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We study the dynamics of lasing from photonic paints excited by short, localized, optical pulses, using a
time-dependent diffusion model for light propagating in the medium containing active atoms. The full time-
dependent, nonadiabatic nonlinear response of the atomic system to the local optical field intensity is described
using the Einstein rate equations for absorption and emission of light. Solving the time-dependent diffusion
equation for the light intensity in the medium with nonlinear gain and loss, we derive detailed information on
the spectral, spatial, and temporal properties of the emitted laser light. Our model recaptures the effects of
scatterers to narrow the emission spectral linewidth and to narrow the emitted pulse duration, at a specific
threshold pump intensity. Our model also describes how this threshold pump intensity decreases with scatterer
density and excitation spot diameter, in excellent agreement with experimental results.
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I. INTRODUCTION characteristic of a multi-mode laser oscillator, even though
the system contains no conventional cavity mode. These so-
In conventional lasers, lasing is achieved by positive feedealled paint-on laser systems are of special interest for un-
back. The radiation emitted and redirected into the activalerstanding emission in random media because the gain and
medium stimulates further emission, which reinforces thescattering can be varied independently.
propagating field. The excitation threshold for coherent emis- A number of attempts have been undertaken to develop
sion is reached when the gain in a round trip exceeds ththeoretical models which are relevant to lasing in random
loss. This can lead to a coherent mode, which builds upnedia. The experimental observations on the emission prop-
inside the cavity. Part of this light is coupled out of the cavity erties can be partially explained by heuristic ring laser mod-
to form a unidirectional monochromatic beam. els[12]. A more microscopic and fundamental understanding
Weak scattering of light has traditionally been consideref the spectrally resolved intensity input-output properties of
detrimental to laser action, since such scattering removethe random laser have been provided by a simple diffusion
photons from the lasing mode of a conventional cavity. Onmodel [13-15 for the average light intensity and a rate-
the other hand, if stronger, multiple scattering occurs, thesequation description of the atomic excitation density. In the
photons may return to the amplification region and the amease of a purely one-dimensional light scattering model, this
plified mode itself may consist of a multiple-scattering path.rate-equation picture has been improved by recourse to a
In random lasers, the conventional external cavity is absenmore microscopic, time-dependent Maxwell-Bloch equation
but light can be temporarily “trapped” inside the system, duedescription[16].
to multiple scattering. Under suitable circumstances, the det- The properties of the emission in photonic paints can be
rimental effects of diffuse scattering and other losses may bstudied using a diffusion modgll3] for optical scattering
offset by the long path length of the photons within the gainand transport. A diffusion model is adequate to study the
region, giving rise to amplified laserlike emission. random laser with nonresonant feedbdék that occurs in
The possibility of generation of amplified light by a ran- the moderate scattering regime. In this case, wave interfer-
domly scattering medium with gain, first suggested byence does not play any role, and the optical feedback pro-
Letokhov [1], has received considerable attention recentlyvided by the scatterers has the role to simply return the emit-
[2-9]. Isotropic laser action has been observed in randonted photons to the active gain region of the sysieather
colloidal suspensiong,3] as well as opticallyf8] and elec- than to an initial positioy) thereby stimulating further emis-
trically [9] pumped semiconductor powders. A dramatic nar-sion. In other words, it is intensity feedback. This is different
rowing of the spectrum and a shortening of the emission timérom the case of a random laser with coherent feedih8tk
[6] has been observed above a well-defined threshold inperating in the strong scattering regime, where the recurrent
pump energy. Furthermore, recent experimgats11 have  scattering events lead to the formation of closed loops, acting
demonstrated, for the first time, that the emission of lightas laser resonators. In the case of strong optical scattering, a
from these random amplifying media is in fact coherent. more general model involving the electric field rather than
A great deal of experimental wofR—7] has been devoted the intensity of light is necessary to investigate the laser ac-
to the phenomenon of lasing in paints that containtion. In the diffusion approximation, the propagation of light
Rhodamine 640 dye molecules in methanol as gain media the random amplifying medium is considered as an isotro-
and a titanium oxide colloidal suspension as optical scatterpic random walk. This is valid for the transport of light over
ers. Emission from these multiple-light-scattering dielectricdistances large compared with the transport mean free path
microstructures exhibits spectral and temporal propertiet, defined as the average distance the light travels in the
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sample before its propagation direction is randomized. Théion §. This accounts for stimulated emission processes
diffusion approximation represents an approximation to the

radiative transfer theorj17], which, in turn, is an approxi- A C s
mation to the more general coherence propagation theory for loutpuf @, Ky, t)dew = 4 I*sf drf dr’f dt qu

the electric-field autocorrelation functidi8]. The interac- 77

tion between photons and molecules is treated by the Ein- X[S,(r',t',q)dw]

stein rate equations for emission and absorption of light. The -

radiation emitted into the random amplifying medium is de- XGy(r—r',t=t";q,ky)

scribed by a set of diffusion equations, where the multiple- 7

scattering character of the transport is described by a diffu- ><exp<— . ) (2.2
sion coefficient that replaces the cavity loss coefficient in a k-2l

conventional laser. The properties of the gain medium enter _

the nonlinear diffusion equations through the gain coeffi-The “volume” referred to above is assumed large compared
cient. Previous resul{d.3] show that a time-independent dif- t0 & cubic wavelength, so that both the “location” and wave
fusion model entirely recaptures the experimentally observedector of the photon can be approximately specified. The
average emission spectral properties for steady-state pumpource intensitys,(r’,t’;q) is proportional to the density of
ing with a large beam cross section. However, the differenexcited molecules at position’ and time t’ and their
time scales of transpottvhich usually takes place on a pi- SpPontaneous-radiative-emission cross section at frquuency
cosecond time scalend emissior(taking place on a nano- and directiong. The Green’s functiorG(r —r’,t—t’;q,k;)
second time scajeprocesses in a random laser require adescribes the average propagation of photons through the
complete time-dependent model for the system dynamics. lgain medium from position’ at timet’ with wave vector

this paper, we recapture both th_e emission spectrum and te_rm,c)q to positionr at time t and wave VeCtOI(w/C)sz,
poral response by solving the time-dependent nonlinear dif

| . . : ."involving the process of diffusion, absorption by unexcited
fusion equations for emitted photons of different frequenmesdye molecules, and stimulated emission from excited dye

for a pulsed pump field and for a narrow cross-section PUMR olecules. Hereg is the speed of lightl” is the transport
field. In addition, we retain the full time dependence of the, . fee path of the emitted photons, and the factor

Einstein rate equations rather than adiabatically eliminatin *3 A .
the atomic degrees of freedom. For very short excitatioriC/ 4ml)exp(~2/k;-2|I")dr represents the fraction of the en-

pulses, it is not possible for the atoms to respond instantz£9Y atr and timet that contributes to the emergent flux. The
neously to changes in the electromagnetic field. Our model ifactor expg—z/k;-2|I") represents the part of this energy
similar to the random walk moddll5] used to study the which emerges from the output surface of the sample without
lasing in photonic paints. For the pulsed pump, we considebeing further scattered, amplified, or absorljz@].
both plane wave and Gaussian beam cross sections, and weFor random media in which scattering mean free path is
find that the time-dependent diffusion model qualitatively re-very large compared to the wavelength, the propagation of
captures the experimental results. In particular, our modédight can usually be described as a diffusion process. Assum-
describes how the laser threshold intensity varies with théng an isotropic random walk process for both the emitted
transport mean free path and the pump beam cross sectioight and the pump light, the light propagation in the system
is described by diffusion equations with appropriate absorp-
tion and gain terms, which depend on the local excitation of
Il. DIFFUSION MODEL the dye molecules. In this case, it is convenient to introduce

In amplifying random media, light is both multiply scat- the propagator for the total intensity of light at frequeney

tered and amplified. In laser paints, optical pumping brings
the_ dye molecules to excited states. Through spontaneous G,(r.b) Equf dﬁwa(r,t;q,ﬁf)_ (2.2
emission, some excited molecules randomly emit photons.

These photons travel in the medium, being scattered by tita- o ] )

nia particles and amplified by dye molecules, through stimu-The diffusion equation for the emitted photons at frequency
lated emission. The emergent photon energy per unit time? ¢an be written as

unit solid angle, and unit interface area around the direction

Kk in the frequency range froma to w+dw and timet is then AG,(r =1, t=t')=DV2G,(r —r',t—t') +

expressed in terms of the source intensity due to the sponta- lg(w,r,t)

neous _emission within the §amp|6m(r’,t’;<?])(j_w (energy XGy(F =" t=t')+ 8 —r")ot—t').

per unit volume, per unit time, and per unit solid angle 2.3
around directiong, in the frequency range from» to '

+dow). The outpuE intensity also depends on the prOpagatoﬁere,D=1/3cl* is the classical diffusion constant, which is
G,(r=r’,t=t";q,ky), which represents the number of pho- assumed not altered by the presence of the dye, and the gain
tons per unit “volume” found at a positionat timet and  coefficient of the dye solutioriy (e, ,t), which is related to

traveling in a directiork, given a unit source intensity at the absorption and stimulated emission processes in the sys-
positionr’ and timet’ <t, emitting light in an initial direc- tem.
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For a sample consisting of a slab of random gain medium
with planar boundaries with air on either side, the boundary
condition for Eq.(2.3) requires that the propagator vanish at
“trapping planes” located at the distande0.711", the “ex-
trapolation length,” outside the sample. This imposes the
physical boundary condition that photons that come within a
mean free path of the sample boundary leave the sample and
are “absorbed” by the external environment, with no oppor-
tunity to reenter the random gain medium. This factor arises
because the photon density cannot vanish at the sample sur-
face. Photons diffuse out of the medium and must pass
through the surface. The value of the “extrapolation length”
may be obtained from the method of linear extrapolation
[20].

It is useful to introduce the total intensity of light at fre-  FIG. 1. Schematic view of the three-dimensional sample. A
guencyw in terms of emitted local intensities: monochromatic pump beam of Gaussian cross section is incident

from the left and is collimated in the direction perpendiculazto

, ) ~ o , , =0 plane(the shaded spptThe light intensity emitted from the
lw,r,)=c| dr’ | dt’ [ dg[S,(r',t", )]G, (r —r',t-t). front plane is measured by a detector on the left.

(2.4
H(@,1, ) 5=—0.72° = 1p(r, D) 5=—0.72°
This obeys the diffusion equation =1(w,r,b)]; 5=140.71"
| - c = 1(r, )] a=Lr0.727
ol(w,r,t)= b))+ ———lo,r,t
(o0 =DVfiw 0 + st =0. (2.6

+cl| das A 25 In the case of finite beam cross section, the sample itself is
c] das,(r.tq). (2.59 taken to have the shape of a cylindrical pill box of radRis
and thicknes4 (see Fig. 1 In this case, an additional trap-
Equation(2.5a was obtained from the definition ofw,r,t) ~ PiNg surface is introduced to capture photons leaving the
and the diffusion equatio®.3). sample in the transverse direction:
Th(_a propagation of the pump intensity in the medium is I(wvrvt)|r-i1:R+O.7]l* — Ip(rvt)|r-ﬁ:R+0.7]l* =0. (2.7)
described by
Here,z and p are the cylindrical coordinates and the beam

_ 5 c C radius is considered less than the sample radius,
dlp(r,8) = DpVilg(r,t) - Io(r, ) + S linciden(T 1), The proposed excitation scheme for laser dyié} is pre-
P sented in Fig. 2. It consists of electronic levels with total spin

(2.5b zero(singlet state&,, S;) and total spin onériplet statesT,

. T,), and an adjustable intersystem crossing rate between
whereD,=1/3cl, is the diffusion coefficient for the pump these states. Here, we neglect the intersystem crossing and
intensity(l , is the transport mean free path of the pynfor  consider that the emission dynamics corresponds only to the
simplicity, we assume that the transport mean free path of thginglet state transitions, modeled as a standard four-level sys-
pump and emitted photons are the saf@g=D). The ab-  tem. The lasing transition occurs between the third |etre
sorption coefficientl,(r,t) depends on the density of dye lowest level in theS; manifold) and the second levéxcited
molecules at positiom and timet in the ground state and vibrational energy levels in th§, manifold). We further de-
their absorption cross section at pump frequehgyqentr€p-  fine the first level as the ground state in &emanifold and
resents the coherent incident pump intensity. Both the cohethe fourth level as an excited vibrational level of emani-
ent (lincigend @nd diffuse(l,) parts of the pump intensity are fold. The vibrational substructure included in our model pro-
assumed monochromatic and we suppress the frequency daedes an effective broadening of the essential states and is
pendence of these fields in our discussion. important for a quantitative comparison between our results

In the case of illumination by a plane wave propagating inand the experimentally observed line shape. The peak of the
the z direction, the system is homogeneous in the transversemission spectrungobtained from the transition from the
directions, and we only consider tteedependence of the third level to the second levels well separated from the
emitted and pump intensities. However, for a finite Gaussiambsorption spectrurtobtained from the transitions from the
pump beam cross section we make use of the cylindricdiirst level to levels three and fourAccordingly, processes of
symmetry and write the gradients in the diffusion equationsstimulated emission from level 3 to level 1 and absorption
accordingly. In the first case, the boundary conditions forfrom level 1 are ignored in comparison to the processes tak-
Egs.(2.59 and(2.5b) for a slab of thicknest are ing place between the lasing transition levels 3 and 2. Typical
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Singlet States Triplet States gain media generally consist of ionic species grown or doped
within a host material. This is analogous to the organic dye
e laser, in which dye molecules are suspended in solvent. The
solid-state dielectric lasers can be modeled as four-level sys-
tems, reducible, due to the rapid nonradiative decays, to two-
level systems, entirely similar to the case of the dye mol-
ecules[21]. Therefore, the lasing in the rare-earth-doped
nanopowders, with the powders playing the role of scatter-
S ers, is similar to the lasing in photonic paints. The formalism
presented here can be straightforwardly applied to describe
T the emission properties of these alternative random amplify-
1 . .
ing media.
The pumping rate in Eq2.8) is given by

P(r,t) = oa(wo) (frewp) M (1), (2.9

Here, o,(wp) is the cross section of the singlet absorption at
the pump frequencyw,.
The gain coefficient, the source intensity due to the spon-
p taneous emission, and the absorption coefficient entering the
So diffusion equations are expressed in terms of dye population
' densities as

I3 (.1, 1) = ae(@)Ny(r, 1), (2.109
FIG. 2. Energy levels for a dye in solutioBy— S, represents
the pumping and absorption proceSs,— S, andT,— T, represent . .
the emission process, ailg— T, represents the absorption process. f dgs,(r,t,q) = el (w)Ny(r 1), (2.10b
The dotted lines represent the nonradiative decay processes, and the
dashed lines represent the intersystem crossing process. -
157(r,t) = No(r,t)oa( o). (2.100
emitted photons do not have enough energy to excite the Itis convenient to rewrite the equations above in terms of
transitions from level one to the third and fourth levels. Fur-dimensionless quantities. We define the dimensionless time
thermore, the populations in the fourth and second levels cafn=t/t, and the dimensionless length=r/l, where t,
be neglected due to the rapid nonradiative de¢apsa time  =12/c andl,=(I"I,)? is the diffusion controlled extinction
scale of 10 s) to the third and first levels, respectively. |ength;|OE[Ng(wo)]—1 is a parameter in our model, related
Therefore, one can neglect the reabsorption of the emittegh the dye concentration. Here, we neglect saturation effects
radiation from level 2 to levels 3 and 4 and the transitionsang approximate, by 1 in the expression of the extinction

from level 4. As a result, the emission dynamics can be detength, but use the expressigd.109 elsewhere. We also
scribed by a single rate equation. The rate equation that defefine the dimensionless intensities

scribes the dye population per unit volume in the excited

state(ground state of th&, manifold), N,, reads T(w [t = Cffmaxl(w [0 (2.113
1 1 wrz L 1 .
dN,(r,t)
# = P(r,t)Ng(r,t) = [,N,(r 1) and
=S o @0, DN, D). (2.8) lp(r, ) = 1p(r, /1, (2.11b

with oa=maX o«w)] and the characteristic intensity pa-
Here, No=N-N, is the population per unit volume in the rameterl.=7%woml5/ Tinase
ground statgN is the total density of dye moleculesP is The set of nonlinear differential equations describing the
the pumping rate, anl,=3, I',;(w) is the total decay rate System dynamics becomes
of the lowest level of theS;, manifold due to spontaneous

emission into individual levels of, with individual rates (?fT(w,F,T):VFZT(w,'F,t + LG N, D1 (w70

I',1(w). Hereol(w) is the stimulated emission cross section, oa(wo)

corresponding to transitions between the bottom of $he Omax | Tor(@w)

manifold and vibrational levels if,. Explicit forms of these + oo F—nZ(F’t) , (2.129

functions are discussed in Sec. lll. The photon flw,r ,t) al™o 2

(number of photons per unit area, per unit tjnwerelated to 5 1o

the emitted light intensity throug(w,r,t)=l(w,r,t)/w. al, (T D= V?zfp(r,”t) = o D10 + FlincidendT ),
Recently[9] random laser action in rare-earth-doped na- '

nopowders has also been reported. In such systems, the laser (2.12b
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dn(FH) Tl ~ ~ -
%{B=%{P(F,t)no(ﬁ)—[Re(F,T)+1]nz(7,t)}-

(2.129

In Egs. (2.12, n,=N,/N (i=0,2) are the normalized dye
populations, related to each other in our model throngh
:1_n2,

PFT) = P(r )T, = #”;(“’O)Tp(m) (2.13
is the dimensionless pump rate, annc]jaX
RD = (2 adorb(orD)re= [ o T(w)
(2.14)

PHYSICAL REVIEW E 70, 036607(2004)

composite Voigt line-shape functioi22]. Finally, the total
emergent photon energy from the medigoer unit area, per
unit time, in the frequency range from to w+dw) is ex-

pressed a$, (w,t)dw, where

#19r -
loul@,t) = —jj 2 fdkff dw’f dr
A7l opax
Z

xexp(— ——
k-2

Here, we usal=1 and [df — [~'«dZ for a one-dimensional
model, andd=3 and fdf — 4= [Y'7pdp[5"2dz, for the three-
dimensional model with finite pump beam cross section.

In order to calculate the output intensity, we solve the

|*

(2.18

is the dimensionless stimulated-emission rate within the sinsystem of diffusion and rate equatiof&12). This provides

glet manifold.
The boundary conditions for the diffusion equations are

(@7 Db=-0.7201,= 1T D072,

:T(a),?,t

Z=(L+0.72%)/1,

=Tpﬁﬁ)%(L+o.7ﬂ*)/lz
=0, (2.15

together with

(@, Dl=re0727m, = 15T Dlz=(re0.7271,= 0, (2.16

for the case of a finite cross-section pump beam.
Unlike previous studieg13], we treat the full time-
dependent rate equatiq®.129 rather than carrying out an

us with all the information on the spectral, spatial, and tem-
poral properties of the emitted intensity, as well as the gain
coefficient inside the sample. By approximating the integral
in Eq. (2.14 by a sum over a set of discrete frequenaigs
i=1,2,... N, this system transforms to a set &f+3
coupled nonlinear partial differential equations, which can be
solved numerically using the method of lin¢23]. This
method is based on replacing the spatiaundary valug
derivatives with an algebraic approximation over a spatial
grid. The resulting system of initial-value ordinagtime-
dependentdifferential equationgODE'’s) is then integrated
numerically, using an established ODE code.

IlI. NUMERICAL RESULTS FOR EMISSION INTENSITY
AND LASING THRESHOLD

adiabatic elimination of the atomic degrees of freedom in _We solve the set of diffusion and rate equatied<.2) for
favor of optical intensities. This more general treatment isdifferent values of scatterer density, dye concentration, and
useful in describing ultrashort-pulse excitations of the ranPump intensity, both for plane-wave pump beams,

dom medium.

For a slab in thexy plane illuminated by plane waves in
the z direction, we can omit thex andy dependence and
retain only partial derivatives with respect zan the gradi-
ents in diffusion equation®.123 and(2.12h. In the case of

a three-dimensional system, illuminated by Gaussian bea
in the z direction, we assume a cylindrical symmetry of the
system and use cylindrical coordinates. Neglecting the angu-

lar dependence, we make the substitutin— i +(1/p)d;
+
2

We introduce the homogeneously broadened output inten-

sity
loul@,t) = f dlsz dw,loutpu{w,ut;lzf)g(w, - w),
(2.17

whereg(w’ — ) is the homogeneousiicollision) broadened
Lorentzian line-shape functiof22], and|qp, is defined in

Iin(:iden{r ,t) = IO \/%exq_ Z/|Z)GX4:—

(t—to- z/c)z]
a—TZ s

P
(3.1

nd for pump beams with Gaussian cross sections,

Iinciden(r ,t) = I0 \/gexd_ Z/|z)

o+ 2
Xexp{ - a(tt(’#} exf - a(p/pp)?].

To
(3.2

Here |, is the pump intensitya=4 In 2, t; is the time at
which the maximum of the pump is incident on the sample
surface, and, is the pulse temporal profile, full width at half
maximum. p, is the pulse radial profile, full width at half

Eqg. (2.1). We point out that in the more general case whenmaximum.
the gain medium is both homogeneously and inhomoge- The stimulated emission cross section used is given by the

neously broadened, the line-shape functiin’ — w) is the

expressior21]
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2m? ° | S
0= dvD(v)|ul’g(w - v)v. (3.3

360Cﬁ 4
Here,gq is the vacuum permittivityD(v) is the rovibrational
density of state of the relevant energy band of the dyeand 24! 2r
is the transition matrix element of the electric dipole mo- 5 L
ment. We assume that < 2 4 6 810

= Pump Intensity

D()|pf? o« €190l 1 +b(1 - vlwg)?]. (3.4

Intensit
n

Here,[1+b(1-v/wy)?] describes the degeneracy of the ex-
cited vibrational states, anef2=/«0l is the Frank-Condon
overlap factoi{21] for the dipole matrix element connecting
the ground states and the excited electronic state in different ‘ . .
vibrational statesa, b, andwg are three parameters, adjusted %5 615 625 635
in order to fit experimental data on the peak position and the Waeelongthy ()
linewidth of the fluorescence spectrumission cross sec- g, 3. The emission spectrum at different values of peak pump
tion) of the dye molecules. The values=35, b=264, and  jntensity, varying from 0.5 107 J cnt2 st (the innermost curve
2wt/ wp=615 nm have been used in the calculatigd8]. o 10x 107 J cni2 s% (the outmost curve for a 10-ps plane-wave
The spontaneous emission rdfg,(w) is related toog(w)  pulse. The transport mean free path is set toGL2™ cm, and the
through the relation between the Einstéirand EinsteinB  dye concentration is 2:810*M. Here the entire cross section of
coefficients[21]. In the following calculations, we choose the sample is illuminated uniformly. The inset shows the variation
o,(wp) ] omax=2, the spontaneous emission decay rate is sedf the peak intensity with the pump intensity, for the same set of
toI',=1 ns, the sample thickness and radiuslard cm and sample parameters.
R=1 cm, respectively, and the paramel&'rs calculated us-
ing the fact that the pump penetration depth of a 2.5below the threshold. This is shown in the inset in Fig. 3,
X 10°M dye solution is about 5@m [2]. The homoge- where we plot the emission intensity at the peak wavelength
neously broadened line-shape function is expressed as (620 nm as a function of pump intensity.
The lasing in the random medium is enhanced rather than
9(w-w')= 1 Aw (3.5) hindered by multiple-light-scattering processes in the system.
m(w-0')’+(Aw)?’ The lasing threshold in fact decreases with the scatterer den-
sity. We see from Fig. 5 that the threshold intensity, here
with Aw=(2mc/\o)(6 NM/2g), Wherero=620 nm. The 6- defined as the pump intensity for which the duration of the
nm linewidth is chosen since it is the minimum width to emitted pulse is 100 pavhich from Figs. 3 and 4 is also the
which the emission narrows under strong laserlike amplifipump intensity for which the emission spectral linewidth col-

cation. This value of the homogeneous linewidth of the gaiﬂapses and the slope of the input-output curve changles
medium is close to that experimentally observed for similar

systemg24,25. 40 —
We begin by presenting the results obtained for plane- dl gp——
wave excitationg3.1), with pulse durationr,=10 ps, as re- .x 10° ‘f\"”\—k\,\ ]
ported in some of the experimeri8]. This requires solving 30l & 7 | |
the one-dimensional diffusion equations, coupled to the %02 . delay :
atomic rate equation. T £ "IQ.‘
Figure 3 shows the emission spectrum at different pump f 10" = —3
intensities, for fixed dye concentration and scatterer density.  §20 ;
The spectral and temporal response of the system to the § l 1030 100 S 10’
pump pulse is presented in Fig. 4, which shows the emitted = \ Pume Intensity: (107 Jiens)
pulse linewidth and duration as function of pump intensity. 10 ng %
The shapes of these curves are consistent with the experi-
mental observations. We see from Fig. 4 that there exists a
well-defined value of the pump intensity above which the 5

emission characteristics from the disordered medium change 0 2 1¢
dramatically: the linewidth is narrowed and the emission

shortens dramatically and reaches its peak value at earlier g 4. Spectral linewidth as a function of peak pump intensity.

times. As in experiments, the threshold intensity appears t§ne pulse characteristics, transport mean free path, and dye concen-
be the same for both spectral and temporal emission propejration are the same as in Fig. 3. The inset shows the dependence of
ties. Also, as experimentally observed, it is obtained thatihe pulse duration and the time delay of the peak emission with
above the threshold, the emission at the peak wavelengtfespect to the peak pump excitation on the peak pump intensity, for
increases more rapidly with the pump intensity than it doeshe same set of sample parameters.

4 6
Pump Intensity (10’J/cm?®s)
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Threshold Pump Intensity (10" J/cm*s)

0t

0
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Normalized excited state population

1 40 100 7000
Transport mean free path (in unit of the wavelength 620 nm)

FIG. 5. Variation of the threshold intensity with the transport
mean free path. The dye concentration is set equal t& 266*M,
and the sample parameters are the same as in Fig. 3.

FIG. 7. Normalized excited-state population for the same

creases when the transport mean free path decrdases sample and pump intensity as in Fig. 6.

equivalently, as the scatterer density is increased ] )

In Fig. 6, we plot the temporal profile of the emitted pulse System. We study this effect in the framework of a more
and its spectral linewidth, for a pump intensity above thecomplete, three-dimensional diffusion model. Although the
threshold value, and Fig. 7 shows the excited-state populdD@in ideas behind this approach remain the same as in the
tion at the same value of the pump intensity. one-dimensional case, the extension of the diffusion model

Experimental studieg7] have also demonstrated the t© three dlmenslons mvo_lves S|gn|f|cantly.more eff_ort in
strong dependence of the threshold pump intensity on thirms of numerical analysis and programming. For simplic-
spot size of the incident pump pulse. In the case of illumi-Ity; the atomic rate equations are solved under “quasi-steady-
nating the sample with a beam of finite cross section, thétate” conditions, by puttingin,/dt=0 in the rate equation
lasing threshold has been found to increase by 70 times 4€-120. This quasi-steady-state atomic response is then sub-
the excitation spot diameter was gradually decreased from 28fituted into the time-dependent diffusion equation. In doing
to below 5 transport mean free patfi§. We demonstrate SO, We assume that both the emitted intensity and the pump
that this is the result of multiple light scattering. For a largeintensity vary much more slowly in time than the atomic
excitation area, the pumped volume is large and the emitte&@”ames- The solutions for the atomic populatlo_ns obtained
photons will spend more time in this amplifying region. For this way are not truly constant, but are determined by the
a small excitation volume, the emitted light, which propa-instantaneous _values of the_se slowly varying field vangbles.
gates diffusively through the sample, will leave the amplify-AS discussed in Sec. IV, this approach does not provide an
ing region after a short time. In the latter situation, a higherccurate description of the dynamics of the system, and we

pumping level is necessary to achieve positive gain in thavill use it only to calculate the emission spectrum. This is
enough to investigate the effect of the transverse diffusion on

the lasing threshold.
- We consider a Gaussian beam cross section of the form
. . (3.2), with a duration ofr,=10 ns, and investigate the de-

| pendence of the threshold intensity on the radial full width at
half maximum,p,. The result is obtained for a set a sample
parameters as those used in the experimgritsHere the
threshold intensity is obtained from a plot of the spectral
linewidth as a function of pump intensity, as shown in Fig. 8,
and represents the intensity at which the linewidth collapses.
We see from Fig. 9 that the lasing threshold intensity dra-
matically decreases when the excitation spot diameter in-
; _ creases above a few transport mean free paths, corresponding
0 ) P ——— to a larger gain volume. This result is in quantitatively very

0 100 time (ps) 200 300 good agreement with the experimental findings.

40 |owme

~

(nm) |
<1
w

Intensitv (arb. units)

Linewidth
n
o
n

—_

0 '.": . s 1

FIG. 6. Temporal emission profile for the same sample param-
eters as in Fig. 5 and incident peak pump intensity of 3
X 10”7 J cnT? s71. The dots show the time ependence of the spectral
linewidth of this pulse, at the same value of the peak pump inten-
sity. The timet=0 corresponds to the time when the peak of the
pump excitation enters the sample.

IV. PHYSICAL INTERPRETATION OF TEMPORAL
BEHAVIOR

We now discuss qualitatively the necessity of a nonadia-
batic time-dependent model in order to fully recapture the
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25, ' ‘ ' particles. Based on this fact, in our analysis, the real slab is
? replaced by an “effective slab” of thickneks The general
\ solution for the emitted intensity for the one-dimensional
o0l O\ slab geometnfEq. (2.59] can then be expressed as an ex-
\\ pansion in the “eigenfunctions” of the diffusion equation for
€ this effective domain,
£ .
515 \ () = Eah(2), (4.
2 °
3 as
10 = .\.
° l,
., ~ l(w,2,t) = EE (@, ¢i(2). (4.2
\. S ‘- k=1
T T/ I ) IS A 1% Here, \(2/1,) yi(z) =sin(kmz/1,). We point here that this rep-
Pump Intensity (10" J/cm’s ) resents only a heuristic approach, necessary to identify the

FIG. 8. Emission linewidth intensity i time scale corresponding to diffuse photon propagation in the
- ©. EMIssion Inewidth vs pump intensity for pump diam- amplifying medium. Strictly speaking, the diffusion approxi-
eters of 2 mm(circles and 100um (squares The up-arrow indi- . . . -
L . .mation becomes inapplicable as the physical length scale of
cates the position of the threshold. The sample thickness and rad“éﬁt. t b ble to the t t f
are each set to 1 cm, and the dye concentration and transport me £ System becomes Compara € to the ranspor mean Iree
path, and surface corrections have to be considered. To ob-

free path are set to I®mol/l and 102 cm, respectively, in the i o ) . .
calculation. For an absorption cross sectiop=1.6x 10716 c? tain a qualitative picture, we keep only the first term in the

103 mol/l dye concentration corresponds to an absorption lengttfXPansion4.2). Using this expression for the emitted inten-
of 102 cm. sity, the diffusion equatioii2.59 becomes

=- +
dynamics of the system. The temporal profiles of the emitted (028) == 7l (@,20 + cog(0)Nz(2 )l (0,21

pulse and excited-state population, as well as the threshold + chwl'51(w)Ny(zZ,1). (4.3
behavior of the emitted pulse duration, are important features 5. )
of any laser. However, the characteristic time scales of thesgere, ve=m-D/I; is the “cavity” decay rate, and we have
features depend on the specific system. In what follows, w&iSed expression@.103 and(2.10b for the gain coefficient
employ a simplified rate equation model for both atoms andg(@,2:t) and the source intensity due to spontaneous emis-
photons, to interpret our results on the temporal response &N, S,(z,t,d), respectively. For a random laser character-
the random laser. ized by values of the transport mean free path and absorption
In a random laser, the majority of the emitted intensity|ength as those used in the calculations in Sec. Ill, the cavity
arises from a region € z=</1, within the diffusion-controlled ~decay constant, corresponds to a decay time of picosec-
extinction length, where significant population inversion isonds. The slow response of the atomic system compared to
achieved. The pump pulse only reaches this region, where the light transport is a characteristic of the random lasers and

is absorbed by the dye molecules and scattered by titanigads to relaxation oscillatiorigaser spikingin the dynamic
response of the system at the threshold crossing. A detailed

0 ‘ ‘ study of this regime is presented [ih4,26,27.
| @ , We further divide Eq(4.3) by ciw and sum over frequen-
cies to arrive at the equation

—_

n=-ynn+xknN+TN. (4.9

0 Here,n(z,t)=c™'=  ®(w,z,1) is the total number of photons

per unit volume in the systenN=N,(z,t) is excited-state

| population density, an@f =I",. For simplicity, we omit the

o dependence on the spatial coordinateereafter. In deriving
Eqg. (4.4, we have used that the laser emission spectrum is
. ] usually much narrower than the spontaneous emission spec-

' trum and made the approximation

Threshold Pump Intensity (10" J/cm’s )

G 5 o i = 5 2 o(@)P(w,2t) =~ 07D D(w,zt), (4.5
Pump beam diameter (in unit of transport mean free path w w

FIG. 9. Variation of the threshold intensity with the pump-beam such thatx = cog'®*

diameter in units of transport mean free paths0.01 cm. The Similarly, the rate equatior{2.8) for the excited-state
other sample parameters are the same as for Fig. 8. population can be rewritten as
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=P — _ Consider now the case when the laser is operating well

N=P-mN-IN, (4.6 above threshold. Under the action of the pump, the number
where P = P(z,1)Ny(z,t). For simplicity, in the analysis pre- ©f molecules in the excited state increases on a time scale of

é?lcosecondﬁhe pulse duration However, due to the pres-

ence of a large number of photons in the system, the stimu-
lated emission becomes dominant and leads to a much faster
decay of the population inversion after reaching the maxi-
. Ynum value. This decay rate is larger than the spontaneous
pelow or near threshold. In this case, the _number of phOtpnémission rate by a factor equal to the number of photons in
in the system is very small, and the stimulated emissioRe systenthe stimulated emission ratesince the emission
terms in Egs(4.4) and (4.6) can be neglected. During the iiqup time is equal to the time the population inversion
course of a picosecond pump pulse exciting the system, theaches the maximum value, we obtain the picosecond scale
atomic population builds up rapidly towards a maximum delay for the emission above threshold. The fast decay of the
value, and spontaneous emissi@which takes place on a population inversion leads, in turn, to a fast decay of photon
nanosecond time scaldoes not yet contribute to the system number. This can be seen using the formal solution of the
dynamics. Atomic population decay by spontaneous emisphoton rate equatioii4.4) for the case of laser operating
sion occurs only after the passage or extinction of the pumpabove threshold, obtained by replacing by v, and
As a consequence, the temporal profile of the excited-statexp(—I't) with exp(—nI't) [using N(t) =Ny,,exp(-nI't)]. As a
population for the dye molecules exhibits a rapid buildup andesult, the emission pulse duration is in the range of picosec-
slow decay, with an overall width on the scale of nanoseconds. Moreover, the fact that the pulse duration is inversely
onds. The emitted pulse temporal profile has similar charageroportional toy; andnI” (which, in turn, are proportional to
teristics. When the excited population is below a thresholdhe pump ratgexplains its threshold behavior. Namely, the
value, Ny,= 7./ k, the number of photons in the system re- emitted pulse duration decreases with increasing pump rate,
mains very small. As soon as the number of excited moluntil (for large values of the pumpt reaches a saturation
ecules passes through the threshold value, the laser gain e4@lue equal to cavity decay rate. Similarly, the emission time

ceeds the loss, and the number of photons begins to increadglay has a component that is inversely proportioni)
exponentially. The exponential buildup rate s/, which also exhibits a threshold behavior mirroring the

= yN()/Ny,— 1) = 7. The buildup time of the number of threshold behavior of the number of emitted photons. Also,
phoctons is ofr the ordcer of the cavity decay time, which ha the transient gain narrowing, presented in Fig. 6, is related to

. " She increase of the emitted intensity with time, since, accord-
the value on the scale of picoseconds for a typical randonih to Schawlow-Townes formul@1], the spectral linewidth
laser. The increase of the photon number continues as long X

L Lo ; inversely proportional to the number of emitted photons.
the population inversion is above the threshold value. During We note that the emission pulse exhibits a fast decay fol-

this time, the' population inversion increases to the maximunjyyed by a slow decay for the random laser operating above
value (on a time scale of picoseconds, as dISCUSSGd abovenreshold. When the emitted laser pulse leaves the sample
and then slowly decreas¢sn a nanosecond time SCAl®  and stimulated emission becomes negligible, the temporal
the threshold value. The point in time at which the popula-decay of the residual atomic population inversion occurs by
tion inversion returns to its threshold value coincides withspontaneous emission. This slow decay of the population in-
the time (tpea) Where the photon number reaches its peakversion leads to a tail in the emission, similar to the case of
value (npeqW. Therefore, the buildup time for the emitted the laser operating below threshold. However, this low inten-
radiation is on the order of hundreds of picoseconds to nangsity tail does not substantially alter the emitted pulse dura-
seconds. The subsequent decrease in photon number takig, since it is acquired only after the number of photons
place on a nanosecond time scale. As a consequence, tHecreases dramatically. _ . _
emission pulse duration is of the order of nanoseconds. The A consequence of the interpretation provided above is the
decay rate of the emission can be obtained using the solutidi'Portance of the nonadiabatic atomic response. While a
of Eq. (4.4), integrated from the moment the photon numbermodel in WhICh the atomic van_ables are adiabatically ellmlf
reaches maximum value, and where we neglect the stimu?ated[13] is adequate to describe steady-state spectral emis-

sented here, we neglect pump diffusion. We note that Eq
(4.4) and(4.6) are similar to the rate equations of a conven-
tional laser.

First, consider the case in which the laser is operatin

lated emission term: sion properties, it cannot recapture important features of the
emitted pulse. By adiabatically eliminating the atomic vari-

N(t) = (Npeak— A& el + AT tpeak (4.7  ables, one forces the atomic population to instantaneously
follow the pump. Consequently, the temporal profile of the
where emitted light will be dictated by the excitation, regardless of

whether the laser operates below or above threshold. In this
case, the threshold behavior of the emitted pulse duration
and delay(presented in Fig. Ywill be lost. This can easily be
seen if we solve Eq(4.6) under steady-state condition and
Here, we have used that for the time interval consideredgubstitute the resulting population inversion into E§4):

N(t) =Ny,.exp(-I't). From Eq.(4.7) we also notice that the o

exponential decay of the emission exhibits a fast component, n==7yn+PQ. (4.9
corresponding to the cavity decay, and a slow componenClearly, the number of emitted photons will simply increase
corresponding to the spontaneous emission. in time with the pump intensity and then decrease at a rate

r r
A= ———Ny, € treak= — Ny, & tpeak, (4.9
Y- T c
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equal to the cavity decay rate, irrespective of the lasindlistribution of the gain material will influence the diffusion
threshold. coefficient[28] and thereby affect the lasing properties. It is
also of considerable interest to study the influence of more
V. CONCLUSIONS detailed properties of the scattering microstructures on lasing
- _ properties. For example, with finite-size scatterers which
In summary, we have demonstrated the ability of the dif-nave some form of spatial correlation, the scattering is an-
fusion model with nonlinear, nonadiabatic atomic couplingjsetropic. In this case, there is a distinction between the scat-
to recapture the experimentall_y observe_d sp_ectral and teMP@sring mean free path for photoris,and the transport mean
ral properties of the emission in photonic paints. Most of thefree pathl”. Such a situation will require the generalization
important lasing features, such as the narrowing of the spegss the multiple-light-scattering theory for a passive random
trum, shortening of the emitted pulse, and the linear i”pUt'medium[18] in the case of a nonlinear active random me-
output for pump intensities above a threshold value, can bgjym, characterized by a complex, intensity-dependent di-
accurately recaptured using a one-dimensional timegectric function. A more fundamental multiple-light-
dependent diffusion model. A three-dimensional diffusiongcattering model with nonlinear gain may also be crucial to
model is required to describe effects where the eXC'tat'Orﬂjescribing the very strong scattering regime of incipient pho-
spot size and the gain volume is limited, and significant dif-yopy |ocalization(I” <)) [29]. In this regime, our simple dif-
fusion of photons out of the gain region occurs prior to theg,sion model suggests the likelihood for dramatic enhance-

buildup of the emitted pulse. _ _ ments in the laserlike response of the random medium.
The analysis presented here assumes a white-noise model

for the disorder and considers only isotropic scattering with a
uniform distribution of active molecules. It would be of con-
siderable interest to extend this study to the case of more
general types of anisotropic scattering and nonuniform dye This work was supported in part by the Natural Sciences
concentration. It is possible that the statistical and spatiahnd Engineering Research Council of Canada.
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