steel balls of radii R1 = 2.879 mm, individually surrounded
by a layer of foam of radius R2 = 4.153 mm, encapsulated by a
dumbbell-shaped, cellulose shell of radii R3 = 4.924 mm at the two
ends. The radius of the cylindrical handle is ( 1

3 )R3 ≈ 1.641 mm. At
low frequencies, the major degrees of freedom are the translation
and rotation about the center of mass in three orthogonal directions
of the core on the right (Xc1,Yc1, Zc1, �c1,x, �c1,y,�c1,z ), the core
on the left (Xc2,Yc2, Zc2,�c2,x, �c2,y, �c2,z ), and those of the shell
(Xs,Ys, Zs, �s,x, �s,y, �s,z ).

in the z direction and doubly degenerate translational (rota-
tional) modes in the x and y directions.

C. Connected shell dumbbell resonator

Another kind of dumbbell-shaped resonator is created by
connecting, with a rigid rod, two adjacent spherical, core-shell
resonators introduced in Sec. V. Two steel balls of common
radii R1, separated at a distance a = 1 cm, are individu-
ally surrounded by a spherically annular layer of open-cell
foam of inner radius R1 = 2.879 mm and outer radius R2 =
4.153 mm. The unit is encapsulated by a dumbbell-shaped
cellulose shell, consisting of spherical caps of common radii
R3 = 4.924 mm at the two ends and a cylindrical handle
of radius (1/3)R3. The z axis is chosen to align with the
axis of azimuthal symmetry. The cross section of the con-
nected shell dumbbell is depicted in Fig. 15. The dumbbells
are arranged in a tetragonal lattice with a square base of
a(f) = 1 cm and height c(f) = 2a(f) = 2 cm, embedded in an
elastic background of open-cell foam. Disregarding the differ-
ences of the interior of the resonators, the lattice arrangement
is identical to conformally coated dumbbell resonators in
Sec. VI B. For ease of comparison, we choose the same set
of length parameters in Sec. V. Over the audible frequencies,
steel, cellulose and open-cell foam are approximated as lin-
ear elastic materials. To represent the natural variations of
materials in manufacturing, we assume that one of the steel
balls is 2% denser: ρc1 = 7940 kg m−3 and ρc2 = 1.02ρc1 ≈
8099 kg m−3. This leads to off-diagonal entries in the effec-
tive inertia tensor. Other material parameters are provided in
Secs. III E and V.

Detailed calculations of the masses and moments of in-
ertia are provided in Appendix F. m(f)

s ≈ 0.5449 g, m(f)
c1 ≈

0.7940 g, and m(f)
c2 = 1.02m(f)

c1 denote the masses of the
dumbbell-shaped cellulose shell, the spherical core on the
right and the on the left, respectively. I (f)

s,z ≈ 7.512 g mm2 and
I (f)
s,x ≈ 21.01 g mm2 denote the axial and transversal moments

of inertia of the shell, respectively. I (f)
c1 ≈ 2.633 g mm2 and

I (f)
c2 = 1.02I (f)

c1 denote the moment of inertia of the two spheri-
cal cores.

We analyze the acoustic mode spectrum using the EIST
model. Over the frequency range of interest, the primary
macroscopic degrees of freedom are the rigid body transla-
tions and rotations about center of mass in three orthogonal
directions of the shell (Xs,Ys, Zs,�s,x,�s,y,�s,z ), the spheri-
cal core on the right (Xc1,Yc1, Zc1,�c1,x,�c1,y,�c1,z ), and the
spherical core on the left (Xc2,Yc2, Zc2,�c2,x,�c2,y,�c2,z ).

The spherically annular layer of open-cell foam is ap-
proximated as massless spring, such that the linear spring
constant κt ≈ 3210 N m−1 and torsional spring constant κr ≈
0.01384 N m by Eqs. (29) and (35). These values of the spring
constant are the same as those of the spherical core-shell
resonators in Sec. V because the layers of foam have identical
geometries.

By azimuthal symmetry, the translation (axial rotation) in
the z direction of the shell only couples to the translations (ax-
ial rotations) of the cores in the same direction. Therefore, the
translational and rotational oscillations in the axial direction
of the dumbbell resonator are mapped to two-masses-in-a-box
models. On the other hand, the rotation about the x (y) axis of
the shell is not only coupled to the rotations of the cores in
the same direction, but also the translations of the cores in the
y (x) direction. Hence, the translational and rotational oscilla-
tions in the lateral direction are mapped to a two-rods-in-a-box
model. By Eqs. (19a)–(19c), the nonvanishing components of
the effective inertia tensor are

m33( f ) = m(f)
s + m(f)

c1 f 2
0,t1

f 2
0,t1 − f 2

+ m(f)
c2 f 2

0,t2

f 2
0,t2 − f 2

, (42a)

m44( f ) = I (f)
x,s + I (f)

c1 f 2
0,r1

f 2
0,r1 − f 2

+ I (f)
c2 f 2

0,r2

f 2
0,r2 − f 2

+ (a(f) )2

4

(
m(f)

c1 f 2
0,t1

f 2
0,t1 − f 2

+ m(f)
c2 f 2

0,t2

f 2
0,t2 − f 2

)
, (42b)

m66( f ) = I (f)
s,z + I (f)

c1 f 2
0,r1

f 2
0,r1 − f 2

+ I (f)
c2 f 2

0,r2

f 2
0,r2 − f 2

, (42c)

m15( f ) = a(f)
(
m(f)

c1 − m(f)
c2

)
f 2
0,t1 f 2

0,t2

2
(

f 2
0,t1 − f 2

)(
f 2
0,t2 − f 2

) , (42d)

where m11( f ) = m22( f ) = m33( f ), m44( f ) = m55( f ), and

m15( f ) = m51( f ) = −m24( f ) = −m42( f ). f0,t1 =
√

κt/m(f)
c1 /

(2π ) ≈ 320.0 Hz, f0,t2 =
√

κt/m(f)
c2 /(2π ) ≈ 316.9 Hz, f0,r1 =√

κr/I (f)
c1 /(2π ) ≈ 364.9 Hz, and f0,r2 =

√
κr/I (f)

c2 /(2π ) ≈
361.3 Hz are the resonant frequencies of the compound
resonator.

The effective mass for axial translational oscillation is
schematically plotted in Fig. 16. At zero frequency, the ef-
fective mass is the algebraic sum of the masses of the rigid
components. The mass of the interstitial layers of foam is
ignored in the massless spring approximations. The effective
mass increases monotonically from the simple sum at zero
frequency to infinity at the first resonant frequency. The shell
and the two cores oscillate in phase over the frequency range
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FIG. 16. The frequency-dependent, effective mass (42a) for ax-
ial translational oscillation of the dumbbell-shaped, connected shell
compound resonator is sketched. There are three positive branches of
the effective mass, indicated in blue, with each generating an acoustic
band in the EIST model. Provided that the two resonant frequencies
are close, it is possible to deterministically engineer a flat acoustic
band over the frequency range of the second positive branch. Wave
propagation in the given mode is inhibited when the effective mass
is negative, indicated in red.

of the first branch. The second branch of positive effective
mass lies between the two resonant frequencies. It is possible
to engineer flat pass bands, with two local resonances close
in resonant frequencies. The shell oscillates in phase with
the heavier core ( f < f0,t1) but antiphase with the lighter
core ( f > f0,t2). The third branch of positive effective mass
occurs beyond the second resonant frequency. The effective
mass increases monotonically and asymptotically approaches
the mass of the shell in the high-frequency limit. The shell
oscillates in antiphase with both cores over the frequency
range of the third branch.

The same spring tensor in Sec. VI B applies because the
dumbbell-shaped resonators occupy the same region as the
conformally coated dumbbell resonators. Equipped with the
effective inertia and spring tensors, we determine the acoustic
band structure by solving a degree 18 polynomial equation in
the square of frequency by Eq. (25). The band diagram is plot-
ted along the high-symmetry path in the irreducible Brillouin
zone in Figure 17. The 19th and 20th bands occur beyond
2800 Hz, involving c-shaped bending of the dumbbell-shaped
cellulose shell. There is a primary local resonance band gap
from 363.1 to 618.0 Hz, and a secondary gap from 286.4 to
314.7 Hz. The frequency ranges of the band gaps are consis-
tent with the spherical core-shell resonators in the sc lattice
in Fig. 9. Over the frequency range of the 13th band to the
18th band, the shell oscillates in antiphase with both cores.
These antiphase bands resemble the 7th to 12th bands of the
tetragonal lattice of conformally coated dumbbell resonators
in Fig. 14. It is because, in the high-frequency limit, the
effective inertia tensor components approach the mass and
the moments of inertia of the shell. The same set of spring
tensors applies to both kinds of dumbbell resonators, and the
masses and moments of inertia of the dumbbell-shaped shells
are comparable.

FIG. 17. The first 18 acoustic bands of the phononic crystal con-
sisting of a tetragonal lattice of connected shell, dumbbell-shaped,
steel-cellulose resonators in open-cell foam are plotted along the
high-symmetry path A → � → Z → R → A in the irreducible Bril-
louin zone. The acoustic mode spectrum in the EIST model (blue
crosses) is described by a degree 18 polynomial in Eq. (25). The
bands of the actual phononic crystal are calculated by finite-element
method (black solid line). There is a primary local resonance acoustic
band gap from 363.1 to 618.0 Hz, and a smaller secondary local
resonance gap from 286.4 to 314.7 Hz. A Bragg gap appears over
the frequency range from approximately 1300 to 2800 Hz.

A striking feature of the acoustic mode spectrum is the
existence of multiple flat bands. In Fig. 18, the band struc-
ture is zoomed in over the frequency range 310 to 370 Hz.
There is a flat band from 318.1 to 318.2 Hz, within the two
frequencies of translational resonance f0,t2 < f < f0,t1. The
shell oscillates in phase with the heavier core and antiphase
with the lighter core in the axial direction. More specifically,
the two cores oscillate in exactly opposite directions, while
the shell, being in phase with the denser core, has a very
small oscillation amplitude. It resembles the high-frequency
normal modes in the ball-and-stick model of carbon dioxide
molecules, where the central carbon atom is stationary and the
oxygen atoms vibrate in antiphase. There are two flat bands
between 356.9 and 358.7 Hz, and three flat bands between

FIG. 18. The acoustic band structure in Fig. 17 is zoomed in over
the frequency range 310 to 370 Hz, over which flat acoustic bands
occur.
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362.7 and 363.1 Hz. The latter flat bands lie within the two
frequencies of rotational resonance f0,r2 < f < f0,r1. Detailed
analysis of the off-diagonal terms of the effective inertia ten-
sor is necessary for better understanding of the flat acoustic
bands involving intricate coupling of translational and rota-
tional motion. Roughly speaking, when the two interior steel
spheres move in antiphase, there is very little net force applied
to the dumbbell-shaped cellulose shell that can then propagate
to other unit cells of the phononic crystal.

VII. DISCUSSION

In summary, we have identified a variety of phononic
crystal architectures, consisting of lattices of local acoustic
resonators, which each exhibit a pair of large phononic band
gaps in the audible acoustic spectrum. The lower, local res-
onance band gap is controlled by internal vibrations within
each local resonator. The higher Bragg gap is governed by
the macroscopic geometrical arrangement of all the individual
resonators. The largest local resonance gap is achieved using
local resonators with heavy cores and light shells. The largest
Bragg gap is achieved using a bcc lattice of local resonators.
In the bcc lattice with 50% volume fraction for the local
resonators, 50% for the background open-cell foam, and a
nearest-neighbor distance of about 1 cm, the bottom of the
local resonance gap occurs at about 300 Hz while the top of
the Bragg gap occurs at about 3700 Hz. Between these two
gaps are a collection of bands that involve antiphase oscilla-
tions between the core and the shell of the local resonators.
By reducing all the length scales in the phononic crystal by a
factor of 2, the frequency scales described above are doubled.
Thin layers of two such phononic crystal sheets can be stacked
to provide a broad range of sound-blocking material, covering
a large part of the audible spectrum. At normal incidence,
it is unlikely that an impinging plane wave could effectively
couple to the antiphase bands separating the local resonance
and Bragg gaps. It would be of considerable interest to explore
the coupling to these intervening bands for sound arriving at
off-normal incidence.

Our treatment involving a rigid core-shell approximation
and the effective inertia spring tensor model provides an intu-
itive but accurate description of the vibrational modes below
the Bragg gap. We have shown that our methodology, like-
wise, applies to more complex nonspherical local resonators.
While we have employed exact numerical methods to eval-
uate the wave-vector-dependent spring tensor, we have also
outlined a simple method for estimating this tensor based on
a nearest-neighbor approximation.

In the connected shell dumbbell resonators introduced in
Sec. VI C, we are able to deterministically engineer multiple
low-frequency, flat acoustic bands between two nearby reso-
nant frequencies. Over the frequency range of the flat bands,
the shell oscillates in phase with the heavier core, while the
two cores oscillate antiphase with significantly larger ampli-
tudes. Efficient light energy harvesting in thin photonic films
via slow-group-velocity optical modes is extensively studied
in the literature [60–62]. Similar constructions with acous-
tic resonators could potentially lead to sound-trapping, slow
sound modes in locally resonant acoustic metamaterials. A
more realistic treatment of the response of our locally resonant

phononic crystal requires viscoelastic damping effects in the
foam.

Generalization of strain-stress constitutive relations is nec-
essary to incorporate dissipative effects for the design of
acoustic absorbers. Inelastic losses can be represented by
nonzero imaginary parts of the dynamic elastic moduli, as
in the conventional Maxwell and Kelvin-Voigt models for
viscoelastic materials [63]. While both the translational and
rotational resonances are necessary for a complete description
of low-frequency acoustic bands, the actual interaction be-
tween a resonator and the background is heavily constrained
by symmetries. For example, for a spherical resonator with
its center situated on a plane of reflectional symmetry, its
rotational oscillations do not couple with an impinging elastic
wave at normal incidence. Future work will focus on sound
absorption of resonators in a background of viscoelastic foam.

Another direction of future research involves control and
guiding of acoustic waves by locally resonant phononic meta-
materials. Wave propagation is evanescent in the frequency
interval of the band gaps. In the locally resonant structures
studied in this paper, the band gaps can be broadly classified
into local resonance gaps and Bragg gaps. The former is
lattice independent, associated with a negative-definite effec-
tive inertia tensor. Local resonance gaps are explained by the
negative effective masses and moments of inertia. The local
resonance gap is sensitive to the detailed internal geometry
of the resonators. In contrast, the Bragg gap is sensitive to
the lattice arrangements. Defect modes in the Bragg gap can
be engineered by disordering the lattice. Careful analyses can
potentially open the door to precise engineering of localized
cavity modes and waveguide states within locally resonant
phononic crystals, for frequency-selective transmission of
sound through dual phononic band gaps.
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APPENDIX A: PLANE WAVE EXPANSION IN 3D

We outline the plane wave expansion (PWE) method in
solving the eigenvalue equations of acoustic band structure in
three dimensions. The discrete periodicity of a lattice structure
is identified by a set of reciprocal lattice vectors G, which
forms a plane wave basis for the Fourier expansion of the
underlying material parameters:

ρ(r) =
∑

G

ρ(G) exp(iG · r), (A1)

(1/Cpqrs)(r) =
∑

G

(1/Cpqrs)(G) exp(iG · r). (A2)

Here, Cpqrs denotes a nonzero element of the stiffness tensor
C, and 1/Cpqrs is the reciprocal of that element. The Fourier
coefficients are given by an integration over the unit cell of
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volume Vc:

M(G) = 1

Vc

∫
c

d3rM(r) exp(−iG · r), (A3)

where M denotes a generic mechanical parameter, such as the
mass density ρ, and the reciprocal of nonzero stiffness tensor
components 1/Cpqrs.

In the cases that we study, each unit cell contains a rigid
sphere of radius R, occupying a filling fraction ν:

ν =

⎧⎪⎪⎨
⎪⎪⎩

4πR3
/(

3a3
sc

)
for simple cubic lattice,

8πR3
/(

3a3
bcc

)
for body-centered cubic lattice,

16πR3
/(

3a3
fcc

)
for face-centered cubic lattice.

(A4)

At a fixed size of the spherical inclusions and a common filling
fraction, we choose abcc = 21/3asc and afcc = 41/3asc to en-
sure comparability of the results across the lattice structures.
When the spherical scatterer is composed of a homogeneous
medium, all material parameters are uniform in the interior of
the scatterer r < R. The Fourier components assume the form

M(G) =
{
Maν + Mb(1 − ν) for G = 0,

(Ma − Mb)3ν j1(GR)/(GR) for G �= 0.

(A5)

Here, Ma is the value of the parameter in the sphere when
r < R, and Mb is the value in the background when r > R. jn
is the spherical Bessel function of the first kind of order n.

The strain tensor ε
↔ and the stiffness tensor C contain a pair

of complementary jump discontinuities, in such a way that
the product, stress tensor σ

↔, is continuous across any material

boundaries. To ensure numerical convergence, Fourier series
with complementary jump discontinuities are multiplied using
the inverse rule [22–24]

∑
G

{∑
G′

[
1

Cpqrs

]−1

(G, G′)εrs(G′)

}
exp(iG · r) → σpq(r),

(A6)

where the matrix denoted by [1/Cpqrs] has matrix elements
given by [1/Cpqrs](G, G′) = (1/Cpqrs)(G − G′). The super-
script −1 denotes matrix inversion of a nonsingular matrix.

In our three-dimensional elastic composite consisting of
linear isotropic materials, the relevant nonvanishing compo-
nents are Ciiii = λ + 2μ, Cii j j = λ, and Ci ji j = 2μ, for i �= j.
For notational convenience, we introduce the matrices Ninv,
�inv, and Minv, with their elements, respectively, defined by

N inv
G,G′ =

[
1

C1111

]−1

(G, G′), (A7a)

�inv
G,G′ =

[
1

C1122

]−1

(G, G′), (A7b)

M inv
G,G′ = 1

2

[
1

C1212

]−1

(G, G′). (A7c)

We substitute the Bloch wave expansion of the displacement
field (6) into the dynamical equations (5a)–(5c). Manipulat-
ing the product of the stiffness tensor and the strain tensor
elements by the preceding inverse rule (A6) and invoking the
orthogonality of the plane wave basis, we obtain an eigenvalue
equation governing the acoustic band structure:

∑
G′

⎡
⎢⎣
⎛
⎜⎝

D11(G, G′) D12(G, G′) D13(G, G′)
D21(G, G′) D22(G, G′) D23(G, G′)
D31(G, G′) D32(G, G′) D33(G, G′)

⎞
⎟⎠− ρ(G − G′)ω2

K

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠
⎤
⎥⎦
⎛
⎜⎝

ux,K(G′)
uy,K(G′)
uz,K(G′)

⎞
⎟⎠ =

⎛
⎝0

0
0

⎞
⎠, (A8)

where the elements of the dynamical matrix D(G, G′) are

D11(G, G′) = N inv
G,G′ (Kx + Gx )(Kx + G′

x ) + M inv
G,G′ [(Ky + Gy)(Ky + G′

y) + (Kz + Gz )(Kz + G′
z )], (A9a)

D12(G, G′) = �inv
G,G′ (Kx + Gx )(Ky + G′

y) + M inv
G,G′ (Ky + Gy)(Kx + G′

x ), (A9b)

D13(G, G′) = �inv
G,G′ (Kx + Gx )(Kz + G′

z ) + M inv
G,G′ (Kz + Gz )(Kx + G′

x ). (A9c)

Other matrix elements follow by cyclic permutation symmetry
x → y, y → z, z → x. The eigenvalues ωK and eigen-
vectors (ux,K(G), uy,K(G), uz,K(G)) describe the oscillation
frequency and the configuration of the periodic structure. A
general reciprocal lattice wave vector G = n1G1 + n2G2 +
n3G3, where n1, n2, and n3 are integers and {G1, G2, G3} is a
set of primitive reciprocal wave vectors. Under the plane wave
truncation |n1/2/3| � N with N = 9, there are (2N + 1) = 19
plane waves per direction. In three dimensions, (2N + 1)3 =
6859 plane waves are incorporated. For each pair of recip-
rocal lattice vectors (G, G′), the interaction is given by a
3×3 block-dynamical matrix, D(G, G′). The full matrix is
20 577×20 577 in size.

We are mostly interested in the first few modes with the
smallest eigenfrequencies. Considerable computational time
could be saved using an appropriate iterative eigenvalue solver
that selects the eigenmodes with the smallest eigenvalues,
without compromising the numerical accuracy. We apply the
Lanczos algorithm under the shift-invert mode in the Arnoldi
package (ARPACK) [64]. For numerical convergence, the di-
mension of the underlying Krylov subspace is chosen to
be two times the number of accurate eigenvalues desired.
Conceptually, in each iteration step, components of the trial
vectors are damped out, at a rate that increases exponentially
with the eigenfrequency, followed by reorthogonalization of
all the trial vectors. After rounds of iteration, contributions
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of the high-frequency modes are vanishingly small, and the
trial vectors approach the orthogonal eigenvectors of the low-
frequency modes.

APPENDIX B: ONE-DIMENSIONAL MASSIVE SPRING

For concreteness, we consider a one-dimensional physical
example where the spring is composed of a homogeneous,
linear elastic material of length l , density ρ, and Lamé param-
eters λ and μ. We assume that the elastic spring has a uniform
cross section of area A, and the elastic deformation is confined
in one direction. By Eq. (5a), the longitudinal displacement
ux(x) satisfies the wave equation

ρω2ux + (λ + 2μ)
∂2ux

∂x2
= 0, (B1)

where the boundary conditions are specified by the displace-
ments of the shell and the interior mass: ux(0) = xs and
ux(l ) = xc. The boundary value problem admits a plane wave
solution

ux(x) = csc(kll )[xs sin (kll − klx) + xc sin (klx)], (B2)

where cl = [(λ + 2μ)/ρ]1/2 is the longitudinal speed of sound
and kl ≡ ω/cl is the longitudinal wave vector. The force fs/c

acting on the shell/core by the spring is

fs = +(λ + 2μ)A
∂ux

∂x

∣∣∣∣
x=0

= −klA(λ + 2μ)[+ cot (kll )xs − csc (kll )xc], (B3a)

fc = −(λ + 2μ)A
∂ux

∂x

∣∣∣∣
x=l

= −klA(λ + 2μ)[− csc (kll )xs + cot (kll )xc], (B3b)

where elements of the Hermitian coupling matrix [see
Eqs. (7a) and (7b)] are identified:

κ11 = κ22 = +klA(λ + 2μ) cot (kll ), (B4a)

κ12 = κ21 = −klA(λ + 2μ) csc (kll ). (B4b)

The frequency-dependent, effective mass of the resonator is
given by Eq. (10a). The resonant frequencies ω0,n are the zeros
of the denominator, where n is a non-negative integer denoting
the order of the resonant mode. The resonant frequencies are
the roots of the implicit equation κ22 − mcω

2 = 0, or

lω0,n

cl
tan

(
lω0,n

cl

)
= ρAl

mc
. (B5)

For any non-negative integers n, on the open interval nπ <

ξ < (n + 1/2)π , the function ξ tan(ξ ) is continuous and in-
creases monotonically from zero to positive infinity. It implies
that there is precisely one resonant frequency in the frequency
range nπcl

l � ω0,n � (n + 1
2 )πcl

l .
At acoustic frequencies, the thickness of the elastic mate-

rial is often negligible compared to the acoustic wavelength
(kll � 1). The displacement profile is a linear function,
satisfying an elastostatic equilibrium condition (Laplace equa-
tion), and the elastic material behaves as a massless Hookean

spring:

ux(x) ≈ xs[1 − (x/l )] + xc(x/l ), (B6a)

κ11 = κ22 ≈ −κ12 = −κ21 ≈ κ ≡ (λ + 2μ)A/l. (B6b)

In the massless spring limit, only the fundamental resonant
mode (n = 0) is relevant. The implicit equation (B5) simpli-
fies to

ω2
0,n=0 ≈ ρAc2

l

mcl
= (λ + 2μ)A

mcl
= κ

mc
, (B7)

which agrees with Eq. (11a). In addition, the determinant of
the coupling matrix, indeed, vanishes at zero frequency. The
effective mass assumes the simple form in Eq. (10b). The elas-
tostatic equilibrium condition allows efficient computation of
the massless spring constants in closed-form algebraic ex-
pressions of material elastic constants and length parameters.
The technique is referred to as the rigid core-shell approxi-
mation (RCSA). Previously, it was applied to a cylindrically
annular layer of elastic material in two-dimensional locally
resonant oscillators (see Sec. III in [19]). In this paper, it is
extended to spherically annular layers of elastic material in
three-dimensional resonators in Sec. IV and Appendices D
and E. In general, the full Hermitian coupling matrix is nec-
essary to recapture the effects of a massive elastic spring. At
higher frequencies, the massive spring carries momentum, so
that the forces acting on the box and the interior mass by the
spring do not cancel out instantaneously.

It is possible to partially incorporate the inertial effects
of the elastic material via the first-order correction in den-
sity, without the clutter of the full expression. The Hermitian
coupling matrix (B4a) and (B4b) is expanded to the first
order in the density of the elastic material κi j ≡ κ (2δi j − 1) +
m̃i jω

2 + O[ω4], where the first-order correction terms m̃i j

have the unit of mass

m̃11 = m̃22 = − 1
3ρAl, (B8a)

m̃12 = m̃21 = − 1
6ρAl. (B8b)

The frequency-dependent, effective mass (10a) of the res-
onator is expanded up to the first-order correction in the
density of the elastic material:

m(1)
e (ω) ≈ 1

κ − (mc − m̃22)ω2

× {κ (ms − m̃11 + mc − m̃22 − m̃12 − m̃21)

+ [m̃12m̃21 − (ms − m̃11)(mc − m̃22)]ω2}

≈ (ms − m̃11)

⎡
⎣(ω(1)

∗
)2 − ω2(

ω
(1)
0

)2 − ω2

⎤
⎦, (B9)

where ω
(1)
0 and ω

(1)
∗ are characteristic frequencies of the res-

onator with the leading-order correction in the elastic material
density:

ω
(1)
0 =

(
κ

mc − m̃22

)1/2

, (B10a)

ω(1)
∗ =

[
κ (ms−m̃11 + mc−m̃22−m̃12−m̃21)

(mc−m̃22)(ms−m̃11)

]1/2

. (B10b)
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While the first-order correction shifts the resonant and zero-
mass frequencies of the resonator, the effective mass retains
the same algebraic form as the massless spring approxima-
tion. The correction terms m̃11 and m̃22 can be interpreted as
corrections to the masses of the box and the core, respectively.
In particular, the modified effective mass correctly reduces to
the static mass of the resonator at zero frequency:

m(1)
e (ω = 0) = ms − m̃11 + mc − m̃22 − m̃12 − m̃21

= ms + mc + ρAl, (B11)

where ρAl is the mass of the elastic material.

APPENDIX C: EVALUATION OF SPRING TENSOR
BY PLANE WAVE EXPANSION IN 3D

An efficient description of acoustic materials is facilitated
by the choice of a set of predominant, macroscopic degrees
of freedom, over the desirable range of frequency. When
stiff solids are embedded in a soft background, translations
(X,Y, Z ) and rotations (�x,�y,�z ) in three orthogonal di-
rections constitute an effective set of mechanical variables.
The associated generalized forces are the force (Fx, Fy, Fz ) and
the torque (τx, τy, τz ) acting on the solid by the elastic back-

ground. The spring tensor ki j is a linear map that relates the
mechanical variables and the generalized forces. It describes
the coupling of these variables across spatially separated scat-
terers, with the relative displacements specified by the Bloch
wave vector K in a periodic structure. In this Appendix, we
provide the evaluation of the spring tensor by plane wave
expansion (PWE). This provides a more exact treatment of the
spring tensor, including the elastic forces applied on a given
resonator by the background, due to the relative motion with
other resonators in the phononic crystals.

Similar to the displacement field (6), the stress tensor can
be decomposed into Bloch waves:

σpq(r, t ) = exp(iK · r − iωKt )
∑

G

σpq,K(G) exp(iG · r),

(C1)

where σpq,K(G) denotes the Fourier coefficient of the periodic
function associated with the pq component of the stress tensor
at wave vector K in the periodic structure. Substituting the
displacement field (6) into the linearized strain equation (1)
and the constitutive relation (2), we obtain the relevant Fourier
components of the stress tensor:

σxx(G) =
∑
G′

N inv
G,G′ux,K(G′)(iKx + iG′

x ) + �inv
G,G′ [uy,K(G′)(iKy + iG′

y) + uz,K(G′)(iKz + iG′
z )], (C2a)

σxy(G) = σyx(G) =
∑
G′

M inv
G,G′ [ux,K(G′)(iKy + iG′

y) + uy,K(G′)(iKx + iG′
x )], (C2b)

σzx(G) = σxz(G) =
∑
G′

M inv
G,G′ [ux,K(G′)(iKz + iG′

z ) + uz,K(G′)(iKx + iG′
x )]. (C2c)

Other components follow by cyclic permutation x → y, y → z, z → x. Here, the matrices Ninv, �inv, and M inv are defined in
Eqs. (A7a)–(A7c).

The elastic restoring forces acting on the solid due to the background are calculated by integrating the traction σ
↔ · n̂ over the

spherical surface of the scatterer. For i = x/y/z,

Fi(K) =
∮

{r=R}
dS (σix sin θ cos φ + σiy sin θ sin φ + σiz cos θ )

= 4π iR2
∑

G

[σix(G)(Kx + Gx ) + σiy(G)(Ky + Gy) + σiz(G)(Ky + Gz )]
j1(|K + G|R)

|K + G| e−iωKt . (C3)

The traction provides a torque about the center of the sphere, which is integrated over the spherical surface of the scatterer to
yield the net torque acting on the solid by the background:

τx(K) =
∮

{r=R}
dS x̂ · [r×(σ↔ · r̂)] = −4πR3

∑
G

{σzx(G)(Kx + Gx )(Ky + Gy) + σzy[(Ky + Gy)2 − (Kz + Gz )2]

+ [σzz(G) − σyy(G)](Ky + Gy)(Kz + Gz ) − σyx(G)(Kx + Gx )(Kz + Gz )} j2(|K + G|R)

|K + G|2 e−iωKt , (C4a)

τy(K) =
∮

{r=R}
dS ŷ · [r×(σ↔ · r̂)] = −4πR3

∑
G

{σxy(G)(Ky + Gy)(Kz + Gz ) + σxz[(Kz + Gz )2 − (Kx + Gx )2]

+ [σxx(G) − σzz(G)](Kx + Gx )(Kz + Gz ) − σzy(G)(Kx + Gx )(Ky + Gy)} j2(|K + G|R)

|K + G|2 e−iωKt , (C4b)

τz(K) =
∮

{r=R}
dS ẑ · [r×(σ↔ · r̂)] = −4πR3

∑
G

{σyz(G)(Kx + Gx )(Kz + Gz ) + σxy[(Kx + Gx )2 − (Ky + Gy)2]

+ [σyy(G) − σxx(G)](Kx + Gx )(Ky + Gy) − σxz(G)(Kx + Gx )(Kz + Gz )} j2(|K + G|R)

|K + G|2 e−iωKt . (C4c)
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The integrals are evaluated with the help of the expansion of a plane wave into a series of spherical waves and the orthonormality
of spherical harmonics [65]:

eiK·r = 4π

∞∑
l=0

+l∑
m=−l

il jl (Kr)Ylm(K̂)Y ∗
lm(r̂), (C5)

∮
d�Y ∗

lm(r̂) Yl ′m′ (r̂) = δll ′δmm′ , (C6)

where Ylm denotes the spherical harmonics of degree l and order m, and the superscript ∗ denotes complex conjugation.
The linear displacement is taken to be the displacement averaged throughout the sphere, whereas the angular displacement is

determined by averaging over the spherical surface:

X = 3

4πR3

∫
{r<R}

d3r ux =
∑

G

3 j1(|K + G|R)

|K + G|R ux,K(G)e−iωKt , (C7a)

Y = 3

4πR3

∫
{r<R}

d3r uy =
∑

G

3 j1(|K + G|R)

|K + G|R uy,K(G)e−iωKt , (C7b)

Z = 3

4πR3

∫
{r<R}

d3r uz =
∑

G

3 j1(|K + G|R)

|K + G|R uz,K(G)e−iωKt , (C7c)

�x = 3

8πR3

∮
{r=R}

dS(uz sin θ sin φ − uy cos θ )

= 3i

2R

∑
G

[
uz,K(G)(Ky + Gy) − uy,K(G)(Kz + Gz )

] j1(|K + G|R)

|K + G| e−iωKt , (C7d)

�y = 3

8πR3

∮
{r=R}

dS(ux cos θ − uz sin θ cos φ)

= 3i

2R

∑
G

[ux,K(G)(Kz + Gz ) − uz,K(G)(Kx + Gx )]
j1(|K + G|R)

|K + G| e−iωKt , (C7e)

�z = 3

8πR3

∮
{r=R}

dS(uy sin θ cos φ − ux sin θ sin φ)

= 3i

2R

∑
G

[
uy,K(G)(Kx + Gx ) − ux,K(G)(Ky + Gy)

] j1(|K + G|R)

|K + G| e−iωKt . (C7f)

The i jth component of the spring tensor is defined as the restoring force/torque acting on the sphere in the ith direction per
unit displacement in the jth direction. The 6×6 spring tensor, k

↔
with components ki j , is calculated using Eqs. (C3), (C4c) and

(C7a)–(C7f):

k
↔ = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F (1)
x F (2)

x F (3)
x F (4)

x F (5)
x F (6)

x

F (1)
y F (2)

y F (3)
y F (4)

y F (5)
y F (6)

y

F (1)
z F (2)

z F (3)
z F (4)

z F (5)
z F (6)

z

τ (1)
x τ (2)

x τ (3)
x τ (4)

x τ (5)
x τ (6)

x

τ (1)
y τ (2)

y τ (3)
y τ (4)

y τ (5)
y τ (6)

y

τ (1)
z τ (2)

z τ (3)
z τ (4)

z τ (5)
z τ (6)

z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X (1) X (2) X (3) X (4) X (5) X (6)

Y (1) Y (2) Y (3) Y (4) Y (5) Y (6)

Z (1) Z (2) Z (3) Z (4) Z (5) Z (6)

�(1)
x �(2)

x �(3)
x �(4)

x �(5)
x �(6)

x

�(1)
y �(2)

y �(3)
y �(4)

y �(5)
y �(6)

y

�(1)
z �(2)

z �(3)
z �(4)

z �(5)
z �(6)

z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

. (C8)

Accordingly, we introduce the band index superscripts
j = 1, 2, 3, 4, 5, 6 to indicate the first six low-frequency dis-
persion relations ω

( j)
K and the corresponding eigenvectors that

appear in Eqs. (C2a)–(C2c) and (C7a)–(C7f), associated with
the coupled translations and rotations of the spheres. The
displacement and forces in Eq. (C8) are likewise labeled with
the corresponding superscripts.

APPENDIX D: RCSA OF ROTATIONAL MODES

In a spherical core-shell resonator, when the core rotates
relative to the shell, the interstitial material acts as a linear
elastic material to provide restoring torques. In this Appendix,
we determine such torques in terms of the elastic parame-
ters of the interstitial material, and the angles of rotations
of the core and the shell. When the acoustic wavelength is
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significantly longer than the typical length scales of the res-
onator, the interstitial material is regarded as massless and
satisfies elastostatic equilibrium conditions.

In spherical coordinates, the nontrivial components of the
strain tensor are εrφ and εφr :

εrφ = εφr = 1

2

(
1

r sin θ

∂ur

∂φ
+ ∂uφ

∂r
− uφ

r

)

= 1

2

(
db

dr
− b

r

)
sin θ. (D1)

Here, b(r) is defined in Sec. IV A. Using the generalized
Hooke’s law (2) for isotropic, linear, elastic solid, we conclude
that the only nonvanishing components of the stress tensor σ

↔

are σφr and σrφ :

σφr = σrφ = μ

(
db

dr
− b

r

)
sin θ. (D2)

The stress tensor satisfies elastostatic equilibrium condition,
in the absence of an external body force:

∂σrφ

∂r
+ 1

r

∂σθφ

∂θ
+ 1

r sin θ

∂σφφ

∂φ
+ 1

r
(2σθφ cot θ + 3σrφ ) = 0.

(D3)

Substituting Eq. (D2) into (D3), we obtain a second-order,
linear, ordinary differential equation governing b(r):

μ

(
d2b

dr2
+ 2

r

db

dr
− 2

r2
b

)
= 0. (D4)

We solve Eq. (D4) by a standard power-law ansatz and impose
the boundary conditions (28a) and (28b) to obtain

b(r) = R3
2�s − R3

1�c

R3
2 − R3

1

r + E (�c − �s)

r2
, (D5)

σrφ = σφr = 3μE

r3
(�s − �c) sin θ, (D6)

where E = R3
1R3

2/(R3
2 − R3

1). The torque τc/s acting on the
core/shell is determined by integrating the stress tensor over
the spherical boundary {r = R1/2}:

τc =
∮

{r=R1}
r×(σ↔ · n̂) dS =

∮
{r=R1}

−R1σφr θ̂ dS

= 8πμE (�s − �c)ẑ, (D7a)

τs =
∮

{r=R2}
r×(σ↔ · n̂) dS =

∮
{r=R2}

+R2σφr θ̂ dS

= 8πμE (�c − �s)ẑ, (D7b)

where n̂ denotes an inward normal vector directing towards
the interstitial region of elastic material on the boundary.
Here, we have used the basis vector in spherical coordinate:
θ̂ = cos θ cos φ x̂ + cos θ sin φ ŷ − sin θ ẑ. Note that the in-
ternal torques cancel out in the elastostatic limit, as required
by Newton’s third law.

APPENDIX E: RCSA OF TRANSLATIONAL MODES

When the core displaces relative to the shell, the spher-
ically annular layer of interstitial elastic foam provides a
restoring force. In this Appendix, we express the forces acting

on the core and the shell in terms of the displacements of
the rigid bodies and the material parameters of the foam in
the long-wavelength limit. The calculation assumes the con-
stitutive relation between the strain and the stress, which is
divergence free at elastostatic equilibrium.

In spherical coordinates, the nonvanishing components of
the strain tensor εrr , εθθ , εφφ , εrθ , and εθr are expressed in
terms of the functions cr (r) and cθ (r) defined previously in
Sec. IV B:

εrr = ∂ur

∂r
= dcr

dr
cos θ, (E1a)

εθθ = 1

r

∂uθ

∂θ
+ ur

r
= 1

r
(cr + cθ ) cos θ, (E1b)

εφφ = 1

r sin θ

(
∂uφ

∂φ
+ ur sin θ + uθ cos θ

)

= 1

r
(cr + cθ ) cos θ, (E1c)

εrθ = εθr = 1

2

(
1

r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r

)

= 1

2

[
dcθ

dr
− 1

r
(cr + cθ )

]
sin θ. (E1d)

We use the generalized Hooke’s law (2) for isotropic, linear,
elastic solid to conclude that the nonvanishing components of
the stress tensor are σrr , σθθ , σφφ , σrθ , and σθr :

σrr =
[

(λ + 2μ)
dcr

dr
+ 2λ

r
(cr + cθ )

]
cos θ, (E2a)

σθθ = σφφ =
[
λ

dcr

dr
+ 2(λ + μ)

r
(cr + cθ )

]
cos θ, (E2b)

σrθ = σθr = μ

[
dcθ

dr
− 1

r
(cr + cθ )

]
sin θ. (E2c)

In the absence of an external body force, the stress tensor
is divergence free, and satisfies the elastostatic equilibrium
conditions

∂σrr

∂r
+ 1

r

∂σrθ

∂θ
+ 1

r sin θ

∂σrφ

∂φ

+ 1

r
(2σrr − σθθ − σφφ + σrθ cot θ ) = 0, (E3a)

∂σrθ

∂r
+ 1

r

∂σθθ

∂θ
+ 1

r sin θ

∂σθφ

∂φ

+ 1

r
[(σθθ − σφφ ) cot θ + 3σrθ ] = 0. (E3b)

Substituting Eqs. (E2a)–(E2c) into (E3a) and (E3b), we obtain
a set of coupled, linear, second-order, ordinary differential
equations governing {cr (r), cθ (r)}:

(λ + 2μ)
d2cr

dr2
+
(

2(λ + 2μ)

r

)
dcr

dr
+
(

2(λ + μ)

r

)
dcθ

dr

− 2(λ + 3μ)

r2
(cr + cθ ) = 0, (E4a)

μ
d2cθ

dr2
+ 2μ

r

dcθ

dr
−
(

λ + μ

r

)
dcr

dr

− 2(λ + 2μ)

r2
(cr + cθ ) = 0. (E4b)
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The general solution to the system of ordinary differential
equations is formed by the linear combinations of four linearly
independent solutions. The four independent solutions can be
verified by direct substitution:

(cr (r), cθ (r)) = (1,−1), (E5a)

(cr (r), cθ (r)) = 1

r3
(2, 1), (E5b)

(cr (r), cθ (r)) = r2 (−λ + μ, 2λ + 3μ), (E5c)

(cr (r), cθ (r)) = 1

r
(−2λ − 4μ, λ + 3μ). (E5d)

The desired solution satisfying the boundary conditions (33a)
to (33d) is determined by a suitable linear combination of the
four basis solutions:

cr (r) = 1

�

[
F1 + 2F2

r3
+ F3(−λ + μ)r2 − 2F4(λ + 2μ)

r

]
,

(E6a)

cθ (r) = 1

�

[
−F1 + F2

r3
+ F3(2λ + 3μ)r2 + F4(λ + 3μ)

r

]
,

(E6b)

where � and Fi are algebraic expressions of the material
parameters of the foam, the core displacement Zc, and the shell
displacement Zs of the resonant unit:

� ≡ (R2 − R1)
[
λ2(R2 − R1)2(4R2

1 + 7R1R2 + 4R2
2

)
+2λμ

(
13R4

1 + 8R3
1R2 + 3R2

1R2
2

+8R1R3
2 + 13R4

2

)+ 5μ2
(
8R4

1 + 7R3
1R2

+6R2
1R2

2 + 7R1R3
2 + 8R4

2

)]
, (E7a)

F1 ≡ 9R1R2(R1 + R2)(λ2 + 4λμ + 5μ2)
(
R2

1Zs − R2
2Zc
)

−2
(
R2

1 + R1R2 + R2
2

)
(λ + 4μ)(2λ + 5μ)

× (R3
2Zs − R3

1Zc
)
, (E7b)

F2 ≡ R3
1R3

2

(
R2

1 + R1R2 + R2
2

)
(λ + μ)(λ + 4μ)(Zs − Zc),

(E7c)

F3 ≡ 3R1R2(R1 + R2)(λ + μ)(Zs − Zc), (E7d)

F4 ≡ 3R1R2
(
R4

1 + R3
1R2 + R2

1R2
2 + R3

2R1 + R4
2

)
× (λ + 4μ)(Zs − Zc). (E7e)

The stress tensor components σrr and σθr are required to
calculate the elastic restoring force acting on the core and the
shell, determined by substituting Eqs. (E6a) and (E6b) into
(E2a) and (E2c):

σrr = 1

�

[
−12μF2

r4
+ 2F3μ(3λ + 2μ)r

+ 2F4μ(3λ + 4μ)

r2

]
cos θ, (E8a)

σrθ = σθr = 1

�

[
−6μF2

r4
+ F3μ(3λ + 2μ)r − 2F4μ

2

r2

]
sin θ.

(E8b)
By integrating the stress tensor over the spherical boundary
{r = R1/2}, we calculate the force per unit length acting on
the core and shell:

fc =
∮

{r=R1}
σ
↔ · n̂ dS =

∮
{r=R1}

(σrr r̂ + σθr θ̂)dS

=
∮

{r=R1}
(σrr cos θ − σθr sin θ )ẑ dS

= 8πμ(λ + 2μ)F4

�
ẑ, (E9a)

fs =
∮

{r=R2}
σ
↔ · n̂ dS = −fc. (E9b)

Here, n̂ denotes a normal vector directed towards the foam
region on the boundary. We have used the basis vector
in spherical coordinates: r̂ = sin θ cos φ x̂ + sin θ sin φ ŷ +
cos θ ẑ, θ̂ = cos θ cos φ x̂ + cos θ sin φ ŷ − sin θ ẑ. Note that
the internal forces cancel out in the elastostatic limit, as re-
quired by Newton’s third law.

APPENDIX F: MASSES AND MOMENTS OF INERTIA
OF DUMBBELL-SHAPED SOLIDS

The mass and moments of inertia of the dumbbell-shaped
core and shell are calculated through studying a generic,
similarly shaped dumbbell of unspecified length parameters.
Consider an azimuthally symmetric dumbbell of material den-
sity ρ consisting of two spheres of common radii R, separated
at a distance a between the centers where a � 2R, connected
by a cylindrical handle of radius r where r � R. Suppose
the axis of rotational symmetry is aligned with the z axis.
The mass mdb, axial moment of inertia Idb,z, and transversal
moments of inertia Idb,x/y are determined by volume integrals
over the dumbbell-shaped regions Rdb:

mdb(R, r, a, ρ) =
∫
Rdb

ρ(r)dV = ρπ

(
4

3
R3 + 4

3
l3 + ar2

)
, (F1a)

Idb,z(R, r, a, ρ) =
∫
Rdb

ρ(r)(x2 + y2)dV = ρπ

(
8

15
R5 − 4

5
l5 + 4

3
R2l3 + 1

2
ar4

)
, (F1b)

Idb,x(R, r, a, ρ) =
∫
Rdb

ρ(r)(y2 + z2)dV = ρπ

[
12

15
R5 − 2

5
l5 + 2

3
R2l3 + 2

3
a2R3 + 1

4
ar4

+ 1

30

(a

2
− l
)4

(a + 8l ) − 1

30

(
a

2
− R

)4

(a + 8R)

]
, (F1c)

where l = √
R2 − r2 and Idb,y = Idb,x by azimuthal symmetry.
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We calculate the mass and moments of inertia of the conformally coated dumbbell. By connecting two neighboring units
at fixed filling fractions, the masses of the steel core and the cellulose shell are double the values of the spherical core-shell
resonators in Sec. V. These are verified by applying Eq. (F1a):

m(c)
c = mdb

(
R(c)

1 ,
R(c)

3

6
, a(c), ρc

)
≈ 1.588 g, (F2a)

m(c)
s = mdb

(
R(c)

3 ,
R(c)

3

3
, a(c), ρs

)
− mdb

(
R(c)

2 ,
R(c)

3

4
, a(c), ρs

)
≈ 0.5400 g. (F2b)

The axial moments of inertia of the core and shell are roughly double the respective values of the core and shell of the spherical
resonators in Sec. V, because the axis of azimuthal symmetry passes through the centers of the two spherical caps. On the other
hand, the transversal moments of inertia are an order of magnitude larger, as the masses are distributed away from the midplane
of the dumbbell. The exact values are determined using Eqs. (F1b) and (F1c):

I (c)
c,z = Idb,z

(
R(c)

1 ,
R(c)

3

6
, a(c), ρc

)
≈ 4.886 g mm2, (F3a)

I (c)
c,x = I (c)

c,y = Idb,x

(
R(c)

1 ,
R(c)

3

6
, a(c), ρc

)
≈ 42.83 g mm2, (F3b)

I (c)
s,z = Idb,z

(
R(c)

3 ,
R(c)

3

3
, a(c), ρs

)
− Idb,z

(
R(c)

2 ,
R(c)

3

4
, a(c), ρs

)
≈ 7.586 g mm2, (F3c)

I (c)
s,x = I (c)

s,y = Idb,x

(
R(c)

3 ,
R(c)

3

3
, a(c), ρs

)
− Idb,x

(
R(c)

2 ,
R(c)

3

4
, a(c), ρs

)
≈ 21.27 g mm2. (F3d)

Next, we calculate the mass and moments of inertia of the connected shell dumbbell by parallel axis theorem and
Eqs. (F1a)–(F1c):

m(f)
s = mdb

(
R3,

R3

6
, a, ρs

)
− 8π

3
ρsR

5
2 ≈ 0.5449 g, (F4a)

m(f)
c1 = 4π

3
ρc1R3

1 ≈ 0.7940 g, (F4b)

m(f)
c2 = 4π

3
ρc2R3

1 ≈ 0.8099 g, (F4c)

I (f)
s,x = I (f)

s,y = Idb,x

(
R3,

R3

3
, a, ρs

)
− 16π

15
ρsR

5
2 − 2π

3
ρsR

3
2a2 ≈ 21.01 g mm2, (F4d)

I (f)
s,z = Idb,z

(
R3,

R3

3
, a, ρs

)
− 16π

15
ρsR

5
2 ≈ 7.512 g mm2, (F4e)

I (f)
c1 = 8π

15
ρc1R5

1 ≈ 2.633 g mm2, (F4f)

I (f)
c2 = 8π

15
ρc2R5

1 ≈ 2.686 g mm2. (F4g)
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