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Radiating dipoles in photonic crystals
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The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially
excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored
electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the
photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model
systems, well-known results such as decay times and emission spectra are reproduced. This approach enables
direct incorporation of realistic band structure computations into studies of radiative emission from atoms and
molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in
both the microwave and optical regimes.

PACS number~s!: 42.70.Qs, 45.20.Jj, 45.30.1s
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I. INTRODUCTION

Photonic crystals~PCs! have been the subject of intensiv
research over the past decade@1#. These are fabricated per
odic dielectric arrays that employ a combination of~i! Mie
scattering from individual elements of the array, and~ii !
Bragg scattering from the periodic lattice, to induce a ba
structure for photon propagation. This band structure is
many ways, analogous to electronic band structure in a se
conductor. Through a judicious selection of materials and
the periodicity of the lattice, the photonic dispersion relati
and the associated electromagnetic~EM! mode structure of a
PC can be adapted to a variety of device applications.
most dramatic modification of the photon dispersion occ
when the linear propagation of a photon in a PC is prohibi
in all directions for a range of frequencies, giving rise to
complete photonic band gap~PBG!.

The radiative dynamics of an optically active mater
placed within or near a PC can be dramatically modifi
from that of free space. This is a result of the ‘‘colored
electromagnetic reservoir provided by the solutions to
electromagnetic field equations within a PC. In the opti
domain, theoretical studies of atomic transitions coupled
the EM modes of a PC with an optical PBG predict a num
of novel quantum optical phenomena. These phenomena
clude the suppression or enhancement of spontaneous e
sion and the associated fractional localization of light n
radiating atoms@2,3#; rapid all-optical switching@4#; and
anomalous superradiant emission, as well as low-thres
lasing near the edge of a PBG@5,6#. Microfabrication of PCs
with complete PBGs at optical wavelengths has proved to
a difficult task, both because the lattice periodicity should
comparable to the wavelength of the light under consid
ation, and because a high dielectric contrast between th
ements of the lattice is required. Fortunately, recent advan
in microlithography@7# and in semiconductor infiltration in
colloidal crystals@8# have produced materials with signifi
cant pseudogaps in their photonic band structures@9#. The
development of materials with complete PBGs in the opti
regime appears imminent.
PRE 621063-651X/2000/62~3!/4251~10!/$15.00
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High-quality PBG materials at microwave frequenci
have been available for some time@10#. Sizable band gaps
with center frequencies ranging from a few GHz up to 2 T
have been reported; these crystals have thus proved
soundness of the concept of the PBG. Microwave PBG m
terials may be relatively easily manufactured using microm
chining techniques, and are currently of interest for appli
tions such as the shielding of human tissue from microw
radiation, and for improving the radiation characteristics
microwave antennas. Although PBG materials at microwa
frequencies have been extensively studied, the behavio
radiating dipolar antennas embedded in microwave PCs
not received the same degree of attention. This is despite
fact that such antennas would share many properties in c
mon with atomic emission in a PC. In the microwave d
main, a dipole antenna could take the form of an electrica
excited metallic pin with a highQ ~quality! factor.

The radiative dynamics of the above system can be
scribed by a charged, one-dimensional simple harmonic
cillator ~SHO!. Such an electric dipole oscillator can als
provide an excellent description of the radiation of single
multiple two-level atoms in the optical domain. This descr
tion is valid provided that the total excitation energy of t
atoms is well below an energy where saturation~nonlinear!
effects become important. Moreover, the radiation reserv
can itself be modeled as a bath of many independent SH
Radiative damping arises from a linear coupling between
system SHO and the large number of reservoir oscilla
modes. The similarities between the microwave and opt
systems, coupled with the mature state of microwave te
nology, suggest that many of the predicted effects for ato
dipoles in the optical domain could be realized and stud
first in the microwave domain.

Analytical techniques exist for treating certain forms
coupling between the dipole and reservoir for certain mo
distributions of the reservoir. However, PCs present coup
distributions and spectral properties that defy analyti
methods. This is due to the presence of a restricted and
idly varying reservoir mode distribution, which renders i
valid the usual Born-Markov type of approximation schem
4251 ©2000 The American Physical Society
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4252 PRE 62BUSCH, VATS, JOHN, AND SANDERS
for the system-reservoir interaction. To obtain accurate
sults, we solve the system numerically for a large, but fin
number of oscillators in the reservoir by discretizing t
modes of the reservoir following the approach of Ullersm
@11#. In dealing with our system, there are crucial issu
concerning obtaining the correct coupling strength betw
the oscillator and the reservoir modes, as well as in emp
ing the proper renormalization and mode sampling in
merical simulations. When these criteria are satisfied,
SHO method comprises a powerful approach to treating
diative dynamics.

Here, we develop a rigorous quantitative treatment of
radiative dynamics of an electric dipole oscillator coupled
the electromagnetic reservoir within a model PC. In the p
cess, we provide a sound theoretical basis for this and o
approaches@12# to non-Markovian radiative dynamics tha
involve the discretization of a model electromagnetic res
voir. Additionally, we show how our method can be appli
to realistic PCs with complicated dispersion relations a
EM mode structures. The paper is organized as follows
Sec. II, we develop a classical field theory for electrom
netic field modes in PCs and derive the coupling consta
for the coupling between a radiating dipole and these Bl
modes. This leads to the Hamiltonian of the coupled sys
and the associated equations of motion. Renormalization
sues arising from the nonrelativistic nature of our theory
discussed in Sec. III, whereas Sec. IV describes the disc
zation of the reservoir and the numerical solution of t
equations of motion. In Sec. V, these techniques are app
to a highly computationally challenging model, that of
three-dimensional, isotropic dispersion relation with a co
plete PBG. The demonstration of fractional localization a
related phenomena validates the SHO approach to mode
radiative dynamics in PCs. In Sec. VI we summarize
results and emphasize the possibilities for testing these
dictions experimentally in the microwave domain. The tw
Appendixes are concerned with the details of the field the
for the PC and with the details of the model of the one-sid
isotropic PBG, respectively.

II. CLASSICAL FIELD THEORY

In this section, we derive the equations governing the
namics of a radiating dipole oscillator located inside a P
Typically the equation of motion for a damped oscillato
with time-dependent coordinateq(t), is written as the
second-order differential equation

q̈~ t !1gq̇~ t !1v0
2q~ t !5F~ t !. ~1!

Here, we have introduced a damping constantg, the natural
frequencyv0, and the driving fieldF(t) for the amplitudeq
of the linear oscillator. For instance, for a freely oscillati
RLC circuit with Ohmic resistanceR, capacitanceC, and
inductanceL, we haveg5R/L, v0

251/LC, F(t)50, and
q(t) is the electric charge. Equation~1! is, however, not the
most general way of incorporating damping into the eq
tions of motion for a harmonic oscillator. This descriptio
can break down if, for example, there is a suppression
modes in the reservoir to which the dipole oscillator c
couple. Such a suppression of modes is a feature of the
-
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reservoir present in a PC. A more general description
damping forces acting on the harmonic oscillator theref
requires a precise knowledge of the mode structure of
environment, and the corresponding coupling of the sys
oscillator to these modes. In the case of a radiating dip
located in a PC, it is then appropriate to model its emiss
dynamics with a SHO coupled to a reservoir of SHOs. T
essential difference between the vacuum and a PC is
contained in the spectral distribution, or density of sta
~DOS!, of the reservoir oscillators, and in the coupling co
stants between the reservoir modes and the system oscill

The characterization of the reservoir is carried out in d
tail in Appendix A; here we only summarize the salient r
sults. Given a radiating dipole with a natural frequencyv0,
we obtain the classical Hamiltonian

H5Hdip1H res1Hct1H int . ~2!

The first term on the right-hand side of the Hamiltonian
the energy of the dipole oscillator itself,

Hdip5jv0uau2. ~3!

The natural frequency of the isolated oscillator isv0, andj
is a constant with the dimension of energy3time. This per-
mits us to write the energy of a SHO in units of its natu
frequencyv, i.e., E(v)5jv. The system oscillator’s com
plex amplitude is given by the dimensionless, tim
dependent quantitya, defined with respect to the coordina
q(t) of Eq. ~1! as

a~ t ![ALv0

2j
q~ t !1ıA 1

2jLv0
@Lq̇~ t !#. ~4!

The next term in the Hamiltonian~2! corresponds to the
free evolution of the radiation reservoir, which is modeled
a bath of independent SHOs,

H res5(
m

jvmubmu2. ~5!

The natural electromagnetic modes of the PC are Bl
modes~see Appendix A!, labeled with the indexm[(nkW ),
wheren stands for the band index andkW is a reciprocal lattice
vector that lies in the first Brillouin zone~BZ!. Their disper-
sion relationvm is different from that of the vacuum case
and may have complete gaps, and/or the corresponding
sity of states may exhibit appreciable pseudogap struct
the manifestation of multiple~Bragg! scattering effects in
periodic media.

As we are working within the framework of a nonrelativ
istic field theory, we have introduced a mass renormalizat
countertermHct52jDuau2 that cancels unphysical UV
divergent terms@13,14#. The quantityD is specified in Sec.
III.

The interaction between the oscillator and the reservoi
given by a linear coupling term. As the oscillator frequen
is quite large, and the effective linewidth of the oscillation
relatively small, it is possible to simplify the interaction b
applying the rotating-wave approximation. In this appro
mation, couplings in the Hamiltonian of the forma* bm* and
its complex conjugate are neglected, as these terms osc
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very rapidly compared to the terms of the typea* bm and its
conjugate. Hence, the interaction Hamiltonian can be
pressed as

H int52ıj(
m

~a* gm* bm2agmbm* !. ~6!

In the case of a point dipole, i.e., when its spatial extena
is much smaller than the wavelength corresponding to
natural frequencyl052pv0 /c, the coupling constantsgm
can be derived from~i! the magnitude of the dipole momen
d(t)5aq(t) located atrW0, and ~ii ! the dipole orientationd̂
relative to that of the Bloch modesEW m(rW0):

gm[gm~rW0!5acA p

Lv0vm
@ d̂•EW m* ~rW0!#. ~7!

This dependence of the coupling constant on the dipo
precise location within the PC is the second essential dif
ence from the free-space case. As shown in Refs.@15,16#,
this position dependence may be quite strong, thus ma
its incorporation asine qua nonfor any quantitative theory
of radiating antennas or fluorescence phenomena in rea
PCs.

The emission dynamics can be evaluated from the Pois
brackets of the oscillator amplitudes and their initial valu
a(0)51 and bm(0)50(;m). Our choice of a(0) and
bm(0) corresponds to the initial condition of an excited d
pole antenna and a completely deexcited bath. The only n
zero Poisson brackets are

$a,a* %5$bm ,bm* %5
ı

j
. ~8!

Equations~2!, ~7!, and~8!, together with the initial values
for the oscillator amplitudes, completely determine the em
sion dynamics of a radiating dipole embedded in a PC. In
following sections, we solve the corresponding equations
motion. This task is complicated by the nature of the res
voir’s excitation spectrum: as discussed, the nonsmooth d
sity of states prohibits the use of a Markovian approximat
and its appealing simplifying features@2,3,6#. Instead, we
have to revert to a solution of the full non-Markovian pro
lem. This is accomplished by first rearranging the reserv
modes in a manner more suitable to both analytical as we
numerical solutions, and subsequently solving the equat
of motion. In what follows, we bridge the gap between p
vious studies of simplified model dispersion relations@2,3,6#
and band structure computations@15,17#.

Although we will formally develop our theory for anLC
circuit in a microwave PC, we emphasize that the formali
applies equally well to a semiclassical Lorentz oscilla
model of an excited two-level atom, i.e., an electron w
chargee and massm that is bound to a stationary nucleus, f
which the energy of excitation is well below that required f
saturation effects to become relevant. The oscillator coo
nate q(t) may then be identified with the deviation of th
electron’s position from its equilibrium value,g is the in-
verse lifetime of the excited state, andv0 denotes the fre-
-

ts

’s
r-

g

tic

on
,

n-

-
e
f

r-
n-
n

ir
as
ns
-

r

i-

quency for transitions between excited and ground state
the two-level atom. This corresponds to making the subst
tions

L→m, ~Lq̇!→p, j→\, ~9!

whereh52p\ is Planck’s constant.

III. PROJECTED LOCAL DENSITY OF STATES,
MASS RENORMALIZATION, AND LAMB SHIFT

From the Hamiltonian~2! we derive the equations of mo
tion for the amplitudes

ȧ~ t !52ı~v02D!a~ t !2ıj(
m

gm* bm~ t !, ~10!

ḃm~ t !52ıvmbm~ t !1gma~ t !, ~11!

for which we seek a solution with initial conditionsa(0)
51 andbm(0)50 (;m). Our formalism, however, require
that we first determine the mass renormalization countert
D. This is most conveniently done in a rotating frame w
slowly varying amplitudesa(t) and b(t), defined asa(t)
5a(t)e2ıv0t andb(t)5b(t)e2ıvmt, respectively:

ȧ~ t !52ıj(
m

gm* eı(v02vm)tbm~ t !1ıDa~ t !, ~12!

ḃm~ t !5gme2ı(vo2vm)ta~ t !. ~13!

Conversely, Eqs.~12! and~13! comprise a stiff set of differ-
ential equations making their solution a difficult task. N
merical solution of the problem is more easily performed
the nonrotating frame, to which we return in Sec. IV.

Equation~13! may be formally integrated,

bm~ t !5gmE
0

t

dt8e2ı(v02vm)t8a~ t8!, ~14!

and inserted into Eq.~12! to yield

ȧ~ t !52E
0

`

dt8G~ t2t8!a~ t8!1ıDa~ t !, ~15!

where the Green functionG(t) contains all the information
about the reservoir and is the subject of our studies for
remainder of this section. It is defined as

G~t![Q~t!(
m

ugmu2eı(v02vm)t. ~16!

Here,Q(t) denotes the Heaviside step function, which e
sures the causality ofG(t). We now proceed to evaluat
G(t) for the form of the coupling constantsgm given in Eq.
~7!. To this end, we introduce the projected local DO
~PLDOS! N(rW0 ,d̂,v) through

N~rW0 ,d̂,v!5(
n
E

BZ

d3k

~2p!3
d~v2vnkW !ud̂•EW nkW~rW0!u2,

~17!
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where we have replaced the symbolic sum overm by its
proper representation as a sum over bands plus a wave v
integral over the BZ. With these changes, we may rew
G(t) compactly as

G~t!5bQ~t!E
0

`

dv
N~rW0 ,d̂,v!

v
eı(v02v)t. ~18!

Here, we have abbreviatedb5(pa2c2)/(Lv0). Equation
~18! makes more explicit what we have argued before: T
spontaneous emission dynamics of active media in phot
crystals are completely determined by the PLDO
N(rW0 ,d̂,v). As the PLDOS may be drastically different from
location to location within the Wigner-Seitz cell of the P
@15,16#, it is imperative to have detailed knowledge abo
where in the PC the dipole is situated in order to underst
and predict the outcome of corresponding experiments.

One additional point deserves special attention: the t
DOS N(v) is related to the local DOS via

N~v!5
1

VEV
d3r E dV d̂ep~rW !N~rW,d̂,v!

Þ
1

VEV
d3r E dV d̂N~rW,d̂,v!,

whereV is the volume of the Wigner-Seitz cell, and*dV d̂ is
the average over all possible orientations of the dipo
Strictly speaking, it is not possible to base conclusions ab
the radiation dynamics on the total DOS. This is a dir
consequence of the fact that the natural modes of PCs
Bloch waves rather than plane waves as in free space.
pending on the band index, these Bloch modes prefer to ‘
side’’ predominantly in either low- or high-dielectric-inde
regions ~so-called air and dielectric bands, respectivel!.
Only in the case of very low index contrast~‘‘nearly free
photons’’! may the total DOS be viewed as a reliable gui
to interpreting radiative dynamics within a PC. The to
DOS is, nevertheless, an adequate rule-of-thumb estima

From Eq.~17! we can now obtain the Fourier transform
the Green functionG(V2v0) centered around the atom
bare transition frequencyv0:

G~V2v0!5E
0

`

dt eı(V2v0)tG~ t !

5pb
N~rW0 ,d̂,V!

V
Q~V!

1ıbE
0

`

dv
N~rW0 ,d̂,v!

v
`S 1

V2v D ,

where` stands for the principal value.
For largev, we haveN(rW0 ,d̂,v)}v2. The imaginary part

of G(V2v0) apparently contains a linear divergence in t
UV. This divergence is to be expected for a nonrelativis
theory, analogous to the problem of spontaneous emissio
vacuum@13#, and is removed from the theory by using th
tor
e
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mass counterrenormalization termD, as first pointed out by
Bethe@14#. Consequently, we decompose the imaginary p
of G(V2v0) into

Im@G~V2v0!#.2~D1dvac1da!, ~19!

where we have used the notation

D5bE
0

`

dv
N~rW0 ,d̂,v!

v2
,

dvac52
bv0

p2c3E0

Vc
dv `S 1

v02v D ,

da52
bv0

p2c3E0

Vc
dv `S 1

v02v D N~rW0 ,d̂,v!2N(vac)~v!

v2
.

Here, we have performed a Wigner-Weisskopf-type appro
mation on the vacuum and anomalous Lamb shifts@2# dvac
and da, respectively. This approximation is justified by th
fact that, despite its highly non-Markovian nature, a radiat
dipole in a PC is still a weak coupling problem, as can
seen, for instance, by estimating the coupling constant

g.d0v0A 2p

VjvnkW
~20!

in the Lorentz oscillator model. Here,V'ā3 is the volume of
the Wigner-Seitz cell of the PC (ā is the corresponding lat
tice constant! andd05ea0 is the oscillator’s dipole momen
for the elementary chargee and Bohr atomic radiusa0. At
optical frequencies (v'1015 s21), a silicon inverted opal
has a PBG at the frequencyāv/2pc'0.8, so that we obtain
1027<g/v0<1026!1, thus justifying our Wigner-
Weisskopf approximation. As a consequence, we must t
the real part ofG(V2v0) exactly, but are still allowed to
tackle the imaginary part ofG(V2v0) using standard per
turbation methods of QED. In addition, we have introduc
the vacuum or free-space DOSN(vac)(v)5v2/(p2c3), and a
cutoff frequencyVc@v0, which is chosen large enough th
the results of the following analysis remain independent
the precise value ofVc . In a Lorentz oscillator model, for
instance,Vc can be identified with the Compton frequenc
Vc.mc2/\, asv.vc probes the relativistic aspects of th
oscillating charge, which are beyond the scope of the mo

With the foregoing analysis, we have determined the m
renormalization countertermD. In addition, we have derived
an explicit expression for the anomalous Lamb shiftda @2#
which originates in the ‘‘reshuffling’’ of the reservoir’s spec
tral weight by the PC.

IV. DISCRETIZATION OF THE RESERVOIR

To solve the equation of motion for the amplitude of t
system oscillator, let us rewrite Eq.~15! in a more explicit
form:
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ȧ~ t !52E
0

`

dvN~rW0 ,d̂,v!g2~v!

3E
0

t

dt8eı(v02v)(t2t8)a~ t8!1ıDa~ t !, ~21!

whereg2(v)5b/v, and the mass renormalization counte
term D is given by

D5bE
0

`

dv
N~rW0 ,d̂,v!

v2
. ~22!

We remind the reader thata(0)51.
We are now in a position to comment on the origin of t

linear damping termgq̇(t) that appears in Eq.~1!: If we
consider the long time limit, i.e.,t@1/v0, and assume tha
the PLDOSN(rW0 ,d̂,v) is a smooth function for frequencie
aroundv0, we can approximate the frequency integral in E
~21! by @2pbN(rW0 ,d̂,v0)/v0#d(t2t8), which leads to

ȧ~ t !52ga~ t !, ~23!

where the decay constant is defined as

g52pbN~rW0 ,d̂,v0!/v0 . ~24!

This approximation is valid only for long times relative
1/v0, and for a sufficiently smooth density of states. Ho
ever, in the case of a PC, the PLDOS may have sharp
continuities and gaps, thus requiring the full equations
motion to be solved instead.

To solve the integro-differential equation~21! in a PC, we
appeal to the literal meaning of the PLDOS as a density
states:N(rW0 ,d̂,v) may be interpreted as an unnormaliz
probability density of finding a reservoir oscillator with fre
quencyv at positionrW0 and orientationd̂. Consequently, we
transform Eq.~21! back to a system of coupled differenti
equations by employing a Monte Carlo integration sche
for an arbitrary functionf (v) according to

E
0

`

dvN~rW0 ,d̂,v! f ~v!.E
0

Vc
dvN~rW0 ,d̂,v! f ~v!

'
N0

M (
i 51

M

f ~v i !, ~25!

where the normalization constant

N05E
0

Vc
dvN~rW0 ,d̂,v! ~26!

depends on the cutoff frequencyVc . There areM@1 bath
oscillators, contained within a set of frequencies$v i ,1< i
<M %, the frequencies of which are obtained by random
sampling the interval@0,Vc# according to the probability
densityp(rW0 ,d̂,v)5N(rW0 ,d̂,v)/N0. Note that thev i may be
degenerate, as prescribed byp(rW0 ,d̂,v).
-

.

-
is-
f

f

e

y

Applying this Monte Carlo scheme to Eq.~21! and trans-
forming back to a nonrotating frame in order to avoid havi
to solve a numerically stiff problem, we obtain

ȧ~ t !52ı~v02D!a~ t !2ıj(
i 51

N

gib i~ t !, ~27!

ḃ i~ t !52ıv ib i~ t !1gia~ t !, ~28!

where gi5g(v i), 1< i<M , and the mass renormalizatio
counterterm is evaluated up to the cutoff frequencyVc , i.e.,
D5*0

VcdvN(rW0 ,d̂,v)/v2.
When comparing Eqs.~27! and ~28! to our initial equa-

tions of motion, Eqs.~10! and ~11!, we observe that the
considerations in the previous section have allowed us
rearrange the three-dimensional wave vector sum over
modesm[(nkW ) into a simple one-dimensional sum over
set of frequencies$v i% with a probability distribution
p(rW0 ,d̂,v) that is easily determined through standard pho
nic band structure computation@15#. In the following sec-
tion, we give the solutions of Eqs.~27! and~28! for a model
system that has previously been treated by other method
particular, we will demonstrate that known results for t
radiative dynamics can be recaptured and do not depen
the the value of the cutoff frequencyVc and the numberM
of reservoir oscillators once these quantities are large eno
such that all the relevant features ofN(rW0 ,d̂,v) are ad-
equately represented.

V. NUMERICAL RESULTS FOR A MODEL SYSTEM

In order to establish the validity of our approach, we no
solve Eqs.~27! and ~28! for a generic model of a PBG, th
three-dimensional isotropic, one-sided PBG@3#. In Appendix
B, we outline the construction of the model’s dispersion
lation and how to obtain the corresponding model DO
Nm(v). We note that we do not appeal to an effective ma
approximation in the dispersion relation@6#, as is done in
most treatments of band-edge dynamics. This allows u
recover the correct form of the large frequency behavior
the photon density of states.

In Fig. 1, we show the behavior ofNm(v) as a function of
frequency for values of the relevant parameters, the gap
parameterh50.8, and the normalized center frequen
vca/2pc50.5 ~see Appendix B!. The DOS exhibits a
square-root singularity at the band edgevua/2pc50.6, as
well as a UV divergenceNm(v)}v2, asv→`; these are the
characteristic features of this model. Due to the simultane
presence of both divergences, this model clearly represen
severe numerical test of our approach. In order to test
method, we thus replace the PLDOS entering Eqs.~27! and
~28! by Nm(v).

In Fig. 2, we present the results of our numerical solut
for the radiation dynamics of a dipole oscillator with fre
quencyv0 that is coupled to the modes of a PC, as describ
by Eqs.~27! and~28!, for various values of the bare oscilla
tor frequency v0a/2pc relative to the band edge a
vua/2pc50.6. The coupling strength has been chosen s
that g(v0)51024, corresponding tob510283v0

3.
Clearly visible are normal-mode oscillations, also referr
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to as vacuum Rabi oscillations, and the fractional locali
tion of the oscillator’s energy at long times near the photo
band edge@3#. As expected, for frequencies deep in the ph
tonic band gap (v0a/2pc50.58), where the system oscilla
tor is effectively decoupled from the bath oscillators, we fi
no noticeable decay of the oscillator amplitude. Deep in
photonic conduction band (v0a/2pc50.62), the system os

FIG. 1. The DOS for the three-dimensional, isotropic one-sid
band gap model of a PC. The parameters~see Appendix B! areh
50.8 andvca/2pc50.5.

FIG. 2. The radiation dynamics resulting from the thre
dimensional, isotropic one-sided band gap model DOS as show
Fig. 1 for various values of the bare dipole oscillator frequencyv0

relative to the upper photonic band edgevu . The photonic band
edge is siutated atvua/2pc50.6 and the bare dipole oscillato
frequencies are~a! v0a/2pc50.58, ~b! v0a/2pc50.595, ~c!
v0a/2pc50.599, ~d! v0a/2pc50.6, ~e! v0a/2pc50.601, ~f!
v0a/2pc50.605, and ~g! v0a/2pc50.62. Clearly visible are
normal-mode oscillations, or vacuum Rabi oscillations, and
fractional localization of radiation near the photonic band edge.
coupling strength has been chosen such thatg(v0)51024. For fre-
quencies deep in the photonic band gap (v0a/2pc50.58) and deep
in the photonic conduction band (v0a/2pc50.62), we observe
negligible and exponential decay, respectively.
-
c
-

e

cillator is coupled to a bath with a smooth and slowly var
ing mode density, as in free space. We therefore obse
exponential decay of the oscillator amplitude, though with
time scale that differs significantly from that in free spac
Due to the large value of the DOS close to the photonic b
edge, the initial decay is faster for bare oscillator frequenc
close to this edge than for frequencies deep inside the
lowed photonic band. These results were obtained fo
smooth exponential cutoff for the DOS aroundVca/2pc
53.0 andM52.53105 oscillators representing the modes
the PC. We also performed numerical simulations betw
all combinations of Vc and M with values Vca/2pc
53.0,6.0,9.0 andM52.53105,53105,106 and found that
the numerical values differ by at most 0.2% of the valu
shown in Fig. 1. This demonstrates that, despite the prese
of the singularities in the DOS, our approach still provid
accurate and converged results.

VI. DISCUSSION

In summary, we have developed a realistic field theory
an oscillating electric dipole located in a PC. The theory
based on the natural modes of the PC, the Bloch waves,
allows the direct incorporation of realistic band structure c
culations in order to obtain quantitative results for the rad
tion dynamics of the dipole antenna. We have shown h
the theory must be renormalized in order to account for
physical divergences and have identified the classical an
of the Lamb shift of the dipole’s natural radiation frequenc
Finally, we have developed a reliable numerical sche
based on a probability interpretation of the PLDOS th
solves the equations of motion for the dipole oscilla
coupled to the electromagnetic mode reservoir of the PC

The viability of this approach was demonstrated for
isotropic model DOS for which we have derived well-know
results for radiating atomic systems@3# in the context of a
radiating classical dipole. The model considered conta
two divergences, one square-root divergence at the phot
band edge and a quadratic UV divergence, and there
clearly comprises the most serious test of our approa
More realistic models of a three-dimensional photonic ba
edge take into account the anisotropy of the BZ, and the
fore do not suffer from a band-edge singularity@6#. As a
result, our formalism is clearly more than capable of treat
more realistic descriptions of the electromagnetic reserv
within a PC.

Although we have developed our theory for anLC circuit
in a microwave PC, we have pointed out in Sec. II that
formalism applies equally well to a semiclassical Loren
oscillator model of an excited two-level atom. Therefore, o
approach is applicable to both microwave antennas and
tical atomic transitions. However, technological constrai
suggest that microwave experiments will likely be easier
perform than optical experiments involving single atoms.
discussed, an appropriate microwave antenna could, for
ample, take the form of a high-Q metallic pin placed in or
near a PC. The pin can then be excited by a focused
trashort laser pulse that generates free carriers at one
these carriers then undergo several oscillations across th
before reestablishing charge equilibrium. The resulting s
nal could be easily detected and compared with the emis
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PRE 62 4257RADIATING DIPOLES IN PHOTONIC CRYSTALS
from such an antenna positioned in free space, or withi
homogeneous sample of the dielectric material that make
the backbone of the PC under consideration.

In its own right, such a microwave system could ha
considerable applications in radio science and microw
technology. For example, the PBG can be used as a
quency filter, and can be used to fine-tune the bandwidth
dipole emitter with a resonant frequency near the edge of
gap. It may also be possible to actively modify the photo
band structure, effectively changing the radiation pattern
dipole emitter. A feasible scheme for active band struct
modification has recently been proposed in the contex
optical PCs@18#, in which the PC is infiltrated with a liquid
crystalline material whose nematic director is aligned us
applied electric fields. By rotating the director, it was fou
that the band structure could be significantly modified, a
that PBGs may be opened and closed altogether. Sim
methods may be applied to the case of microwave PCs.

Although we have concentrated specifically on the lin
model, the method of coupled oscillators can be extende
treat a nonlinear antenna, or a collection of two-level ato
in a regime where saturation effects arise. As we have sh
here, this method of coupled classical oscillators reprodu
effects normally associated with quantum optical calcu
tions. We expect that a nonlinear oscillator model will rep
duce some of the effects studied for a single two-level at
coupled to the modes of a PC without the need for quantiz
the field. However, a classical treatment would need to
abandoned if multiphoton excitations are non-negligi
@12#. Given that multiphoton effects are difficult to obser
in the microwave domain@19# and even more challenging i
the optical domain@20#, it is reasonable to expect that
classical model of radiative dynamics in a PC should
sufficient for foreseeable experiments.
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APPENDIX A: CLASSICAL FIELD THEORY
FOR PHOTONIC CRYSTALS

In this Appendix, we present a self-contained formulati
of a classical field theory for the Bloch modes of a PC, a
we develop the Hamiltonian describing the coupling of
radiating dipole couples to these modes. As a first step,
review the computation of dispersion relations, and of el
tric and magnetic field modes from band structure calcu
tions@15#. We then demonstrate how the results of such b
structure calculations can be used to construct the co
sponding vector potentials and free-field Hamiltonian.
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nally, we derive the full minimal coupling Hamiltonian for
classical radiating dipole embedded in a PC. This may
compared to the formulation of a general, quantized fi
theory for EM modes in nonuniform dielectric media
terms of a normal-mode expansion in the context of quan
optics @21#.

1. Review of band structure calculations

We develop our theory in terms of the magnetic fieldHW
rather than in terms of the electric or displacement fie
because~i! ¹W •HW 50 and~ii ! the transverse and longitudina
components of the magnetic field are continuous across
dielectric boundaries. This leads to more rapid converge
of the relevant Fourier series expansions.

In a three-dimensional PC, we can write the eigenva
equation for the magnetic fieldHW as

¹W 3@hp~rW !¹W 3HW #1
v2

c2
HW 50W , ~A1!

with hp(rW) the inverse of the periodic dielectric permittivity

ep~rW !5eb1~ea2eb! (
nW PZ 3

S~rW2nW •A!. ~A2!

The medium is assumed to consist of a background mate
with bulk permittivity eb and a set of scatterers with bul
permittivity ea . The shape of the scatterers is described
the functionS, i.e., S(rW)51 if rW lies inside the scatterer an
zero elsewhere, distributed periodically at positions

$RW %5H (
i 51

3

niaW i uniPZJ . ~A3!

The notation of Eq.~A2! is obtained by defining the matrix
A5(aW 1aW 2aW 3) andZ 35Z^ Z^ Z. The dielectric permittivity
is spatially periodic modulanW •A. The assumption of a scala
permittivity is reasonable for bulk materials that are not
refringent but in no way restricts the considerations belo
Chromatic dispersion effects are considered to be negligi
thus allowing the time dependence of the permittivity to
ignored. Let us define the dual matrixB52p(A21)T. For
B5(bW 1bW 2bW 3), this definition leads to the orthogonality rela
tion

aW i•bW j52pd i j . ~A4!

Whereas the pointsnW •A are the real space lattice vectors, t
pointsmW •B for mW PZ 3 are the reciprocal lattice vectors. Th
inverse permittivity can be expanded in the dual basis as

hp~rW !5 (
mW PZ 3

hmW eımW •B•rW. ~A5!

The differential equation~A1! has periodic coefficients
By the Bloch-Floquet theorem we can expand the magn
field as

HW kW5eıkW•rWuW kW~rW !, ~A6!
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whereuW kW is spatially periodic moduloA; that is,

uW kW~rW !5uW kW~rW1nW •A!. ~A7!

The set$kW% labeling the solutions can be restricted to
within the irreducible part of the first Brillouin zone, sinc
any value ofkW can then be obtained through a combination
group transformations with respect to an operation from
point group of the crystal and translations with respect t
reciprocal lattice vector. We can therefore express each w
vectorkW as

kW[kWT,mW [kW* •T1mW •B, ~A8!

wherekW* is an element of the irreducible part of the first B
andT an element of the crystal’s point group.

Applying the Bloch-Floquet theorem, Eq.~A6!, the mag-
netic field can be expanded as

HW kW5eıkW•rW(
mW

(
l51

2

hmW
kW ,l

êmW
kW ,l

eımW •B•rW. ~A9!

Herel is the index of polarization and the vectors

H êmW
kW ,1 ,êmW

kW ,2 ,
kW1mW •B

ukW1mW •BuJ ~A10!

form an orthonormal right-handed triad. This expansion
serted into Eq.~A1! yields an infinite eigenvalue problem
which is then solved numerically by a suitable truncatio
Typically the cardinality of the set$mW % is on the order of 103

@15#. For any givenkW* we obtain a discrete set of eigenfr
quenciesvnkW and corresponding eigenfunctionsHnkW , which
we label by the band indexnPN. It is important to note that
the expression for the electric field can be recovered from
magnetic field via

EW nkW~rW !52 i
c

vnkWep~rW !
¹W 3HW nkW~rW !. ~A11!

In addition, the Bloch waves obey the following orthogon
ity relations:

E d3rHW nkW
* ~rW !•HW mkW8~rW !}dnmd~kW2kW8!, ~A12!

E d3r ep~rW !EW nkW
* ~rW !•EW mkW8~rW !}dnmd~kW2kW8!, ~A13!

where the integration is over all space in both cases. We
free to choose the constants of proportionality in the ab
relations, and do so in the next subsection.

2. Free-field Hamiltonian

Based on the above considerations, we are now in a
sition to derive the general expressions for the scalar
vector potentialsf(rW,t) andAW (rW,t) respectively, for the clas
sical Hamiltonian of the free radiation field. We find that t
expressions become particularly transparent in the D
aloshinsky gauge, i.e., whenf(rW,t)[0. Then,
f
e
a
ve

-

.

e

-

re
e

o-
d

y-

EW ~rW,t !52
1

c

]AW ~rW,t !

]t
, ~A14!

HW ~rW,t !5¹W 3AW ~rW,t !, ~A15!

and the gauge condition¹W •@ep(rW)AW (rW,t)#50 reveals that in
a PC the natural modes of the radiation field are no lon
transverse. This is of importance when quantizing the fi
theory@21,22#. Given Eqs.~A1!, ~A11!, ~A14!, and~A15!, it
is now straightforward to derive the following expansion
the vector potentialAW (rW,t):

AW ~rW,t !5(
n
E

BZ

d3k

~2p!3
A2pjc2

vnkW

3@bnkW~ t !AW nkW~rW !1bnkW
* ~ t !AW nkW

* ~rW !#, ~A16!

where the time evolution of the free field is described
bnkW(t)5bnkW(0)e2ıvnkW t. The field modesAW nkW(rW) obey

¹W 3¹W 3AW nkW~rW !5
vnkW

2

c2
ep~rW !AW nkW~rW !, ~A17!

which is the same equation as that for the electric fi
modesEW nkW(rW) of Eq. ~A11!. We now choose the normaliza
tion of AW nkW such that

E d3r ep~rW !AW nkW~rW !•AW mkW8~rW !5dnmd~kW2kW8!, ~A18!

E d3r @¹W 3AW nkW~rW !#•@¹W 3AW mkW8~rW !#5
vnkW

2

c2
dnmd~kW2kW8!.

~A19!

This also fixes the normalization in Eqs.~A12! and ~A13!.
As a consequence, the total electric and magnetic fields
now given by

EW ~rW,t !5ı(
n
E

BZ

d3k

~2p!3
A2pjc2

vnkW

3@bnkW~ t !EW nkW~rW !2bnkW
* ~ t !EW nkW

* ~rW !#, ~A20!

HW ~rW,t !5(
n
E

BZ

d3k

~2p!3
A2pjc2

vnkW

3@bnkW~ t !HW nkW~rW !1bnkW
* ~ t !HW nkW

* ~rW !#, ~A21!

where we have reintroduced the electric and magnetic fi
modesEW nkW(rW)5(vnkW /c)AW nkW(rW) andHW nkW(rW)5¹W 3AW nkW(rW), re-
spectively. Equations~A20! and ~A21! finally lead us to the
free-field Hamiltonian

H res5(
n
E

BZ
d3kjvnkWubnkWu2. ~A22!

The only nonzero Poisson brackets are$bnkW ,bnkW
* %5ı/j.
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3. Radiating dipole embedded in a photonic crystal

We consider the insertion of a point dipole into a PB
structure at a prescribed locationrW0. The free dipole oscilla-
tor is described by the HamiltonianHdip ,

Hdip5
@Lq̇#2

2L
1

1

2
Lv0

2q25jv0uau2, ~A23!

where the dipole’s natural frequency isv051/LC and the
complex oscillator amplitudea is given in terms of the
charge q and ‘‘current’’ Lq̇ as a(t)5q(t)ALv0/2j

1ı„Lq̇(t)…/A2jLv0, with Poisson brackets$a,a* %5ı/j.
The point dipole couples to the electric field via its dipo
momentd(t)5aq(t) with orientation d̂, which yields the
interaction energy

H int52aq~ t !@ d̂•EW ~rW0 ,t !#. ~A24!

In the rotating-wave approximation to the interacti
term, the final minimal coupling Hamiltonian for a radiatin
dipole in a PC is

H5Hdip1H res1Hct1H int . ~A25!

Collecting all the above results we obtain

H5jv0uau21(
m

jvmubmu2

1Hct2ıj(
m

~a* gm* bm2agmbm* !. ~A26!

Here, we have introduced the symbolic indexm[(nkW ) and
the coupling constantsgm ,

gm[gm~rW0!5acA p

Lv0vm
@ d̂•EW m* ~rW0!#. ~A27!

In addition, in Eq.~A25! we have introduced a mass reno
malization countertermHct52jDuau2 in order to cancel un-
physical UV-divergent terms of our nonrelativistic theory,
discussed in the main text. For completeness, we list h
only the nonzero Poisson brackets and initial values for
initially excited radiating dipole coupled to the Bloch wav
of a PC. This, together with the Hamilton functionH in Eq.
~A25!, completely defines our problem:

$a,a* %5$bm ,bm* %5
ı

j
, ~A28!

wherea(0)51 andbm(0)50 for all m.

APPENDIX B: MODEL DISPERSION RELATION
AND DENSITY OF STATES

A particularly stringent test of our approach’s ability
describe the dynamics of a radiating dipole in a PC com
from its application to a dipole coupled to a thre
re
n

s

dimensional~3D! isotropic photon dispersion model for th
electromagnetic reservoir. In this model, the coherent s
tering condition that characterizes the photonic band edg
assumed to occur at the same frequency for all direction
propagation. Clearly this is not the case in a real crys
whose Brillouin zone cannot have full rotational symmet
As a result, the isotropic model overestimates the elec
magnetic modes available at a band edge, so that, for
ample, near the upper photonic band edge at frequencyvu
the corresponding DOS exhibits a divergence of the fo
N(v)}1/Av2vu. Conversely, for large frequencies (v
@vu) the DOS will exhibit a UV divergence, i.e.,N(v)
}v2, as is the case in free space. More realistic LDOS co
ing from full photonic band structure computations do n
suffer from the pathological band-edge divergence of the
tropic model. However, by solving the model of a 3D isotr
pic photonic band gap, we make contact with previous
sults based on the isotropic model in the effective m
approximation@3#.

Consider a 1D photonic dispersion relation in the e
tended zone scheme. In order to describe a PBG at w
numberk0 with central frequencyvc5ck05(vu1v l)/2 and
upper and lower band edges atvu andv l , respectively, we
use the following ansatz:

v~k!5H v11c1A~k2k0!21g1
2 for k.0

v21c2A~k2k0!21g2
2 for k,0.

~B1!

Using the requirementsv(k50)50, v(k5k0201)5v l ,
v(k5k0101)5vu , ]kv(k50)5]kv(k→`)5c, and
]kv(k5k0201)5]kv(k5k0101)50, the unknown pa-
rameters in Eq.~B1! can easily be expressed in terms of
single parameterh5v l /vc , 1/2,h<1, that describes the
size of the photonic band gap, givingv15vc , c15c, g1

5k0(12h), v25vc(h
2)/(2h21), c25ch/A2h21, and

g25k0(12h)/A2h21.
From the dispersion relation~B1!, the corresponding

DOS, i.e.,N(v)5*d3kd„v2v(k)…, is given by

Nm~v!55
4pc2

2
@k02A~v2v2!2/c2

2 2g2
2 #2~v22v!

A~v2v2!2/c2
2 2g2

2

for 0<v<v l

4pc1
2

@k01A~v2v1!2/c1
2 2g1

2 #2~v2v1!

A~v2v1!2/c1
2 2g1

2

for vu<v,` .
~B2!

For sufficiently large gaps (h<0.9) and bare eigenfrequen
ciesv0 of the radiating dipole close to the upper band ed
it is an excellent approximation to ignore the lower branch
the photon dispersion relation, i.e., fork<k0. The resulting
DOS for this so-called three-dimensional isotropic, one-sid
band gap model is shown in Fig. 1 for a value of gap wid
parameterh50.8 and the gap center frequencyvca/2pc
50.5. The square-root singularity at the band edge as we
the UV divergenceNm(v)}v2 asv→` are clearly visible.
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