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We illustrate a general technique for evaluating photonic band structures in pediddizensional micro-
structures in which the dielectric constas{iw) exhibits rapid variations with frequenay. This technique

involves the evaluation of generalized electromagnetic dispersion sur&d&es) in a (d+1)-dimensional

space consisting of the physiakdimensional space of wave vectdrand an additional dimension defined by

the continuous, independent, variakleThe physical band structure for the photonic crystal is obtained by
evaluating the intersection of the generalized dispersion surfaces with the “cutting surface” defined by the
function e(w). We apply this method to evaluate the band structure of both two- and three-dimeriS8iopal
periodic microstructures. We consider metallic photonic crystals with free carriers described by a simple Drude
conductivity and verify the occurrence of electromagnetic pass bands below the plasma frequency of the bulk
metal. We also evaluate the shift of the photonic band structure caused by free carrier injection into
semiconductor-based photonic crystals. We apply our method to two models in #(hitllescribes a reso-

nant radiation-matter interaction. In the first model, we consider the addition of independent, resonant oscil-
lators to a photonic crystal with an otherwise frequency-independent dielectric constant. We demonstrate that
for an inhomogeneously broadened distribution of resonators impregnated within an inverse opal structure, the
full 3D photonic band gapPBG) can be considerably enhanced. In the second model, we consider a coupled
resonant oscillator mode in a photonic crystal. When this mode is an optical phonon, there can be a synergetic
interplay between the polaritonic resonance and the geometrical scattering resonances of the structured dielec-
tric, leading to PBG enhancement. A similar effect may arise when resonant atoms that are coupled radiatively
through resonance dipole-dipole interaction are placed in a photonic crystal.
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[. INTRODUCTION matically alter its propagation through the medium. A simple
example is that of electronic free carriers in a metal with a
Photonic band gapPBG) materials[1,2] are engineered pulk plasma frequency below which electromagnetic waves
periodic structures which facilitate the localization of light are screened and cannot propagate. This can be described
[3]. The study of PBG's in three-dimension@D) periodic  using a frequency-dependent Drude dielectric funcfish
materials has focused primarily on materials for which theln a metallic photonic crystal with a connected air compo-
dielectric constant is independent of frequency. In this case, aent, it is possible for photons of certain narrow frequency
PBG arises from the interplay of two geometrical effects.ranges below the plasma frequency to be guided through air,
The first is a macroscopi®ragg scattering resonance asso- resulting in pass bands. These effects have been studied in
ciated with periodicity of the dielectric microstructure. The 2D photonic crystals by Maradudin and co-worké¢és-9
second is the microscopic scattering resonance of the dieleend Sakoda and co-workef$0—-13. Band structure results
tric structure in a single unit cell of the periodic system. If for realistic 3D metallic photonic crystals are much less de-
the refractive index contrast across the dielectric interfaces igeloped [13-15. Recent experiments on a 3D tungsten-
sufficiently large and the scattering geometry is carefullybased photonic crystal have suggested that the occurrence of
chosen(so that both resonances occur at a common freband gaps and pass bands may modify the blackbody radia-
guency, a complete absence of electromagnetic wave propaion emitted by the crystal when it is heated by passage of an
gation in any direction over a finite frequency interval mayelectrical currenf16]. The observed redistribution of heat
occur. The mathematical problem of band gap formation camto higher-frequency light may be very important for effi-
be solved as a linear eigenvalue problem obtained from Maxeient lighting technologies.
well's equations[4]. A minimum refractive index ratio of Another realization of free carriers in a semiconductor-
about 2.0(4] is required for PBG formation in even the most based photonic crystal occurs in photoelectrochemically
ideal geometries such as the diamond lattice. In less ide@tched macroporous silicofi7—-19. Here, the fabrication
structures, the minimum index ratio may be closer to 3.0procedure itself leads to the presence of residual free carriers
This places severe constraints on the types of materials arwhose concentration varies with the porosigjr to silicon
geometries that are amenable to PBG formation. We demorvolume fraction ratip. Recently, ultrafast tuning of band
strate, in this paper, that the photonic band gap of 3D PBGtructure has been demonstrated in such photonic crystals
materials can be enhanced when the underlying dielectriperformed by optical injection of electron-hole paji20].
constant is allowed to vary appropriately with frequency. Band structure calculations in 2[21,22 have likewise pre-
Electronic and vibrational excitations in a material maydicted the shift of certain electromagnetic dispersion curves
interact resonantly with an electromagnetic wave and drawith free carrier concentration. In all these cases, the under-
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lying dielectric constant acquires a Drude-like frequency de- Il. PHOTONIC BAND STRUCTURE IN THE PRESENCE
pendence. OF FREQUENCY-DEPENDENT DIELECTRICS

If certain electronic degrees of freedom in the photonic . :
crystal are confined rather than free, a different type of fre- The photonic band structure of a perfect photonic crystal

quency dependence to the dielectric constant can be ol determined by the eigenvalues of the following familiar

tained. For example, a quantum dot can exhibit a ground t§duation[27]:

electronic excited state transition in resonance with an elec- R . w\2 -

tromagnetic wave in the photonic crystal. If the crystal is V X [¢"YF,0)V X H,(N]= <—> H, (") (1)
impregnated with a high concentration of such resonators, c

then the dilelectric. constant will exhibit rapid yariations With. where (I, w) is the dielectric constant of the crystal and
frequency in the vicinity of the resonance leading to dramatic- i i
changes in the electromagnetic wave characteristics. For frélo() is the monochromatic componefaf frequencyw) of
quencies slightly below the resonance, the real part of théhe magnetic field, which satisfies the Bloch condit|@]
dielectric constant is enhanced whereas slightly above the - .

resonance the real part is suppressed. This effect is particu- Ho(F) = €XTHE(F). (2
larly important when the resonance frequency is placed in-,

side a stop gap of the photonic crystal. The higher dielectridy, is the Bloch vector lying in the first Brillouin zone of the

constant near the lower edge of the stop gap will tend tqrystal's reciprocal space arr?u;b,w(r”) has the same period-

move the band edge to lower frequency, whereas the lowekiy, a5 the underlying Bravais lattice. When regarded as an
dielectric constant near the upper (_adge of the stop gap W'u:igenvalue problem for the frequenay Eq. (1) has a non-
ey characer because e dileticconsa), i

P 9ap i acts as a scattering potential, itself depends on the eigenvalue

occurs in a material with an incipient photonic band gap. By

placing a carefully chosen concentration of resonators in pre2 We refer to this as a nonlinear eigenvalue problem. An

cise locations, it is possible to open a complete PBG wher@nalytic solution of Eq(1) for an arbitrarye(r, ) is possible
one would not appear otherwise. Alternatively, by adding'" the case of a one-dimensional periodic gratisge the
resonators in a prescribed manner to a material with a relg?Ppendix for details In two and three dimensions there has
tively small PBG, it is possible to increase the size of thePeen no general prescription up to nomor a reliable nu-
overall 3D PBG considerably. This is illustrated through americal methogifor determining the solution of Eq1) for

model in which colloidal quantum dots are coated on thean arbitrarye(f’, w)."

inner surfaces of a silicon-based inverse opal strudi2eg A few commonly used dielectric functions are listed be-
Similar effects may occur with the infiltration of dye mol- low.
ecules into photonic crystaj24,25. Since the highly disper- (1) The dielectric constant of a conducting solid can be

sive real part of the dielectric constant is accompanied by approximated very wel28] by the Drude formula

resonance peak in the imaginary part, it is important to care- 5

fully consider damping and absorption effects associated _ wp

with this mechanism for PBG enhancement. We suggest that, s(w)= 80<1 T oo+ ir‘l)) (3)

if the absorption frequency of an isolated resonator falls

within the PBG, it leads to localized states of light within the wherew, and 7 are the plasma frequency and relaxation time

PBG [26]. If the resonators are sufficiently strongly coupled of the conducting electrons, respectivedy.is 1 for a pure

to one another, energy transfer can take place within the PB@etal but can be different from 1 for a semiconductor.

through the “impurity band” created by the resonators. In our (2) The dielectric constant of a dilute collection of reso-

computational approach based on a “cutting surface methodiant absorbergmolecules, quantum dots, or other impuri-

(CSM), we neglect the imaginary part of the dielectric con-ties) is given by

stant. In the region of anomalous dispersion, &

dRe&(w)]/dw<0, this may lead to the phenomenon of e(w)=1+ 4mN D f (4)

“wave vector gaps’(WVG's) accompanied by dispersion m wjz-wz‘iwvj

bubbles(closed curves in the band structure diagyavhere ) . .

dw/dk appears unbounded at certain points. Causality, howVhereN is the number of molecules per unit volunzeis the

ever, may be recaptured through an appropriate analysis G/mPer of electrons per molecule, afidis the number of

the role of the imaginary part of the dielectric constant. ~ €lectrons per molecule which have the resonant frequency
In Sec. Il we define the problem of calculating the photo-2nd damping coefficiens; and ;, respectivelyf;, the oscil-

nic band structure in the presence of a frequency-dependel}ior strengths, satisfy;f;=Z. Here it is assumed that the

dielectric and introduce the most frequently used models of@MPINg ratesy, are larger than the rate of direct energy

dielectric constants. This is followed in Sec. lll by a detailed

description of our method for evaluating the corresponding the determinantal approach described later can be used to solve
photonic band structure. We present results for various twothe general Eq(l) but it requires a very large amount of computa-
dimensional photonic crystals in Sec. IV. This is followed by tions. The transfer matrix method described 18] can in principle
results for three-dimensional photonic crystals in Sec. V. Abe used to calculate the photonic band structure for an arbitrary
discussion and interpretation of wave vector gaps is given ir(r,»). However, the computational algorithm in this case is not
Sec. VI, followed by concluding remarks in Sec. VII. stable numerically.
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transfer between oscillators, so that each oscillator can beonstant is given by Eq3) was calculated in Ref6] using
considered independent. a root finding technique and in Ref31] using a photonic

(3) Insulating solids, without extrinsic impurities, can also analog of the Korringa-Kohn-Rostoker meth¢82]. The
exhibit highly dispersive properties in the frequency range ofphotonic band structure for 2D photonic crystals described
an intrinsic, elementary excitation which interacts stronglyby the Drude model, Eq3), has been calculated in Refs.
with light. The elementary excitation is a specific case 0f[22,33,34. Finally, the polaritonic frequency dependence
strongly coupled resonators which can exchange energgiven by Eq.(6) also allows a special treatment in the 2D
among themselves within the solid. For instance, in polacase, leading to a generalized eigenvalue problgg. In
crystals the dielectric constant is given [38] Ref. [36] the corresponding 2D band structure has been ob-
tained using a determinantal approach.

2
T
8((1)):8064'(80_8%) 2_ 2 (5)
oy o T lye lll. “CUTTING SURFACE” METHOD OF BAND
wherewr is the transverse optical phonon frequengis the STRUCTURE CALCULATION

absorption coefficient, aney, e.. are the dielectric constants |, his section we introduce a fundamental and general
at low and h|9h frequencies, respectively. If one neglects théqeihod of calculating band structures of photonic crystals of
absorption(y=0) Eq. (5) can be rewritten in the more famil- 5 a1y structure, dimensionality, and frequency-dependent

iar form functions e(w). We first illustrate our method using a one-
02— 2 dimensional model and compare the results to a semianalyti-

e(w) = e, ; > (6)  cal solution. As we demonstrate below, our “cutting surface”

W~ w method extends straightforwardly to two- and three-

dimensional photonic crystals. In order to make the general-

strong resonance at the optical phonon frequency is assodly ©f the method more apparent, we choose to display the
ated with the formation of a polariton, a hybrid excitation ©N€-dimensional Bloch vector in bold fadey). _
involving both the electromagnetic and vibrational modes of ~Consider a one-dimensional photonic crystal whose unit
the solid. Solids exhibiting this type of dielectric constantCell consists of two layers characterized [byelectric, thick-
include GaAs, InP, NaCl, and KCI. nes$ of [¢1,d;] and[e,,d,], respectively(see Fig. 26 in the

In view of the variety of different frequency-dependent APPendiX. The calculation of the photonic band structure in
dielectric functions, it is useful to develop a general methodhis case is described in detail in the Appendix. For a given
to solve Eq.(1) for an arbitrarye(, ). In the next section Bloch vectork,, the frequencies of all the modes are deter-
we introduce such a method. mined by the solution of EqA5); this can be solved even

For a frequency independent dielectii@iD) constant Eq. When the dielectric constant has an explicit frequency depen-

(1) can be mapped4,30 directly into an ordinary eigen- dence. For concreteness we assufpgal=0.2, e,=1, and
value equation for an infinite Hermitiagor symmetrig ma-  £1(@s) =10 sin4wy) where ws denotes the scaled frequency

trix Mﬁ:(w/c)zﬁ whereM (independent otv) is the matrix introduced by Eq(A6). The “unphysical” and extreme ex-
pression fore;(w) is chosen to illustrate the mathematical

representation of the left hand side of i) in a plane wave correctness of the method. Once this one-dimensional, math-

basis andh is the eigenvector whose elements are the expansmatical, test case is explored in detail, the broad applicabil-
sion coefficients in this basis. This eigensyst@fter trun- ity of the method to “physical” systems will become appar-
cation to a finite sizecan be calculated using well estab- gt
Iishe_d nu_meripal algorithms. We caI_I the band structure Figure 27 in the Appendix shows the photonic band struc-
obtained in this case aordinary photonic band structure.  yre of the one-dimensional photonic crystal described
If one is interested only in the eigenfrequencies of 9.  apove. The frequencies of the bands are the solutions of Eq.
then a determinantal approach to _calculatlng t_he _photpm@l) and Eq.(2) in the 1D case and have been determined by
band structure can be usgdl. The eigenfrequencies in this he solutions of the transcendental EA5) with the proper
case are obtained as the frequencies at which the determingsirameters in place. This is a practically exact photonic band
of M(w)—(w/c)?1 is zero. The dependence f on w comes  structure.
entirely from the dielectric constant. This approach to solv- To illustrate our method, we consider a set of photonic
ing the eigenfrequencies of E@) is seldom used in practice band structures for this 1D crystal in which the solid com-
due to the large number of floating point operations requiredponent is replaced by a frequency-independent dielectric.
There are a few specific cases where specialized teclizach photonic band structure corresponds to the following
niques have been employed to evaluate the photonic barmghrametersid|,/|aj=0.2,,=1, ande;=¢ wheree runs in a
structure of frequency-dependent dielectrics. For a 2D phdfinite range[emin.emaxd- The only parameter that changes
tonic crystal, in the absence of dissipatior=«), the fre- from band structure to band structuresisthe dielectric con-
guency dependence given by E§) enables a mapping of stant of the solid component. The geometry of the photonic
Eqg. (1) to an ordinary eigenvalue probleff,7], which can crystal is identical to the one used in the Appendix. Figure 1
be solved using the plane wave method. An extension to thdisplays the first band of this photonic crystal calculated for
case of finiter is presented in Ref8]. The photonic band a discrete set of values, running from -11 to +11 in steps
structure of a fcc crystal made from spheres whose dielectriof 1, with the exception of the intervat6,-3] where the

where w?=w3ey/e., (Lyddane-Sachs-Teller relatipnThis
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FIG. 1. 1D bands for a series of FID's. The photonic crystal is  FIG. 2. (Color onling The frequency of the lowest four bands
characterized by:;=¢, s,=1, and|d|,/|a|=0.2. The value of the for £=7.25 can be determined by the intersection of £i¥7.25
dielectric constant of the first layer varies from —11 to +11 in stepsPlane in the(ky,&,ws) space with the four lowest band surfaces
of 1 with the exception of the intervi+6,-3] where a step of 0.5 Obtained by interpolating between the=const bands previously
was chosen. In each case the lowest band of the 1D photonic bar@lculated. For a description of the axes see the caption of Fig. 1.
structure was calculated.e., o versusky). The ky=const lines

are displayed as a visual guiofe for the reader. tonic crystal. The intersections between the “cutting” surface
) . ) and the bands are also highlighted. The essence of our
step is 0.5. The functional form o(f)the first band of the pho-method of calculating photonic band structures of frequency-
tonic band structure is denoted by (ky; &) which indicates dependent dielectrics is the following: the projection on the
that "’ is a continuous function ok, and depends para- (kp, wg plane of the intersections between the “cutting” sur-

metrically one. I' and M correspond tok,=0 and Ky face and the band surfaces consists of poikisw) which

=1/ |al, respectively. The cutoff frequency at thepoint that
is visible in Fig. 1 appears whesn<—-4 [see Eq(A10)].

As seen in Fig. 1 the dependenceufif) on ¢ for a given
ky, is relatively smooth. The only area in tlik,,e) space

satisfy Eqs(1) and(2) when the dielectric constant has the
corresponding frequency dependence. In this particular case
the (kp,w) pairs satisfy Eq. (1) when e&q(wgkp)

=10 sindw,), £,=1, and|d|,/|a]=0.2.

where this dependence is not as smooth is for the first band Calculating the photonic band structure for a different di-

aroundl” ande where the cutoff sets in. For the higher bands
or the rest of théky,, &) space the frequency of the band is a

slowly varying monotonically decreasing function ef

tion the one-dimensional, parametric functi@ﬁ)(kb;e) toa
two-dimensional functionw(sl)(kb,s) which now depends

continuously on botlk, ande. We call this function the first
band surface.

electric function requires only the replacement of the “cut-
ting” surface defined by e(wg, kp)=10siM4ws) with
e(wg, kp)=&(ws), wheree(wg) is an arbitrary real function.

8T his function need not have a simple analytic form but could

be taken from an experimental data set. The amount of com-
putation required to calculate these intersections is negli-
gible, and therefore studying the change of the photonic band
structure caused by a change dfw) becomes an almost

In order to find the frequencies of the first band for, say.real-time process. In the case of a 1D photonic crystal, the
e=7.25, we interpolate between the frequencies calculategytting surface method produces a band structure projected
for =7, wil)(kbj), and8:8,w(sl)(kb,8)- This procedure is  on the (k,,ws) plane that is practically indistinguishable
equivalent to calculating the intersection between the bangtom the exact analytical calculation, Fig. 27 below.
surfacew(sl)(kb,s) and the plane defined by=7.25 in the We mention briefly the factors that affect the overall ac-
(ky,&,ws) space. Figure 2 shows the first four band surfaceguracy of the calculations involved in the procedure de-
and their intersection with the plane=7.25. The surfaces scribed above. There are two sources of potential numerical
are slightly transparent and have different colors. By sweeperrors. First is the interpolation error used to generate the
ing the “cutting” plane along the axis in Fig. 2 we obtain band surface from the separate ba(ste Fig. 1 This error
(with very good accuragythe photonic band structures of can be controlled easily by calculating the FID bands for
the family of FID’s for all the values ot in the range of moree values in regions where(S”)(kb,s) displays a strong
available datgwhich in this case is —1¥e<11). variation withe. The second source of error comes from the

In order to treat a frequency-dependent dieleaiDD)  calculation of the intersection between the “cutting” surface
we use a different surface to “cut” through the band surfacesand the band surface. As long as the functional form of the
The new “cutting” surface is defined implicitly by the func- frequency dependence of the dielectric constant is known
tion £(ws, kp) =10 sif4wy). The dependence of this implicit accurately, this type of error can easily be reduced to an
function onky is trivial but it illustrates that we are dealing order of magnitude lower than the other errors.
with a surface in a 3D spadg¢he space defined by the pa- The extension of the CSM to the case of 2D and 3D
rametergky, e, wg)]. Figure 3 displays this “cutting” surface photonic crystals is straightforward. Consider a two-
together with the first two band surfaces of our model pho-component photonic crystal characterized by dielectric con-
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FIG. 3. (Color online The solution of the
band structure calculation for a FDD. Here we
use the “cutting” surface defined implicitly by
e(ws,kp) =10 sin(4ws) whose intersections with
the lowest two band surfaces are calculated. The
projection of these intersections on tkle,, w)
plane is identical with the lowest three bands dis-
played in Fig. 27 below. For a description of the
axes see the caption of Fig. 1.

stante;(w)=1 in the first component ang,(w)=¢(w) in the  second component, as a function ofw. The intersections
second. By using Eq2) in Eq. (1) we obtain the following between the two curves provide a set of frequencies that
eigenvalue problem for thel field: satisfy Eq.(7) when the dielectric constant of the second
component has an explicit frequency dependence given by
. L e = R w)\?- g,(w). We note that, in general, more than one intersection
(ikp + V) X [e7(F, 0)(iky + V) X Hy_,(N]= (E) Hi, (1) between the band surface and the “cutting” surface is pos-
sible. This is clearly illustrated in Fig. 3 where the intersec-
@) tion between the “cutting” surface and the second band sur-

We definew(sn)(lzb;s) as thenth eigenfrequency of Eq7) face gives rise to the wave-vector gap of band 2 in Fig. 27.

corresponding to Bloch vectd;g whene(F,w)=1 in the first
component ana,(r',w)=¢, a constant independent af, in IV. METALLIC AND POLARITONIC PHOTONIC

the second componen&)(sn)(lzb;s) can be calculated using CRYSTALS IN 2D
standard photonic band structure methods since we have

temporarily replacea@(r, ) with a FID. The dashed line in b is 1 2D photon; tal de f ali |
; : : n  above is for a photonic crystal made from metallic cyl-
Fig. 4 shows the frequency of this particular bami, inders placed on a square lattice. The dielectric function of

X (kp; &), as a function ot when bothn andk;, are fixed. The  ne metallic component is modeled by E8). Here we con-

continuous curve represents the value of the dielectric of thgider only the T™ polarizatior(é field is parallel to the

cylinderg. The optical properties of 2D photonic crystals
with one metallic component have been the subject of vari-
ous theoretical studiegg—9,11,37—4]L This interest in the
2D case was facilitated by the possibility of solving Et)
using similar techniques to those used for FID’s provided
that the 2D FDD has certain specific expressionssfas).

We consider a photonic crystal consisting of metallic cyl-
inders of radiug =0.472a| placed in air on a square lattice
of lattice constantal. The volume filling fraction of the cyl-
inders is 0.7. Figure (b) of Ref. [7] displays the photonic
band structure as calculated using a “modified plane wave
P method.” The plasma frequency in this case was chosen such

that wy|a|/27c=1 and the electric scattering time (c is

FIG. 4. (Color onling Graphical solution of Eq7). The dashed the speed of light Figure 5 illustrates the CSM construction
curve represents the frequency of a certain bapdor a fixed ~ Of the photonic band structure of this photonic crystal. The
Bloch vectork, as a function of the dielectric constant of the second/OWest ten band surfaces corresponding to the Brillouin zone
component. The continuous curve represents the dielectric constaRgthI'-M-X-I" are shown together with the “cutting” surface
of the second component as a function of frequency. The intersedlefined by Eq.(3). The intersections of the band surfaces
tions between the two curves are the frequencies of allowed modagith the “cutting” surface projected onto thé&,, w) plane,
of Bloch vectork, which all satisfy Eq(7) when ex(w)=¢(w). represent the photonic band structure of the FDD. Figure 6,

Our first nontrivial illustration of the CSM introduced
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T~ [ —— T —

cutting surface

Bloch vector

FIG. 5. (Color onling The band structure of a FDD consisting ~ FIG. 7. (Color onling TM FDD photonic band structure for a
of metallic cylinders of radius=0.474al on a square lattice of metallic photonic crystal with the same geometry as the one de-
lattice constanfa| is calculated using the method introduced in Sec.Scribed in the caption of Fig. 6, except wii|a|/27c=3. The flat

IIl. The ten lowest TM(E parallel to the cylindensband surfaces  Pass bands” now appear below the plasma frequency.

corresponding to the Brillouin zone pafhiM-X-I" are “cut” with iy tg this increase imy,. This happens in turn to the higher
the surface defined by E¢3) wherewylal/2mc=1 andr=<. The pangs Figure 7 shows the TM photonic band structure ob-
intersections of the band surfaces with the “cutting” shape are alspyinad in the casap|a|/27-rc:3. At low frequencies this pho-
illustrated.s runs from =30 to +10. tonic crystal remarkably behaves like a “photonic pass gap”
material due to the presence of the flat photonic bands

obtained by the CSM, accurately reproduces Fiy) &f Ref.  clearly visible forw|a|/27c=< 2.5 in Fig. 7. Here, the plasma
[7], obtained by more restrictive methods. gap that would normally appear fail frequencies below,

Using the intuitive construction shown in Fig. 5, we now is now punctured by the presence of the narrow bands of
consider the evolution of the photonic band structuregs propagating radiation. Physically, these flat bands describe
changes. Whenwy|a|/27c decreases below 1 the intersec- EM modes in which the field energy is able to percolate
tions between the “cutting” surface and the band surfacethrough the “air” fraction of the photonic crystal and avoid
move toward largee values, implying an overall lowering significant concentration in the metal fraction. In the case of
of the band frequencies. Whe « the “acoustic branch” of 3D metallic PBG materials, this type of band structure can
the photonic band structure is expected to appear eventualljave profound implications for blackbody radiation emitted
as the free carrier densitimplicit in w,) is further reduced. from the interior of a 3D periodically structured metal such
An increase ofwy|al/27c leads initially to upward move- as tungster{16]. In particular, it is possible to redistribute
ment of the bands’ frequencies. However, as a consequend&dackbody radiation from the frequency regions forbidden by
of the flatness of the band surfaces in the negativarea  the plasma gap into higher-frequency “photonic pass bands”
(clearly visible in Fig. 5 the lowest band becomes insensi- for high-efficiency light filaments.

As another example we discuss the case of ionic crystals
with polaritonic dielectric function. The dielectric constant in

e —_— this case is given by the real part of £§). A typical plot of
16 / 3 the real part of Eq(5) (for small y) is shown in Fig. 8. In the
1 | L 2D case, this particular(w) also facilitates a mapping of Eq.
134

(1) to an ordinary eigenvalue problefi35,42,43. Special

i \ ] geometries can also be treated in this cp&4. Figure 9

LR s I ERs F displays the TM band surfaces of a photonic crystal made
?22—\/_,_.———-—- from cylinders of radiug=0.472a| placed on a square lat-
o PR 2 R et tice of radius|al. The band surface@etermined entirely by
ot 55 e B s 5] the geometrical structure of the photonic crygttiown in
04 : : s : Sos SE Fig. 9 are identical with the ones displayed in Fig. 5. Before
ot % : ] showing a specific numerical example of a photonic band
o f R : S + structure for a particular choice of FDD parameters in Eq.
Do ¥ ‘ (5), we discuss some of the important qualitative features

Bloch vector

that emerge in this case. In the limjt—0, the dielectric

FIG. 6. (Color online TM FDD photonic band structure of a function increases to arbitrary positive values @sap-
photonic crystal which consists of metallic cylinders whose dielec-Proacheswy from below and decreases to arbitrary negative
tric constant is given by Eq3) wherewy|al/2mc=1 andr=~. The ~ values as it approaches; from above(see Fig. 8 In these
cylinders are placed on a square lattice of lattice congtrdand  circumstances each band surface intersects the “cutting” sur-
have a radius=0.472a. face three times, with two of the intersectigifer positivee)
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FIG. 10. TM photonic band structure for a polaritonic photonic
FIG. 8. (Color onling Real part of the polaritonic dielectric crystal with solid cylinders of radius 0.4/ on a square lattice of
constant given by E@5). The function is negative fobr<w<o|. radius |a. The cylinders are made from a polar crystal material
whose dielectric constant is given by E§). The parameters used

located close tavr. Because the frequency of any band is ain this case arey=12.66,£..=10.9, wr=0.4, andy=0.01.
monotonically decreasing function ef, in the absence of

damping an |nf|n|t(_a number of “intersections W'I_I accumu- v, cSM is based on initially obtaining a family of FID band
late aroundwr. This Ieads to a Ia_rge accuml_JIauon. .Of flat structures, to generate the band surfaces. In this section we
bands located around in the region where: is positive.  seq the plane wave methpt] to perform these FID calcu-
No such accumulation is expected for frequencies near Qggions. This method converges rapidly in the case of a posi-
abovew,. For > the photonic bands quickly approach tjve dielectric constant. However, in the case of a negative
those of a FID photonic crystal with dielectric constant  djelectric constant its convergence can be reliably verified
The qualitative features described above are evident in Rebnly in the case of a 2D TM field. In the case of a 2D TE
[35] and are independently confirmed in Fig. 10 using thefield we find that the plane wave method performs well only
CSM. The TM photonic band structure shown in Fig. 10when the volume filling fraction of the component with
corresponds to the following set of parametetg=12.66, negative dielectric constant is small.

£,=10.9, w7=0.4, andy=0.01. The accumulation of the

bands just beloww=0.4 is clearly evident. It and/or w_ V. THREE-DIMENSIONAL PHOTONIC CRYSTALS

can be tuned, significant changes in the photonic band struc- Unlike other specialized approaches to solving the photo-
ture occur only in the regiomt< w < w_ and the most sen- nic band structure of a FDD, the method introduced in Sec.
sitive area is neatr. Il applies straightforwardly to three-dimensional photonic
crystals. As a first example we consider the case of a close
packed fcc crystal assembled from polystyrene spheres
whose surfaces have been doped with an organic dye. This
structure does not exhibit a 3D photonic band gap, but it
does illustrate certain key concepts underlying FDD’s in
which a direct comparison between theory and experiment is
already available. This particular type of photonic crystal has
been studied in Refl24] where a large enhancement of a
particular stop gap was reported due to the addition of the
dye. Here, we present a model which interprets and explains
this observation. The fcc lattice constant is denoted|dy
and the close packed radius Q¥=|a|/2\5. The polystyrene
spheres are modeled as a spherical core of radius,0.9
coated with a shell of thicknes&ing=0.1r¢, The core is
made from polystyrene and has a dielectric constant
Ecord @) =N2,,=(1.5922 which is frequency independent. For
the coating we choose the frequency-dependent dielectric
constant given by

Our calculation of the FDD photonic band structure using

cutting surface

wg - »?
_ | (w5~ 0?2+ 0%
FIG. 9. (Color onling TM photonic band structure of a FDD

crystal with a polaritonic resonance described by &jy. The ge-  Wheregg, wg, v, and{) are numerical parameters. Equation
ometry of the crystal is identical with the one used in Fig. 5. (8) represents the real part of the dielectric constant of a

(8

— 2
8coating{o‘)) =gt
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Bloch vector

FIG. 11. (C0|or 0n|ine The “Cutting” surface is defined by Eq FIG. 13. (COlOf online A section of the photonic band structure
(8). The band surfaces correspond to a photonic crystal which cordisplayed in Fig. 12 which illustrates the stop gap in Ihe direc-
sists of a fcc close packed arrangement of spheres whose surfadé@n. The relative size of the stop g&p-20%) is much bigger than
have been infiltrated with an organic dye. We assume that the dy#1e one obtained in the absence of the dispersion and is entirely

penetrated only a 10% radial distance inside the sphereans attributed to the placement of the “cutting” surface relative to the
from 0.2 to 20. band surfaces in Fig. 11. See also Fig. 14.

material which includes a resonant component as well aBands(wave-vector gapnear thel point can be understood

other contributions to the dipole mome): from the graphical solution displayed in Fig. 11. We also
note the significant increase of thelL stop gap illustrated in
417N€2 fo

e(w) = 69+ Fig. 13. This occurs because the edges of the stop gap are
0 wg_ w? = iyow located at different values. Figure 14 illustrates the forma-
) ) . tion of the band frequencies at tHe point. The dashed
where fy is the fraction of the electrons in a molecule ¢yrves represent the frequency of the lowest two bands
coupled resonantly at frequenay ands, is the contribution  (which are doubly degenerate in this cpaethel point as
to the dielectric from the rest of the electrons. calculated with a frequency-independent method. The con-
Figure 11 i”ustrates the ConStl’uction Of the band StrUCtUrQinuous curve is deﬁned by E@) (the functiona' inverse to
of the photonic crystal described above. The “cutting” sur-ne more precise As seen in the figure there are four inter-
face is defined by Eq8) with the following parameters: gections generated by these two bands and the “cutting”

£0=7, wp=0.489,%,=0.3, and1=11.9 (where all the fre-  curve. These points are also visible in Fig. 12 or Fig. 13. The
quencies are measured in units efZ|al). Figure 12 shows

the photonic band structure obtained by projecting the inter-
sections between this “cutting” surface and the band surface <
- i 0.65 |
on the (k,,w) plane. The origin of the unusually shaped \\\
\
P
- \
10 R A
e R L E ‘\\\
0s ] ‘tgss = 0.55 <
N
0.8 4 R E 1 XS
. o 0.5 <
07 PR ALLETTTTY ; i S
H 2 el
06 ] T 045 , o T . T
i:ag 04 : ' \\/‘ \:::\ =
0.4 \ ‘~-§_~
0.35 | i \
034
0 2 4 6 8 10 12 14 16 18 20
0.2 4 €
01] FIG. 14. (Color onling Graphical solution for the calculation of
o the lowest four frequencies &t point for the system discussed in

Bloch vector

r

Fig. 11. The dashed curves represent the frequencies of the lowest
two bands as a function of as calculated with a frequency-

FIG. 12. FDD photonic band structure obtained by projectingindependent method. The continuous curve representé8Egsed
the intersections between the “cutting” surface and the band sute define the “cutting” surface in Fig. 11. The four intersections
faces shown in Fig. 11. A large stop gegee Fig. 13opens in the  correspond to the lowest four frequencies at lthgoint in Fig. 12
I'-L direction. or Fig. 13.
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11

apparent stop ga@s measured by reflectivitat theL point I HTLE
is dramatically stretched to about 20% of the center fre- 1of*ifisitizziliitizege
quency. In the absence of the dye molecules, this stop ga| s
would be below 1%. 081

The construction displayed in Fig. 14 is general and sug- -
gests that band gagiull or partial) can always be increased " §itezitsasansssesannfssarassareassere

806 Jooconncc®® ::.' nnnnn 2208885000050000000

around the area of anomalous dispersiRd c(w)] decreases £
with w). This occurs because the lower edge is pushed to- 05 =
ward largere values(which also implies lower frequencigs 0a] "y,
whereas the upper edge is pulled toward loweralues 03]
(higher frequencies Due to a scarcity of experimental pa- .1
rameters given in Ref24], we used a generic set of param-
eters for the dielectric function in E@8). The parameters e
were chosen based on plausibility to match the observed en °°x r el S KW
largement of the photonic stop gap. Of crucial importance in

this case is the “matching” between the natural frequency of FIG. 15. (Color onling Photonic band structure corresponding
the resonators and the geometry of the crystal. As this antb a FDD inverted opal of core radidal/22 and 8 oating=0-04a

the remaining examples show, only carefully engineeredvherelal is the fcc lattice constant. The frequency dependence of
photonic crystalgwith appropriate placement of resonators the solid material consisting of a dense collection of noninteracting
in both frequency and spatial locatipoan take full advan- resonatorgthe shell of thickness;oqing is given by Eq(8) where

tage of the potential to mold the PBG offered by thethe following parameters have been useg=12, 0=12, wo
frequency_dependent d|e|ectr|cs :0820, and'yo:O.3. [0 was chosen such that the dielectric “cut-

As a second example of a 3D FDD, we consider the inding” surface intersects the lower and upper bands at widely sepa-
verted opal consisting of a collection of resonators. We agaiff@tede values, thus pushing apart the two band edges.

LEFTYH [
FEHTEES

©

L

dgscrlbe the resonator component using (IB@}.The photo- VI ANALYSIS OF WAVE-VECTOR GAP REGIONS
nic crystal consists of an assembly of spherical shells placed . ) .
on a fcc lattice of lattice constafd|. Each spherical shell is ~ In this section we focus our attention on the spectral re-

modeled as an air spherical core of radii$2,2 (fcc close ~ gion around a “dispersion bubble” where a WVG occurs. As
packed radiuscoated with a solid shell of thickneskaing & concrete example we use a 1D photonic crystal character-
=0.08al. This corresponds to approximately 25% volumeized by [ny,[d|;]=[\e(wy),0.2a[] and [n,,|d|,]=[1,0.9a]]
fraction of the solid component. Everywhere except the solidvheres(wy) is defined by

shell, the dielectric constant is 1. A possible realization of 1
this model consists of densely packed PbS or PbSe colloidal e(w) =g+ Vog——— 9
quantum dots embedded in a suitable polymer matrix. First Wy~ W~ 1YW

we illustrate the photonic band gap enhancement effect suggjth ¢,=12, 0=2, w,=0.88, andy=0.35. The FDD photo-

gested above. Figure 15 shows the photonic band structure gfc hand structure of this crystgdbtained from the real part
this FDD obtained by using Eq8) with the following pa-

rametersesg=12, =12, wy=0.82, andy,=0.3. The param-
eters used here are chosen such that the full photonic band
gap is more than double the size of an inverted opal photonic
crystal made from a material with a frequency-independent
dielectric constant witle=12.

The most important parameter determining the character
of the photonic band structure is. Changing the resonant
frequencywg from 0.82 to 0.675 results in the combination
of band surfaces and “cutting” surface displayed in Fig. 16.
The projections of the intersections shown in Fig. 16 on the

(Eb,w) plane and the FDD photonic band structure are shown
in Fig. 17. Here, we note the appearance of a set of unusually
shaped photonic bands. The closed curves appearing above
the fourth band surface have their origin in the intersection

between a single band surface and the “cutting” surfaee FIG. 16. (Color onling The “cutting” surface is defined by Eq.
Fig. 16. These “dlspersmn bubbles,” accompanied b}’ Waverg) with the following parameterssg=12, Q=12, w,=0.675, and
vector gaps, maintain the same character along their contoyy=0.3. The band surfaces correspond to an inverted opal of core
(dielectric or air bangand span a spectral region in which radius|al/2y2 and 8aing=0.08a| wherela| is the fcc lattice con-
the FDD component of the photonic crystal exhibits anomastant. The “islands” created by the intersection between a single
lous dispersion. Accordingly, the imaginary part of the di- band surface and the “cutting” surface give rise to the “closed”
electric constant is crucial in interpreting their physical con-bands in the photonic band structure displayed in Fig. 17 above the
sequences. fourth band.
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FIG. 17. Photonic band structure obtained by projecting the in- €

tersections shown in Fig. 16 on tlﬁléo,w) plane.
FIG. 19. (Color onling The first six band surfaces and the in-

of Eq. (9)] is shown in Fig. 18. As illustrated in Fig. 19, the tersections with the “cutting” surface defined by E8) with g
“turning” band, which extends from approximately 0.88 to =12,01=2, »,=0.88, andy=0.35. The band surfaces correspond to
1.08, is placed entirely on the abnormal region of the disperthe 1D photonic crystal described in the caption of Fig. 18.
sion relation (defined as the spectral region in which
dRe[s(w)]/dw<0). The striking feature of this particular Figure 20 displays the configuration used in the simulation.
band is the fact that arounés~0.965 |Vi w(k;)| becomes For plane waves incident on the photonic crystal from the
infinite. However, an infinite slope in the frequency disper-left one has the following expressions for the field to the left
sion relation does not directly imply an infinite speed for theOf Xa, E;, and to the right oxg, E;:
propagation of electromagnetic energy as this connection is E,(x,t) = @ etoleox 4 R g)griet-laleexa)
valid only in the case of smooth frequency dispersion rela- ’ '
tions [45]. Theoretical and experimental studies of pulses E.(x,1) = T()e"et+iolctexg)
tunneling or propagating through media which exhibit ne '
anomalous dielectric dispersion are numerpt&-48. Here  where T and R are the transmission and reflection coeffi-
we analyze the combined effect of an anomalous dielectricients which can easily be calculated for any 1D photonic
dispersion together with the existence of an infinite slope ircrystal using a boundary matching transfer matrix approach.
the frequency dispersion. In order to simplify the notation we choose the speed of light

To this end we study the propagation of a pulse with ato be 1 from now on. We assume thaixagthe time profile of
finite duration through a finite 1D photonic crystal which the incoming pulse is given by
consists of ten unit cells described in the caption of Fig. 18. E. (xs 1) = € 0dE(0)

:j where w; is the center frequency of the pulse af(d) is an
i5 envelope function which vanishes outside the time interval
2 = [-A7/2,A7/2]:
" e 0 for |t| = A2,
09 == = — 4t3)7

08 w0 (ATZA—Tlit) for [t| < A7/2. (10

= 07

06 In our simulation we usé\ =400, Xxs=-200a/, andXp=Xg.
‘O’j The clock is set such that the input pulse reaches its maxi-
. mum at positionxg at t=0. Figure 21 displays the absolute
02 value of the amplitude of the input pulse as measured. dt
0.1 : | can be shown that the output pulse is written as
OF M

K Eoul(Xp = Xg,t) = f‘” dwF (o) T(w)e™ (11)

FIG. 18. FDD photonic band structure which exhibits a disper- ) ) )
sion bubble at frequencies aroungh|/27c=0.965. The crystal is WhereF(w) is the Fourier transform of the input pulse and
characterized by [ny,|d|;]=[Re\z(w9],0.2a]] and [n,,|d|,] T(w) is the transmission coefficient through the finite photo-
=[1,0.8a]] wheres(wy) is defined by Eq(9) with 5,=12, =2,  nic crystal. We first study pulse propagation assuming that
0p=0.88, andy=0.35. the dielectric function is real and neglect completely the
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- - B D
FIG. 20. The setup used for studying the propagation of a pulse through a 1D photonic crystal. The photonic crystal extends from

Xa to Xg. The source pulse is given at positizg and the outgoing pulse is detected at positign The photonic crystal is completely
characterized by transmission and reflection coeffici#grand R, respectively.

imaginary part of Eq. 9 in the calculation ®fw). By doing  constant. As is well known, the imaginary part of the dielec-
S0 we obtain the output pulgéme profile measured atg) tric constant plays a crucial role in maintaining causality of
displyed in Fig. 22. The pulse is centered at frequencyfield equations. The Kramers-Kronig relatiof#5], which
w|a|/27c=0.90 which falls on the anomalous region of stem from the causality connection betwe2p andE,, re-
e(w). The peak of the input pulse reaches the photonic crysguire the presence of the imaginary part for a dielectric con-
tal att=200. In vacuum, the peak of the pulse is expected tetant such as the one used in [£8). Figure 23 displays the
reachxg (the end of the photonic crysjaat t=210. In the absolute value of the transmission coefficient through the
presence of the photonic crystal we find that the peak of théame 1D finite photonic crystal described above. We use the
pulse emerges from the photonic crystal=a184. As we will ~ complex form of the dielectric constafig. (9)]. Due to the
see later, the peak of the pulse cannot be used as a goselatively large imaginary part present in this case we see a
marker for the measurement of the transit time, therefore wéow transmission around|a|/27rc=0.90. Figure 24 displays
disregard for now the apparent superluminal transport sughe time profile of the output pulse as measured at posiion
gested by the tracking of the peak. However, in this case wésee Fig. 20 The amplitude of the output pulse is clearly
find the front of the peak to exhibit noncausal behavior. Atreduced but the shape of the pulse is aimost unchanged. Here
t=0 the front of the pulse just reaches the left boundagy We also see that the peak of the output pulse emerges from
in Fig. 20 of the photonic crystal. Therefore causality im- the photonic crystal before the peak of the input pulse
plies that fort<0 the pulse measured s will be 0 as well. ~ reaches the entry of the photonic crystal. However, in sharp
The time profile of the output pulse as predicted by @q)  distinction to the case in which the imaginary part of the
at x shows that in fact the intensity is not zero even fordielectric constant was neglected, we now find that tfor
t<0. The output pulse has been calculated numerically with=0 there is no output, as required.
high accuracy and the values obtained a0, although in- The fact that the peak of the pulse emerges from the pho-
visible on the scale of Fig. 22, are above the numerical errofonic crystal before it enters is not a violation of causality.
used in calculations.

The unphysical prediction of noncausal propagation near o7
a WVG is due to the fact that in the calculations we have \
neglected completely the imaginary part of the dielectric 06 \

1
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0.3 / \ t
e / \ FIG. 22. The input pulse whose intensity profile is shown in Fig.
0.1 / N 21 passes through a 1D photonic crystal made from ten unit cells
/ \ described in the caption of Fig. 18. The pulse is centered at fre-

0,
=000 <150 -100  -50 Y 50 100 150 200 quency w|al/2mc=0.90. The peak of the input pulse reaches the

photonic crystal at=200 and emerges af at t=184. This plot
FIG. 21. The absolute value of the amplitude of the input pulseshows the absolute value of the amplitude of the output pulse as
as measured atg (see Fig. 20 This is a plot of the envelope measured atg. In the calculation the imaginary part of E§) was
function given by Eq(10) for A7=400. neglected.
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FIG. 23. (Color onling Dashed(blacK) line, the absolute value FIG. 25. (Color onling Superluminal propagation? The dashed
of the transmission coefficient of the 1D photonic crystal madecurve shows the output pulse after passing through vacuum. The
from ten unit cells whose characteristics are described in the captiofilled pulse shows a fraction of the whole pulse. The peak of the
of Fig. 18. The imaginary part of(w) was kept in the calculation. whole pulse has amplitud® and occurs at timé. The peak of the
Solid (red) line, the transmission coefficient for the unphysical casefraction pulse isA,<A; and occurs at, <t;.
in which the imaginary part of(w) was neglected.

VIl. SUMMARY

Consider for example an input pulse in vacuum which, at a
certain positionxp, exhibits the time profile displayed as a
dashed line in Fig. 25. The peak of this pulse reacheat
time t; and has amplitudé\;. Suppose that after the inpu

We have presented a general method for calculating the
photonic band structure of photonic crystals with a
¢ frequency-dependent dielectric constant. The method applies

pulse passes through the mediganotonic crystal or a me- equally well tp 1D, 2D, and 3D structures. W_e find exce_llent
dium which exhibits anomalous dispersjdhe output pulse agreement with an exact 1D model and previously published

measured at the same position has the time profile shown &gSults on some special 2D cases. The flexibility and predic-
filled in Fig. 25. The peak of this new pulse reachgsat tive power of our method were illustrated with a few 2D and

timet,<t, and has an amplitud®, < A,. This illustrates that S0 €xamples. We showed how the photonic band gap in the

the peak of the pulse cannot be used as a “marker” for th@esence of a frequency-dependent dielectric can be en-
speed with which information propagates. hanced by a careful match between the geometry of the

structure and electronic propertigsuch as resonant fre-
qguency of the frequency-dependent material. While already
extremely powerful, the method presented here can be fur-

S sxle™ N ther improved by addressing its current limitatioiis: the
method does not treéin a computationally efficient manner
. / \ photonic crystals with more than one FDD component, and
200 (i) the method does not treat dielectric constants with both a
X real and imaginary part.
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FIG. 24. The same finite photonic crystal and input pulse as in  A\ppENDIX: PHOTONIC BAND STRUCTURE OF A 1D
the case described in the caption of Fig. 22. The difference in this ' PHOTONIC CRYSTAL

case is the fact that in the calculation of the output pulse the imagi-

nary part of Eq.(9) is not neglected. In this case the amplitude of . . . .
the emerging pulse is greatly reduced and the peak of the pulse is The simplest illustration of a photonic crystal band struc-

also seen to exit the photonic crystal before it enters. The intensitf!€ iS provided by the multilayered structure consisting of
of the output pulse is 0 for<O0. an alternating sequence of two materials. The unit cell has a
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FIG. 26. Spatial profile of the dielectric constant in a 1D pho- " Bloch vector r
tonic crystal. The lattice constant & and the two components are _
characterized by{dielectric, thickness of [g;,d;] and [e,,d,], FIG. 27. Band structure of a 1D photonic crystal made from
respectively. alternating layers characterized by(wg) =10 sif4ws), e,=1, and

d;/|a|=0.2. The frequencies are calculated using &%) and ws is

thickness|a| and the two components are characterized b)fjefmed in Eq(AG). ky runs from 0 al” to /a at M.
[dielectric,thicknesisof [£,,d;] and[e,,d,], respectivelywe

assume that the magnetic permeabilitys equal to unity in cogkpa) = cogkon;dy)cogkonydy)

both componenis(see Fig. 26 In the following we study n2 + n2

only the behavior of electromagnetic waves of well defined - 2—2 sin(konydy)sin(kon,dy).  (A5)
real frequencyw propagating perpendicular to the layers: 2n;n;

In the following we will take ny,(w)=1 and n;(w)
- _ N ot =ye(w). In order to simplify the notation we measure the
E(xt) =ExDz=E,(x)e"2. (A1) gistances in units ofa] and k, in units of [a"~. The fre-
The equation satisfied by the field is quency is measured in units ofr2/|a| by the introduction of
the scaled frequency,, defined by

2E 2 R
TEN e (o). (A2)

vo_ kel _olal _Jal
27 2w 27C Ay

Here we do not make any assumption about the frequencyhere,,. denotes the wavelength in vacuum. We note that
dependence of the dielectric constant. The index of refractiogq. (A5) contains only real terms for both positive and nega-
is defined byn(x, w) = ye(x,w). We denote by, andn, the  tive g(w,).

indices of refraction of the two components, respectively, For a given Bloch vectoky,, Eq.(A5) is satisfied only for
and drop thew dependence of both, andn; in the expres- 3 set of frequencies, (equivalentlyr,) which represent the
sions below. We also note that the index of refraction can bgrequencies of the photonic bands at that particular Bloch
imaginary in a region where the dielectric constant is negavector. The solution of the transcendental EA5) com-

: (A6)

wWg =

tive. _ S _ _ pletely determines the photonic band structure of the 1D
Due to the spatial periodicity of the dielectric constant, photonic crystal. As an example we show in Fig. 27 the 1D
the solution of Eq(A2) can be written a$49] photonic band structure obtained for a photonic crystal char-

acterized byd;/|a|=0.2 (see Fig. 2§ &1(wg)=10 siMdws),
- , ande,=1. The frequency dependence of the first layer’s di-
E,,(X) = €X0*E,,(x) (A3)  electric constant has no physical significance and was chosen
just as an example.

This simple one-dimensional model exhibits features that
are shared by all the photonic crystals in general. For ex-
ample, the dispersion of the lowest batalso called the
acoustic branch of the band structure by analogy with the
propagation of elastic wavest smallk, is almost linear,

£, =&, (x+a) O x. (A4) which indicates that at long wavelengths the photonic crystal
looks very much like a homogeneous medium for the propa-

With the notationky= w/c, by making use of Eq(A3),  gating electromagnetic wav§s0]. However, the presence of
Eq. (A4), and the continuity of the solution, one finds the the acoustic band in the photonic band structure is not auto-
following relation between the Bloch vector and the fre-matically guaranteed. If components with negative dielectric
quency of the mod@49]: constant are present in the photonic crystal then the acoustic

wherek,, is the Bloch vector and,, is the Bloch functionk,

is restricted to the first Brillouin zone which in the 1D case
corresponds to 7/ |a| <k, =</|a. The Bloch function sat-
isfies the periodicity condition
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branch can disappeéa cutoff frequency will appear at tHé

point). In the case of 1D photonic crystals we can calculate

the exact conditions under which this cutoff appears.

kp=0, ky=0 is always a solution of EA5). By neglect-
ing the frequency dependencesyfande, for w= 0 then for
small deviations from O of botk, andk, we can approxi-
mate Eq.(A5) very well by

_ (kpa)?
2

1
1 = 1_5[(81"‘82)d1d2+81di+82d§]k02.
(AT)
When (g1+&,)d,d,+8,d7+¢,d5>0 Eq. (A7) gives a linear
relation betweerk,, andk:

(A8)

PHYSICAL REVIEW E0, 046605(2004

2 2
s
a a
wheren is the effective index of refraction of the photonic
crystal.n’is a bounded quantity so that the assumption made
in approximating Eq(A5) by Eq. (A7) is valid.

When (g;+&,)d,d,+e,d3+e,d5<0 Eq. (A7) cannot be
satisfied for small, realk,, hence the acoustic branch will

disappear. For a 1D photonic crystal with=1 this condi-
tion is equivalent to

d
n?=(g + 82)_;22 te

1 - dl

d, ’
which shows that the greater the filling fraction of the nega-
tive epsilon componert;, the smaller the required threshold
for the occurrence of the cutoff &tpoint. This feature of the
photonic band structure is present in higher dimensions as
well and is important for FDD photonic band structure cal-
culations.

£, < — (A10)
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