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We describe the properties of three families of inversion-symmetric, large photonic band-gapsPBGd tem-
plate architectures defined by iso-intensity surfaces in four beam laser interference patterns. These templates
can be fabricated by optical interferencesholographicd lithography in a suitable polymer photo-resist. PBG
materials can be synthesized from these templates using two stages of infiltration and inversion, first with silica
and second with silicon. By considering point and space group symmetries to produce laser interference
patterns with the smallest possible irreducible Brillouin zones, we obtain laser beam intensities, directions, and
polarizations which generate a diamond-likesfccd crystal, a novel body-centered cubicsbccd architecture, and
a simple-cubicsscd structure. We obtain laser beam parameters that maximize the intensity contrasts of the
interference patterns. This optimizes the robustness of the holographic lithography to inhomogeneity in the
polymer photo-resist. When the optimized iso-intensity surface defines a silicon to air boundarysdielectric
contrast of 11.9 to 1d, the fcc, bcc, and sc crystals have PBG to center frequency ratios of 25%, 21%, and 11%,
respectively. A full PBG forms for the diamond-like crystal when the refractive index contrast exceeds 1.97 to
1. We illustrate a noninversion symmetric PBG architecture that interpolates between a simple fcc structure and
a diamond network structure. This crystal exhibits two distinct and complete photonic band gaps. We also
describe a generalized class of tetragonal photonic crystals that interpolate between and extrapolate beyond the
diamond-like crystal and the optimized bcc crystal. We demonstrate the extent to which the resulting PBG
materials are robust against perturbations to the laser beam amplitudes and polarizations, and template inho-
mogeneity. The body centered cubic structure exhibits the maximum robustness overall.
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I. INTRODUCTION

Photonic band-gapsPBGd materialsf1,2g are periodically
ordered dielectric microstructures that facilitate the localiza-
tion of light f3g. This is a new frontier in quantum electro-
dynamicsf4g, and provides a robust platform for integrating
active and passive devices in an all-optical micro-chipf5g.
For example, by introducing line defects into the periodic
dielectric structure of the PBG material, it is possible to
guide light through micron-scale, single-mode air-wave-
guide channels with sharp, low-loss bendsf6–8g. PBG ma-
terials can also facilitate frequency selective control over
spontaneous emission of light from individual atoms in the
circuit, through control of the local electromagnetic density
of states. As a result, active devices such as zero threshold
lasersf9g and, possibly, all-optical transistorsf10g may be
included on-chip. In order to realize the goal of a photonic
band gap material-based optical microchip, it is necessary to
have high quality, three-dimensionals3Dd PBG materials.
The design and efficient, low-cost micro-fabrication of such
materials have been a major scientific challenge over the past
decade. Novel experimental methods for templating, inver-
sion, and replicationf11,12g have made this paramount goal
a near term reality. The optical properties of PBG materials
scale with their lattice constants. PBG materials destined for
use in optical telecommunications circuits must have submi-
cron lattice constants. At the same time, the practical benefits
of a PBG material-based optical circuit necessitate low-cost
manufacturing of such materials with long range order
sLROd on the scale of hundreds of lattice constants. Optical
interference lithographyf13–15g provides a unique opportu-
nity to satisfy both requirements while maintaining a high

degree of flexibility in the detailed PBG architecture.
Early considerations of the photonic band structure fo-

cused on the face centered cubicsfccd lattice because the first
Brillouin zone sBZd of this lattice exhibits the least aniso-
tropy. In other words, the difference between the shortest and
longest distances from the center to the surface of the first
BZ is the smallest. This, it was reasonedf1,2g, increased the
likelihood that one-dimensional stop-gaps in all directions
would overlap and produce a 3D PBG. It was shownf16g,
however, that a spherical scatterer within the fcc unit
sWigner-Seitzd cell prevents the creation of a PBG between
the lowest possible bands due to the polarization degree of
freedom of the electromagnetic field. The diamond structure,
which can be viewed as an fcc lattice with a two “atom”
basis, breaks this spherical symmetry while retaining the fcc
BZ. Indeed, a diamond lattice of overlapping air spheres was
theoretically shown inf16g to possess a sizeable 3D PBG,
approximately 27% of the center frequency when the air
spheres are in a background material with a dielectric con-
stant of 11.9, corresponding to Si.

Although the diamond lattice has proven difficult to fab-
ricate on the micron scale, the possibility of a large PBG has
led to several theoretical blueprints and subsequent fabrica-
tion attempts for photonic crystals based on “diamond-like”
structures which employ nonspherical bases on an fcc lattice.
This began with the fabricationf17g of an fcc lattice of criss-
crossing pores exhibiting a 3D PBG in the microwave spec-
trum. The straightforward but tedious fabrication on the cen-
timeter scale has spurred many attempts to replicate this
structure on the submicron scale as required for a PBG in the
optical regime. However, this has proven to be very chal-
lenging. Methods involving electron beam lithography fol-
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lowed by reactive ion etchingf18,19g were successful in pro-
ducing submicron pores, but the resulting slabs were only a
few periods thick and severe imperfections occurred at the
pore crossing points. Experiments with deep x-ray lithogra-
phy sLIGA d patterning of an x-ray sensitive resistf20g have
produced several periods of the criss-crossing pores, even
allowing for the incorporation of controlled defects by mul-
tiple exposuresf21g. However, structures patterned in this
fashion, to date, have lattice constants which are too large for
a PBG in the optical regime. A similar outcome has been
reported using a hybrid scheme involving photo-
electrochemical etching followed by focused ion beam etch-
ing in macroporous silicon. This method was used to synthe-
size a five-periods thick slab with a photonic band gap
centered around 3mm f22g. Photo-electrochemical etching
methods alonef23g have also been used to produce an elon-
gated version of the fcc lattice of criss-crossing poresf24g
with high aspect ratios, but as a result of the elongation, the
photonic band gap is reduced in sizef25g. Recently, new
“slanted pore” architectures have been introducedf26g
whose simpler geometries may facilitate their fabrication by
various pore etching methods.

Another diamond-like structure is the layer-by-layer
“woodpile” architecture consisting of stacked two-
dimensional photonic crystalsf27,28g. There have been sev-
eral approaches to address the fabrication of woodpile archi-
tectures, but no large scaleswith more than three unit cells
normal to the substrated woodpile photonic crystals operating
at optical frequencies have been mass-produced as yet. The
use of established silicon micromachining techniques such as
repetitive deposition and etching have produced high-quality
structures with relevant feature sizes, but the structures are
only about one periodsbetween two and five layersd thick
f29,30g. Similarly, experiments using wafer-fusion and laser-
assisted alignmentf31g produced only two to three periods of
the woodpile in the third dimension. An inexpensive but te-
dious method involving nanofabrication of two-dimensional
layers followed by microassembly of the separate layersf32g
provides a simple way to introduce defects into the woodpile
structure because each layer can be fabricated uniquely. Un-
fortunately only up to four layers have been assembled so
far. On the other hand, woodpiles synthesized by laser-
induced chemical vapor depositionf33g are limited only in
the number of layers by the size of the deposition chamber,
but due to the laser spot size, the resulting PBG is centered
around 75mm. Recently, “direct laser writing” processes in-
volving two-photon absorptionscausing polymerizationd in
resins have been used to produce woodpile structures as a
proof of conceptf34,35g.

An alternative PBG design, suitable for large-scale micro-
fabrication, is an architecture involving glancing angle depo-
sition methodsf36g leading to the formation of silicon square
spiral posts onto a silicon substrate. For suitably architec-
tured spiral posts, a PBG as large as 24% of the gap center
frequency has been predictedf37,38g. Optical reflectivity in
a weakly disordered version of these silicon square spiral
crystals has revealed a 3D PBG of roughly 10% relative to
the center frequencyf39g.

While diamond and diamond-like structures may exhibit
large PBGs, difficulties in fabrication have led to the consid-

eration of other blueprints which sacrifice theoretical gap
size in favor of feasibility of large-scale synthesis. One such
blueprint is the fcc lattice of close-packed spheressopal lat-
ticed, which does not have a PBG between the lowest pos-
sible bands, but does have a small PBG between the higher
bandsf40g. Moreover, the concept of fabricating opal struc-
tures by colloidal self-assembly has a long established his-
tory f41,42g. However, the materials suitable for the self-
assembly process do not have large dielectric constants and
low absorption at optical frequencies. Instead, self-
assembled silica spheres are used as a template which is
inverted by chemical vapor deposition of silicon, followed
by selective etching of the templatef11,43,44g. This process
can now be performed at large scales. It has been shownf45g
that by only partially infiltrating the template with silicon, a
structure with a PBG of nearly 9% of the gap center fre-
quency can be obtained. However, the small PBG of the
inverted opal structure is fragile and vulnerable to disorder
f46g, requiring that fabrication methods must yield very high
quality structures.

Many previous attempts to synthesize PBG materials have
struggled to adapt various fabrication methods to emulate
theoretical blueprints ill suited to fabrication at submicron
length scales. Other attempts have focused on theoretically
adjusting the fabrication parameters of a well-established
technique in search of a PBG. The optical interference li-
thography method, described in this paper, offers a unique
opportunity for efficient large-scale micro-fabrication of 3D
PBG structures with large gaps in the optical regime. By
employing the 3D interference pattern of four or more laser
beams to expose a photopolymerizable material such as a
photo-resist or polymerizable resinf13–15,47–52g, nearly
perfect LRO can be maintained over length scales much
larger than the lattice constant of the photonic crystalsPCd.
At the same time, this technique allows straightforward con-
trol over the periodic propertiessFourier coefficientsd of the
resulting structure through the laser beam parameters. The
photo-resist material undergoes a chemical alteration when
the total light intensity due to the interference pattern,IsrWd, at
position rW, is maintained over a time intervaldt such that the
“exposure” IsrWddt exceeds a specified threshold,T. For a
negative photo-resist, the “underexposed” region can be se-
lectively removed using a developer substance which leaves
the “overexposed” regions intact.sFor a positive photo-
resist, overexposed regions are removed, leaving the under-
exposed regions intact.d The developed photo-resist can then
be infiltrated at room temperature with SiO2 f12g and burned
away, leaving behind a daughter “inverse” template. Finally,
the daughter template is inverted by high temperature infil-
tration with siliconf11,53g and selective chemical etching of
the SiO2. As a result, a 3D silicon PC is formed, in which the
silicon-air boundary is defined by the original, optical, iso-
intensity surfaceIsrWddt=T. Alternatively, the photo-resist
template can be infiltrated with a high refractive index ma-
terial such as CdSef54g, which results in an inverted PC
after the photo-resist is burned or chemically etched away. A
third option is to use a photopolymerizable film which con-
tains titaniumf55g, producing a direct PC after exposure to
an intensity pattern and removal of underexposed material.

In this paper, we discuss the formation of 3D PCs using
holographic lithography based on the interference of four
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laser beams. Other proposed configurations include the use
of multiple exposures and phase shifts between exposures
f56,57g and a hybrid five beam configuration with three
beams forming a two-dimensional pattern and two other
beams forming a one-dimensional patternf15g in the out of
plane direction. However, these configurations require care-
ful manipulation of the relative phases between beams and
between exposures. In contrast, in a four beam, single expo-
sure configuration, the relative phases between laser beams
does not change the shape of the the interference pattern. In
previous theoretical reports, four beam holographic lithogra-
phy configurations were usedf56,58,59g to create structures
which emulate particular cases of triply periodic minimal
surfacesf60g, which have been shownf61,62g to produce
large 3D PBGs. The resulting PCs included a diamond-like
structure, a “gyroid” structure with body-centered cubic
sbccd Bravais lattice symmetry, and a simple cubicsscd struc-
ture. Using simpler symmetry arguments, holographic beam
configurations for the diamond-like structure and a novel bcc
structure have been derivedf63g. Here, we describe our ap-
proach in detail and find alternative beam configurations for
producing the diamond-like, bcc, and sc structures in which
the intensity contrast is maximized. We also explore the ro-
bustness of the resulting PBGs against perturbations in the
beam polarizations and amplitudes. Both the diamond and
bcc structures are robust against deviations in the experimen-
tal control parameters.

In Sec. II we introduce our framework for describing
structures created by holographic lithography. Section III
presents our design process for achieving 3D photonic crys-
tals using this method, using the three cubic Bravais lattices.
Section IV describes a generalized class of tetragonal PBG
materials that encompass both the diamond network and bcc
structures. Section V describes the properties of our holo-
graphic photonic crystals relevant to robust micro-fabrication
and error-tolerant PBG formation.

II. STRUCTURE DESCRIPTION

The interference ofN monochromatic plane waves of fre-

quencyv, wave vectorsGW i, polarization vectorseW i, phasesui,
and real amplitudesEi creates an electric field given by

EW srW,td = e−ivteisGW 0·rW+u0dSE0eW0 + o
i=1

N−1

EieW ie
isKW irW+gidD ,

where

KW i ; GW i − GW 0 s1d

and gi ;ui −u0. The corresponding, stationary intensity pat-
tern is given by

IsrWd ; EW *srW,td ·EW srW,td = o
i=0

N−1

Ei
2 + 2o

i=1

N−1

E0EiueW0
* · eW iucossKW i · rW

+ gi + fid

+ 2 o
i. j=1

N−1

EiEjueW i
* · eW jucossKW ij · rW + gi − g j + fi jd, s2d

whereKW ij ;KW i −KW j, fi ;argseW0
* ·eW id, andfi j ;argseW i

* ·eW jd. The
holographic structure is a two phase medium whose phase
boundary is defined by the “shape” function

SsrW,I thr
exptd = Q„IsrWd − I thr

expt
…,

whereI thr
expt is a threshold value andQ=1 for xù0 and zero

otherwisesHeaviside step functiond. By convention, we as-
sume the high intensity regions in Eq.s2d become the silicon
component of the photonic crystalf«srWd=1 where IsrWd
, I thr

expt and«srWd=11.9 whereIsrWdù I thr
exptg. This corresponds to

the case in which a negative photo-resist is used to make the
photonic crystal template. It will be shown in Sec. V that for
the optimized structures considered here, equivalent struc-
tures can be obtained with a positive photo-resist by simply
adjusting the thresholdI thr

expt.
In the caseN=4 swhich provides the minimum number of

non-collinear beams required to produce a nontrivial 3D in-
tensity patternd, Eq. s2d becomesIsrWd= I0+2DIsrWd, where I0

;E0
2+E1

2+E2
2+E3

2and

DIsrWd ; c1 cossKW 1 · rW + g1 + f1d + c2 cossKW 2 · rW + g2 + f2d

+ c3 cossKW 3 · rW + g3 + f3d + c12 cossKW 12 · rW + g1 − g2

+ f12d + c13 cossKW 13 · rW + g1 − g3 + f13d

+ c23 cossKW 23 · rW + g2 − g3 + f23d, s3d

with

ci =E0EiueW0
* · eW iu;cij =EiEjueW i

* · eW ju. s4d

The spatial modulation of the intensity pattern given by Eq.
s3d is periodic with a lattice whose primitive vectors, aW i, sat-

isfy KW i ·aW j =2pndi j , wheren is an integer. As a consequence,
the lattice constants are inversely proportional to the fre-
quency of the laser beams.

The phase factorsgi in Eq. s3d, which result from the
relative phases of the laser beams, can be simultaneously
eliminated by a translation of the origin byrW =g1hW 1+g2hW 2

+g3hW 3, wherehW i satisfy KW i ·hW j =di j . For configurations with
more than four beams, the relative beam phases impart more
than a simple translation in the intensity pattern, and cannot
be easily ignored. On the other hand, the phase factorsfi and
fi j , arising from the dot products between beam polarization
vectors, cannot in general be simultaneously eliminated. In
the case of linearly polarized beams,fi andfi j are zero for
all i and j and the intensity pattern is always inversion sym-
metric relative to positionrW. However, in the case of ellipti-
cally polarized beams it is possible to obtain an interference
pattern that is not inversion symmetric.

By rewriting the “experimental” intensity threshold as
I thr
expt= I0+2I thr we arrive at the following simplified shape

function:

Q„IsrWd − I thr
expt

… = Q„DIsrWd − I thr… s5d

In what follows, we focus our discussion of the resulting
shapes on the simplified intensity pattern in Eq.s3d. fThe
intensity backgroundI0 is nevertheless important, as a large
background intensity will overwhelm the variationDIsrWd.g
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III. DESIGN OF HOLOGRAPHIC STRUCTURES WHICH
EXHIBIT PHOTONIC BAND GAPS

We consider the design of holographic structures with in-
version symmetry. A sufficient condition for this requirement
to be fulfilled is that linearly polarized beams are used, orsin
the case that elliptically polarized beams are usedd that the
phasesfi and fi j vanish for all i and j . In this case, the
design problem consists of identifying the set

C = hci,cijji, j=1,3 s6d

of six polarization and amplitude coefficientsssome possibly

0d, threeKW i vectors, and suitable thresholdI thr, that generates
a photonic crystalfthrough the shape function given by Eq.
s5dg with a complete PBG. Given the parameters of the in-

terference patternC andKW i, the laser beam directions, ampli-
tudes, and polarizations are determined by

1. Finding the four beam directions,hGW iji=0 ,3, which sat-
isfy Eq. s1d.

2. UsingGW i from stage 1 to find the four amplitudes and
polarization vectors,hEi ,eW iji=0 ,3, which satisfy the nonlinear
set of six equations given by Eq.s4d.

The identification ofC and the choice ofKW i are obtained
by two guiding principles:sid choose a given Bravais lattice,
andsii d identify architectures leading to the smallest possible
irreducible Brillouin zonessIBZd, then incrementally relax
this condition if the resulting structure is too symmetric for a
fundamental gap to open. In order to satisfy criterionsid, it is

necessary and sufficient to choose the threeKW i vectors to be
linear combinations withintegral coefficients of vectors

from the sethbW ij, where we denote byhaW i ,bW iji=1 ,3 a set of
primitive and reciprocal vectors, respectively, of the desired
Bravais lattice. On the other hand, criterionsii d is far more

restrictive. Indeed, only a very limited set ofhC ,KW ij combi-
nations generate intensity patterns with sufficiently high
symmetry.

Suppose that the desired holographic structure has a cubic
symmetryssc, bcc, or fccd. Figure 1 shows several reciprocal
lattice vectors of a simple cubic lattice, grouped by length. In
order of increasing length, the first three sets of lattice vec-
tors in the cubic reciprocal space are

• Bs=h±bW i
sj of length 2p /ap, reaching the centers of the

cube facessred onlined,
• Bb=h±bW i

bjø hbW i
b−bW j

bjiÞ j of length 2pÎ2/ap, reaching the
centers of the cube edges,sgreen onlined, and

• Bf =h±bW i
fjø h±sbW1

f +bW2
f +bW3

f dj of length 2pÎ3/ap, reaching
the cube corners.sblue onlined
i and j run from 1 to 3 and bW

i
s, bW i

b, and bW i
f denote the three

primitive vectors of the sc, bcc, and fcc reciprocal lattices,
respectively.

ChoosingKW vectors from one of these sets generates a
holographic structure with a specific cubic symmetry. The
first order reciprocal lattice vectors generate an sc spatial
lattice, the second order vectors a bcc lattice, and the third
order vectors a fcc lattice. The fourth set of vectorssnot
shown in Fig. 1d again generates an sc lattice, with a lattice

constant ofuau /2 in this case. Similarly, higher order sets
generate intensity patterns that can be described as one of the
fundamental latticesssc, fcc, or bccd with increasingly small
lattice constants. We therefore restrict our choice for the set
of target vectors to the first three, illustrated sets. We define
the set T of “target vectors” as a subsetT,K
;hKW 1,KW 2,KW 3,KW 12,KW 13,KW 23j corresponding to nonzero terms
in Eq. s3d sor, equivalently, nonzero coefficients inCd. Ac-
cordingly, we defineCT,C as the subset of nonzero coeffi-
cients of C. The requirement of high symmetry can be
achieved by choosingT simply to be a subset of one of the
vector setsB* . SinceDIsrWd is insensitive to the sign of the
target vectors inT, an upper bound on the size of the setsT
andCT is 3 in the case ofBs, 6 in the case ofBb, and 4 in the
case ofBf.

A. Face-centered cubic structure

We first illustrate the choice ofC coefficients using the fcc
Bravais lattice. Since there are only four distinct directions in
theBf setsblue in Fig. 1d, the target vector set can be denoted

as T=hTW1,TW2,TW3,TW4j. One possible choice for the threeKW i

vectors is the following:

KW 1 =
2p

ap
s1,1,1d,

KW 2 =
2p

ap
s0,2,0d,

KW 3 =
2p

ap
s− 1,1,1d. s7d

This leads to the choiceT=hKW 1,KW 3,KW 12,KW 23j and C
=h* ,0 , * , * ,0 , * j, where * indicates a nonzero real coeffi-

FIG. 1. sColor onlined The reciprocal space of a simple cubic
lattice. The firstsredd, secondsgreend, and thirdsblued order neigh-
bors are located at the centers of the cube faces, the centers of the

cube edges, and the cube corners, respectively. b1
W, b2

W, and b3W denote
the primitive simple cubic reciprocal lattice vectors.

TIMOTHY Y. M. CHAN, OVIDIU TOADER, AND SAJEEV JOHN PHYSICAL REVIEW E71, 046605s2005d

046605-4



cient. We denote the nonzero target coefficients asCT
=ht1,t2,t3,t4j so that Eq.s3d becomes

DIsrWd = o
i=1

4

ti cossTW i · rWd. s8d

Noting that the photonic band structure is invariant to the
space group of the crystal, we chooseCT and find a transla-

tion vector,dW, such thatDIsrWd is invariant under changes of

the form rW→S
j,dW
d srWd;Oj

dsrWd+dW, where we have definedOd

=hOj
dj j=1 ,48 as the set of fcc point group operations. Such an

intensity pattern satisfies the requirement for the smallest
possible IBZ. Operating onDIsrWd with S

j,dW
d

yields

DIsrWd→
S

j,dW
d

o
i=1

4

ti cosfTW i ·S
j,dW
d srWdg = o

i=1

4

ti cosfOj
rsTW id · rW + jig,

s9d

whereOr=hOj
rj j=1 ,48 is the set of point group operations of

the fcc reciprocal space, andhji =TW i ·dWji=1 ,4 is a set of four
phase factors. Since the target vector setT is a subset ofK,
in general theji are not independent, and are a subset of

hg1,g2,g3,g1−g2,g1−g3,g2−g3j, wheregi =KW i ·dW. In order
to simplify the problem, we consider only the case for which
ji P h0,pj, which is consistent with the conditionji

P hg1,g2,g3,g1−g2,g1−g3,g2−g3j if one assumes gi

P h0,pj. For our particular choice of target vectors, it can be

verified thatOj
rsTW idP h±TW1, ±TW2, ±TW3, ±TW4j. Since the sign of

TW i leavesDIsrWd unchanged, it follows that, for our restricted
values ofji, the point group operationsOj

d simply permute
the coefficientshtij as they appear in Eq.s8d, in the form

DIsrWd = o
i=1

4

ti cossTW i · rWd→
S

j,dW
d

o
i=1

4

SksidtP jsid
cossTW i · rWd,

whereP j is a permutation of the indicesh1,2,3,4j completely
determined byOd andSk is a sign vector defined as

Sk ; heig1,eig2,eig3,eig1 − eig2,eig1 − eig3,eig2 − eig3j,

wherek=1,8 corresponds to one of the 23 possible choices
for the hg1,g2,g3j set. Invariance ofDIsrWd can therefore be

determined by requiringutiu=1 for all i and usingdW to com-
pensate for any permutation-induced sign changes. The eight
Sk vectors are given as columns in the following table:

S1 S2 S3 S4 S5 S6 S7 S8

g1

g2

g3

g1 − g2

g1 − g3

g2 − g3

1
+ − + − + − + −

+ + − − + + − −

+ + + + − − − −

+ − − + + − − +

+ − + − − + − +

+ + − − − − + +

2 s10d

The intensity pattern contains four components ofSk for
somek, with the condition that three of the corresponding

phases are independent, such as in the casehg1,g2,g1−g3j.
According tos10d, we can without loss of generality always
choose the first three components fromSk to be11. The fcc
intensity pattern can then be written as

DI fccsrWd = cossbW1
f · rWd + cossbW2

f · rWd + cossbW3
f · rWd

+ h cosfsbW1
f + bW2

f + bW3
f d · rWg, s11d

where h= ±1 and hbW i
fj are the primitive vectors of the fcc

reciprocal space. The choiceh= +1 leads to an intensity pat-
tern resembling an fcc lattice of spheroid “atoms”, as illus-
trated in Fig. 2sad. This indicates that a fundamental band
gap does not open.sIt is possible for a higher-order gap to
open between bands 5 and 6, characteristic of disconnected

F4̄3m structuresf64g, which are fcc lattices of slightly non-
spherical atoms.d On the other hand, the choiceh=−1 pro-
duces an intensity pattern, shown in Fig. 2sbd, exhibiting a
strong resemblance to a diamond network structure and cor-
responding to the double diamondsDd surfacef60g. This is
the diamond-like structure studied in previous theoretical re-
ports f56,58,59g. Accordingly, our calculations, presented in
the next section, show that a PBG as large as 25% opens
between the second and third bands in a structure whose
solid component has a dielectric constant of 11.9sSid. It is

FIG. 2. The iso-intensity surfaces of the fcc structure generated
by Eq. s11d. sad An opal-like architecture appears forh= +1. sbd A
diamond-like architecture appears forh=−1. In both cases, the light
intensity is mapped to the color bar.
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interesting to note that a single sign in the intensity pattern
differentiates between the fcc lattice of spheroids and the
diamond structure and therefore determines the existence of
a fundamental photonic band gap. In fact, if one extends to
noninversion symmetric structuressSec. III A 2d, taking h
=1 and adding ap /2 phase to the corresponding cosine
term, a structure which retains both a fundamental gap and a
gap between bands 5 and 6 can be achievedssee Fig. 5d. In
the optical interference lithography technique, this sign can
be controlled directly though the choice of laser beam am-
plitude and polarization pairs.

1. Diamond structure

Now that we have obtained the desired intensity pattern,
Eq. s11d with h=−1, it is straightforward to determine holo-
graphic beam parameters which produce this pattern. First, it

is necessary to determine the wave vectorsGW i of the incident
laser beams, according to Eqs.s1d and s7d. The following
vectors of lengthÎ5p /ap satisfy our requirements:

GW 0 =
p

ap
s0,− 2,− 1d,

GW 1 =
p

ap
s2,0,1d,

GW 2 =
p

ap
s0,2,− 1d,

GW 3 =
p

ap
s− 2,0,1d. s12d

It is then necessary to determine the polarization vectors
which satisfy

hc1,c2,c3,c12,c13,c23j = h1,0,1,1,0,− 1j s13d

and

hf1,f2,f3,f12,f13,f23j = h0,0,0,0,0,0j s14d

fsee Eqs.s3d and s4dg. In order to describe the polarization

vector for a givenGW i, it is convenient to introduce two mu-

tually perpendicular unit vectors “up”,UW i, and “right”, RW i, to

complete an orthogonal triadsUW i ,RW i ,GW i ,d such that

RW i = GW i 3 ẑ/uGW i 3 ẑu,

UW i = RW i 3 GW i/uGW iu,

UW i 3 RW i = GW i/uGW iu, s15d

where sx̂ , ŷ , ẑd define unit vectors in a specific laboratory

coordinate frame.sIf GW i i ẑ, then by convention we choose

RW i = x̂.d An elliptical polarization vector can then be ex-
pressed as the sum of two linear polarization vectors in the
up and right directions:

eW i = cosswidUW i + eibi sinswidRW i , s16d

with wi describing the relative amplitudes andbi the relative
phase between the two linear polarization vectors. For linear
polarizations, the relative phase is zero and hence a linear
polarization vector can be expressed as

eW i = cosswidUW i + sinswidRW i , s17d

where in this casewi can be interpreted as a polarization
angle.

Beam polarizations and intensities which produce the de-
sired pattern are derived by finding parameters that minimize
the intensity backgroundI0, while satisfying the desired val-
ues for thec and f coefficients. If one applies an overall
scale to thec coefficients, then the minimal value ofI0, as
well as the four beam intensities, will be scaled accordingly.
The minimization is performed using a differential evolution
methodssee, e.g.,f65gd, which finds a global minimum for
I0. In this method, one generates a randomly distributed set
of N-dimensional vectors in theN-dimensional parameter
spacesin which the constraints onc and f are satisfiedd.
Each vector is “mated” with a random combination of the
other vectors to create a trial vector. If the trial vector im-
proves the value ofI0, then it replaces the original vector.
The mating step is iterated until the minimum is found. By
minimizing I0 while setting hc1,c2,c3,c12,c13,c23j
=h1,0,1,1,0,−1j and
hcossf1d ,cossf2d ,cossf3d ,cossf12d ,cossf13d ,cossf23dj
=h1,1,1,1,1,1j, one arrives at the following elliptical po-
larization parameters:

hE0,E1,E2,E3j = h1.29,1.52,1.34,1.08j,

hw0,w1,w2,w3j = h34.8°,66.6°,40.8°,14.6°j,

hb0,b1,b2,b3j = h90.0°,− 90.0°,90.0°,− 90.0°j. s18d

These polarizations achieve a value of 6.93 for the intensity
backgroundI0, and the total intensity reaches a maximum of
12.6. It should be noted that this particular numerical solu-
tion is not uniquef56,58,59g. The beam configuration repre-
sented by this solution is shown in Fig. 3. The plane spanned

by GW 0 andGW 2 sGW 0-GW 2d is perpendicular to the plane spanned

by GW 1 andGW 3 sGW 1-GW 3d. The angle betweenGW 0 andGW 2 equals

the angle betweenGW 1 andGW 3 and has the value 126.9°. The
polarization ellipses are shown next to the corresponding
beams, depicting the path traced by the polarization vector as
one looks down the wave vector. The dashed lines passing
through the polarization ellipses lie in the respective planes
defined above.

The linear polarization parameters

hE0,E1,E2,E3j = h2.08,0.93,1.29,2.26j,

hw0,w1,w2,w3j = h− 29.3°,6.5°,− 46.9°,− 100.7°j s19d

also satisfy Eqs.s13d and s14d while minimizing I0. How-
ever, as noted inf59g, the ratio Imax/ I0 in this case is
17.6/11.97, which is smaller than the one obtained above
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with elliptical polarizations. This linear polarization beam
configuration is shown in Fig. 4. The polarization angles are
shown as one looks down the wave vector, relative to the

GW 0-GW 2 or GW 1-GW 3 plane.

2. Noninversion symmetric structure

By extending to noninversion symmetric structures it is

possible to achieve a connectedF4̄3m scorresponding to the
space groupd structure. This structure has a two-atom basis
where, unlike the diamond lattice, the two atoms are dispro-

portionate in size. It has been shown that connectedF4̄3m
structures display PBGs both between the second and third
bands, and between the fifth and sixth bandsf64g. The cor-
responding intensity pattern can be written as

DIsrWd = cossbW1
f · rWd + cossbW2

f · rWd + cossbW3
f · rWd + cosfsbW1

f + bW2
f

+ bW3
f d · rW + zg, s20d

with z=p /2. Note that the fcc lattice of spheres and the
diamond structure are achieved withz=0 andz=p, respec-
tively. Figure 5 shows the iso-surface of this intensity pattern
which generates a structure with a solid volume fraction of
<23%, where high intensity regions correspond to the solid
parts of the structure. When silicon is used to synthesize the
structure in an air background, a 12.5% PBG emerges be-
tween bands 2 and 3scharacteristic of the diamond structure
achieved withz=pd, and a nearly 5% PBG emerges between
bands 5 and 6scharacteristic of the FCC lattice of spheroids

achieved withz=0 f64gd. The photonic band structure ob-
tained in this case is shown in Fig. 6.

The desired intensity pattern can be obtained by adjusting
the polarization vectors and amplitudes of the laser beams
used to generate the diamond structure above, while retain-

ing the wave vectorsGW i. In this case, the laser beam ampli-
tude and polarization pairs must obey

FIG. 3. The diagram of a beam configuration which generates
the fcc sdiamondd intensity pattern usingelliptically polarized

beams. The plane spanned byGW 0 and GW 2 is perpendicular to the

plane spanned byGW 1 andGW 3. The ellipses at the end of each wave
vector describe the polarization ellipse of the corresponding beam,

as one looks downGW i, with the dashed linespassing through the

polarization ellipsed corresponding to theGW 0-GW 2 or GW 1-GW 3 plane.

The RW and UW pairs for each beam, defined in Eq.s15d, are shown
next to the corresponding polarization ellipse.

FIG. 4. The diagram of a beam configuration which generates
the fcc sdiamondd intensity pattern usinglinearly polarizedbeams.

The plane spanned byGW 0 and GW 2 is perpendicular to the plane

spanned byGW 1 andGW 3. The polarization angles as one looks down
the wave vector are shown next to the corresponding beams, with
the dashed line passing through the polarization circle correspond-

ing to theGW 0-GW 2 or GW 1-GW 3 plane. TheRW andUW pairs for each beam,
defined in Eq.s15d, are shown next to the corresponding polariza-
tion angle.

FIG. 5. The iso-intensity surface generated by Eq.s20d, with z
=p /2 at a solid volume fraction of<23%, with the field intensity
mapped to the color bar. When the high intensity regions map to
silicon and the low intensity regions to air, this structure displays a
12.5% PBG between bands 2 and 3, and a nearly 5% PBG between
bands 5 and 6.
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hc1,c2,c3,c12,c13,c23j = h1,0,1,1,0,1j s21d

and

hf1,f2,f3,f12,f13,f23j = h0,0,0,0,0,p/2j. s22d

Since the structure lacks inversion symmetry, elliptical polar-
izations must be used. One set of elliptical polarization pa-
rameters which minimizeI0 with the constraints imposed by
Eqs.s21d and s22d is

hE0,E1,E2,E3j = h1.36,1.36,1.36,1.36j,

hw0,w1,w2,w3j = h37.7°,37.7°,37.8°,37.8°j,

hb0,b1,b2,b3j = h28.6°,208.6°,28.6°208.6°j. s23d

These parameters achieve a value of 7.39 for the intensity
backgroundI0 and a maximum total intensity of 14.78.

Figure 7 shows this beam configuration. The dashed lines

passing through the polarization ellipses lie in either theGW 0

-GW 2 or GW 1-GW 3 plane. All four ellipses are tilted by an angle of
approximately 53.2° from the corresponding plane. In all
cases, the major axis is 4.1 times the length of the minor
axis.

B. Body-centered cubic structure

Next, we consider a holographic structure based on the
bcc Bravais lattice. There are six distinct directions in the
Green set of vectors in Fig. 1, corresponding to theBb set. In
order to obtain a nontrivial pattern which possesses the full
symmetry of the bcc Bravais lattice, one needs to use all six
of these directions. Unfortunately, none of the eight possible
combinations forC generates a structure with a full photonic
band gap. It is possible to relax the symmetry conditions by
removing the inversion symmetry, which results in the gy-

FIG. 6. The photonic band
structure diagram for the nonin-
version symmetric fcc structure
shown in Fig. 5 with an 11.9:1 di-
electric contrast. The positions of
the high symmetry points are
shown in the inset.

FIG. 7. The diagram of a beam configuration which generates

the noninversion symmetric fcc structure. The plane spanned byGW 0

and GW 2 is perpendicular to the plane spanned byGW 1 and GW 3. The
ellipses at the end of each wave vector describe the polarization

ellipse of the corresponding beam, as one looks downGW i, with the
dashed linespassing through the polarization ellipsed corresponding

to the GW 0-GW 2 or GW 1-GW 3 plane. In each case, the major axis of the
polarization ellipsesrepresented by the dotted line passing through
the polarization ellipsed is tilted by approximately 53.2° with re-

spect to the corresponding plane. TheRW andUW pairs for each beam,
defined in Eq.s15d, are shown next to the corresponding polariza-
tion ellipse.
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roid sGd surface described inf60g. Instead, we relax our
symmetry conditions by choosing only four of the six target

directions, giving a target vector setT=hTW1,TW2,TW3,TW4j,
which leads to a larger IBZ and an intensity pattern of lower

symmetry. One possible choice for the threeKW i vectors is

KW 1 =
2p

ap
s0,1,1d,

KW 2 =
2p

ap
s1,1,0d,

KW 3 =
2p

ap
s1,0,1d. s24d

This leads to the choiceT=hKW 1,KW 3,KW 12,KW 23j, and C
=h* ,0 , * , * ,0 , * j. Using a similar derivation to the one pre-
sented in the fcc case but replacing the fcc point group op-
erations with those of the bcc point group, one can write the
bcc intensity pattern in terms of the vectors inT as

DIbccsrWd = cossTW1 · rWd + cossTW2 · rWd + cossTW3 · rWd + h cossTW4 · rWd,

s25d

whereh= ±1. The choiceh= +1 produces an intensity pat-
tern resembling a bcc lattice of spheres, which produces no
fundamental gap. However, the choiceh=−1 generates a bcc
structure whose basis is similar to that of the diamond struc-
ture. Figure 8 shows the optimized structure whenh=−1,
which produces a PBG of 21% for a silicon structure in an
air background.

Holographic beam parameters which produce this inten-
sity pattern are determined straightforwardly as before. The

target vectors inT can be generated by the followingGW vec-
tors of lengthÎ3p /ap :

GW 0 =
p

ap
s− 1,− 1,− 1d,

GW 1 =
p

ap
s− 1,1,1d,

GW 2 =
p

ap
s1,1,− 1d,

GW 3 =
p

ap
s1,− 1,1d. s26d

The beam amplitudes and polarizations obey
hc1,c2,c3,c12,c13,c23j=h1,0,1,1,0,−1j and
hf1,f2,f3,f12,f13,f23j=h0,0,0,0,0,0j. Elliptically po-
larized beam parameters which obey these constraints and
minimize I0 are

hE0,E1,E2,E3j = h1.19,1.19,1.19,1.19j,

hw0,w1,w2,w3j = h30.0°,30.0°,30.0°,30.0°j,

hb0,b1,b2,b3j = h90.0°,− 90.0°,90.0°,− 90.0°j. s27d

It is interesting to note that, with this configuration, the bcc
intensity pattern can be created using four laser beams of
equal intensities. With this configuration, the intensity back-
groundI0 is 5.66, with the total intensity ranging from 0 to
2I0. The beam configuration represented by this solution is

shown in Fig. 9. The plane spanned byGW 0 andGW 2 sGW 0-GW 2d is

perpendicular to the plane spanned byGW 1 and GW 3 sGW 1-GW 3d.
The angle betweenGW 0 andGW 2 equals the angle betweenGW 1

and GW 3 and has the value 109.5°. The polarization ellipses
are shown next to the corresponding beams, depicting the
path traced by the polarization vector as one looks down the
wave vector. The dashed lines passing through the polariza-
tion ellipses lie in the respective planes defined above.

Linearly polarized beams can be used to generate the bcc
structure, but, as in the case of the diamond structure, the
minimum value ofI0 is larger than in the case of elliptical
polarizations. Here, the value ofI0 achieved is 10.17 and the
maximum total intensity is 15.83:

hE0,E1,E2,E3j = h1.11,1.98,1.97,1.09j,

hw0,w1,w2,w3j = h− 6.1°,21.9°,107.7°,39.7°j. s28d

This linear polarization beam configuration is shown in
Fig. 10. Again, the polarization angles are shown as one

looks down the wave vector, relative to theGW 0-GW 2 or GW 1

-GW 3 plane.

C. Simple cubic

Finally, we consider a holographic structure based on the
sc Bravais lattice, which is the simplest of the cubic struc-
tures. There are only three distinct directions in the setBs

FIG. 8. The optimized bcc architecture generated by Eq.s25d
with a solid volume filling fraction of<22%. When the solid re-
gions sinterior of depicted iso-intensity surfacesd consist of silicon
and the background is air, a PBG of 21% is obtained.
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sred set onlined of vectors in Fig. 1 and consequently only

three vectors in the target vector set, i.e.,T=hTW1,TW2,TW3j. In

this case, we make the simple choiceTW i =KW i =bW i
s, so that theC

coefficients are given byC=h* , * , * ,0 ,0,0j, where * de-
notes a nonzero real coefficient. Again, without loss of gen-
erality the first three nonzero coefficients can be chosen to be
1; in this case, this applies to all nonzero coefficients. The
intensity pattern is thus given by

DIsrWd = cossTW1 · rWd + cossTW2 · rWd + cossTW3 · rWd. s29d

This pattern has a simple cubic Bravais lattice and is invari-
ant to all symmetry operations of the simple cubic point
group, thereby satisfying our design requirements. The inten-
sity iso-surface of the optimized Si sc structure is shown in
Fig. 11. A full photonic band gap of 10.5% opens between
bands 5 and 6 for this optimized structure, which has a solid
volume filling fraction of<24%.

The target vectors inT can be generated by the following

GW vectors of lengthÎ3p /ap :

GW 0 =
p

ap
s− 1,− 1,− 1d,

GW 1 =
p

ap
s1,− 1,− 1d,

GW 2 =
p

ap
s− 1,1,− 1d,

GW 3 =
p

ap
s− 1,− 1,1d, s30d

and beam polarizations which obeyhc1,c2,c3,c12,c13,c23j
=h1,1,1,0,0,0j and hf1,f2,f3,f12,f13,f23j
=h0,0,0,0,0,0j and minimizeI0 are

hE0,E1,E2,E3j = h1.79,1.02,1.02,0.88j

hw0,w1,w2,w3j = h50.1°,− 7.8°,− 67.8°,52.2°j,

FIG. 9. The diagram of a beam configuration which generates
the bcc intensity pattern usingelliptically polarized beams. The

plane spanned byGW 0 andGW 2 is perpendicular to the plane spanned

by GW 1 andGW 3. The ellipses at the end of each wave vector describe
the polarization ellipse of the corresponding beam, as one looks

down GW i, with the dashed line passing through the polarization el-

lipse corresponding to theGW 0-GW 2 or GW 1-GW 3 plane. TheRW andUW pairs
for each beam, defined in Eq.s15d, are shown next to the corre-
sponding polarization ellipse.

FIG. 10. The diagram of a beam configuration which generates
the bcc intensity pattern usinglinearly polarizedbeams. The plane

spanned byGW 0 andGW 2 is perpendicular to the plane spanned byGW 1

andGW 3. The polarization angles as one looks down the wave vector
are shown next to the corresponding beams, with the dashed line

corresponding to theGW 0-GW 2 or GW 1-GW 3 plane. TheRW andUW pairs for
each beam, defined in Eq.s15d, are shown next to the corresponding
polarization vector.

FIG. 11. The optimized sc architecture generated by Eq.s29d
with a solid volume filling fraction of<24%. When the solid re-
gions scorresponding to regions with a red hued consist of silicon
and the background is air, a PBG of 10.5% is obtained.
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hb0,b1,b2,b3j = h275.8°,0°,0°,0°,j. s31d

In this case, an “umbrella” configuration of the beams is used

ssee Fig. 12d. Each of the wave vectorsGW 1, GW 2, and GW 3

makes an angle of 70.5° withGW 0 and is spread evenly around
the azimuth. Only beam 0 is elliptically polarized; the major
axis of the polarization ellipsesdepicted as the dashed line
passing through the polarization ellipsed makes an angle of

15.33° with the projection ofGW 1 onto the plane normal toGW 0.
The other three beams are linearly polarized, with polariza-

tion vectors making identical angles of 52.24° with theGW 0

-GW i planes. The background intensityI0 is 6.07, and the total
intensity ranges from 0.07 to 12.07.

If one constrains all four polarizations to be linear, the
parameters

hE0,E1,E2,E3j = h1.92,0.64,1.28,1.28j,

hw0,w1,w2,w3j = h− 15.5°,67.8°,7.7°,− 52.2°j s32d

yield a minimum value of 7.35 forI0, with the maximum
total intensity reaching 13.35. The linear beam configuration
is shown in Fig. 13.

IV. GENERALIZED TETRAGONAL STRUCTURES

The diamondsfccd and bcc structures described in Sec. III
can be considered as special cases of a larger class of pho-
tonic crystals. The varying intensity pattern associated with
these structures can be written as

DIsrWd = cossTW1 · rWd + cossTW2 · rWd + cossTW3 · rWd − cossTW4 · rWd,

s33d

where the target vectors,TW i, are given by

TW1 = S−
2p

ap
,
2p

ap
,
2p

cp
D ,

TW2 = S2p

ap
,−

2p

ap
,
2p

cp
D ,

TW3 = S2p

ap
,
2p

ap
,−

2p

cp
D ,

TW4 = S2p

ap
,
2p

ap
,
2p

cp
D . s34d

The general structure can be modeled in a tetragonal unit cell
whose aspect ratio is given by the quantity cp /ap . By varying
the aspect ratio, one can scale the structure along thez direc-
tion. The aspect ratio can be written in terms of the acute
angle between any one of the target vectors and thez axis,j,
by

cp /ap = utansjdu/Î2. s35d

The diamond structure is achieved whenj=arctansÎ2d
=54.7° scorresponding to cp /ap =1d and the bcc structure re-
sults whenj=45° scorresponding to cp /ap =1/Î2d.

The desired target vectors can be obtained by changing
the angle between wave vectors, which we denote byn, in
the counter-propagating scheme used for the fcc and bcc
structures described in Sec. IIIssee, e.g., Fig. 3d. For target
vectors characterized by a givenj, an anglen given by

FIG. 12. The diagram of a beam configuration which generates
the sc intensity pattern usingelliptically polarized beams. The

beams are set up in an “umbrella” configuration, whereGW 1, GW 2, and

GW 3 each make an angle of 70.5° withGW 0 and are spread evenly
around the azimuth. Beam 0 is elliptically polarized with a polar-
ization ellipse whose major axis is rotated 15.3° from the projection

of GW 1 onto the plane normal toGW 0. The other three beams are
linearly polarized, with polarization vectors making identical angles

of 52.2° with theGW 0-GW i planes.

FIG. 13. The diagram of a beam configuration which generates
the sc intensity pattern usinglinearly polarizedbeams. Each of the

wave vectorsGW 1, GW 2, andGW 3 make an angle of 70.5° withGW 0 and
are spread evenly around the azimuth. The polarization angle of

beam 0 is measured with respect to the projection ofGW 1 onto the

plane normal toGW 0, whereas the other polarization angles are mea-

sured with respect to theGW i-GW 0 plane, fori=1,… ,3, with the wave
vector pointing into the page.
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n = 2 arccosS cossjd
Î2 − cos2sjd

D s36d

is sufficient. As shown in Figs. 3 and 9, angles between wave
vectors of 126.9° and 109.5° satisfy the conditions for fcc
and bcc structures, respectively. Beam polarizations which
satisfy the constraintshc1,c2,c3,c12,c13,c23j=h1,0,1,1,0,
−1j and
hcossf1d ,cossf2d ,cossf3d ,cossf12d ,cossf13d ,cossf23dj
=h1,1,1,1,1,1j can then be found using the minimization
procedure described previously.

Figure 14 shows the size of the relative photonic band gap

asj varies, for structures with a dielectric contrast of 11.9 to
1, corresponding to silicon in air. The solid volume fraction
in all cases is 22.1%. The maximum PBG occurs atj
=54.74°, which is the diamond structure. Figure 15 shows
the photonic band structure for a structure withj=50°, be-
tween the bcc and fcc cases. A full photonic band gap of 23%
opens for this structure.

V. ROBUSTNESS OF HOLOGRAPHIC PHOTONIC
CRYSTALS

We now turn our attention to the properties of the inver-
sion symmetric holographic photonic crystals obtained from
the intensity patterns derived in the previous section. For a
given intensity pattern, it is first necessary to determine the
optimal value of the thresholdI thr in the simplified shape
function, Eq.s5d. The choice ofI thr corresponds to choosing
a particular iso-intensity surface, and therefore the solid vol-
ume filling fraction of the resulting crystal. The one-to-one
mapping from theI thr to the volume fraction is displayed in
Fig. 16 for the fcc, bcc, and sc structures. The functional
dependence of the volume fractionsmeasured in %d on I thr is
not strictly linear, but can be taken to be so for the volume
fractions of interest. The linear part of the mapping can be
written as

f f = − 21I thr + 50,

fb = − 21I thr + 50,

fs = − 29I thr + 50, s37d

where f f, fb, and fs are the volume fractions of the fcc, bcc,
and sc structures, respectively. Since the fcc and bcc struc-
tures are both specific examples of the generalized structure
described in Sec. IV, the mapping is identical for the two

FIG. 14. The relative size of the full photonic band gap as a

function of the angle,j, between the target vectors,TW i, and thez
axis. The structure has a solid volume fraction of 22.1%. The solid
has a dielectric constant of 11.9, corresponding to silicon. The bcc
structure corresponds toj=45° and the diamondsfccd structure cor-
responds toj=54.74°.

FIG. 15. The photonic band
structure of the generalized struc-
ture withj=50°, at a solid volume
fraction of 22.1% and a dielectric
contrast of 11.9 to 1, correspond-
ing to silicon. The high symmetry
points and the irreducible Bril-
louin zone are shown in the inset.
This exhibits a PBG of 23%.
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structures. One may note that this mapping is symmetric
around a volume fraction of 50%. In fact, it can be shown
that, for the three cubic structures we have obtained, taking
I thr→−I thr produces an equivalent but inverted structure
ssolid and air regions are interchangedd, to within a transla-
tion of the origin. In terms of a physicalsexperimentally
measuredd intensity, this corresponds toI thr

expt →2I0− I thr
expt .

This implies that the desired structure can be achieved
equivalently by both single and double inversion processes
simply by adjusting the threshold value accordingly. Simi-
larly, this means that one can compensate for the distinction
between positive and negative photo-resist materials by
changing the holographic exposure time or overall intensity.
Consider the shape functionsSd of the direct structure andSi
of the inverted structure, given by

SdsrW,I thrd = Q„DIsrWd − I thr…,

SisrW,I thrd = Q„I thr − DIsrWd…. s38d

We endeavour to findrW =rW8−rW such thatSdsrW,I thrd=SisrW8 ,
−I thrd. This implies thatDIsrW8d=−DIsrWd. This condition is met
provided that

KW i · rW = s2ni + 1dp

KW ij · rW = s2nij + 1dp, s39d

whereni andnij are integers, for alli such thatci Þ0 and all
i, j such thatcij Þ0. Recall thatci andcij are the members of
the setC defined in Eq.s6d. Equations39d can only be satis-
fied if, whencij is nonzero, eitherci or cj is zero. The format
of the setC of the three inversion symmetric structures dis-
cussed above satisfies this condition. It can be shown that the
corresponding translation vectors,rW, arerW f =sa/2 ,a/2 ,a/2d
for the fcc structure,rWb=sa/2 ,a/2 ,0d, for the bcc structure,
andrWs=sa/2 ,a/2 ,a/ /2d, for the sc structure.

Figure 17 displays the relative size of the full photonic
band gap as a function of the solid volume fraction for the
fcc, bcc, and sc structures composed of a material with a
dielectric constant of 11.9sSid in an air background. The
optimized fcc structure occurs at a solid volume fraction
<21.5% and has a relative fundamental gapsbetween the
second and third bandsd of 25%. The optimized bcc struc-
ture, which is <22% solid, also has a fundamental gap,
which is 21% of the gap center frequency in this case. Fi-
nally, for a solid volume fraction of<24%, a full photonic
band gap of 10.5% opens between bands 5 and 6 for the
optimized sc structure. The photonic band structure diagrams
for the three optimized structures are shown in Fig. 18. Fig-
ure 19 shows the dependence of the relative photonic band
gap on the index of refraction of the solid material for the
three optimized structures. For the fcc structure, a full pho-
tonic band gap appears when the refractive index is larger
than about 1.97. The relative width increases with the index
of refraction until saturation at about 38%. The refractive
index threshold for the bcc structure is approximately 2.24
and the relative PBG saturates at 34%. The index threshold
for the sc structure is 2.77 and the relative PBG saturates at
16.5%.

The global intensity contrast, defined as maxsu2DIsrWdud / I0,
is of important practical concern. The larger the contrast, the
more effective the developing process to create the polymer
photonic crystal template. An alternative metric for measur-
ing the global intensity contrast can be found inf58g. The
intensity contrast depends both on the shape being created
and on the particular beam configuration used to create that
shape. Table I shows the global intensity contrast for each of
the beam configurations for the inversion symmetric struc-
tures discussed in Sec. III. For each structure, the use of
elliptically polarized beams improves the contrast over the
case when only linearly polarized beams are used. The ellip-
tical beam configuration for the bcc structure achieves a

FIG. 16. The volume solid versus threshold used in the shape
function Eq. s5d, for fcc, bcc, and sc structures. The fcc and bcc
curves overlap each other because both structures are members of
the generalized HLPC structures described in Sec. IV. The solid
material is found in the regions whereDIsrWd. I thr.

FIG. 17. The relative size of the full photonic band gap as a
function of the solid volume fraction, for the fcc, bcc, and sc struc-
tures. The solid has a dielectric constant of 11.9, corresponding to
silicon. The optimized fcc structure is<21.5% solid and generates
a relative gap of 25%. The optimized bcc structure is<22% solid
and generates a relative gap of 21%. The optimized sc structure is
<24% solid and generates a relative gap of 10.5%.
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“perfect” contrast ratio of 1, meaning that a value of zero
total intensity is found in the interference pattern.

When comparing the exposure efficiency of different in-
terference patterns, it is not sufficient to consider only the
global intensity contrast. Disorder in the PBG template may
arise from polymer inhomogeneities that lead to small, ran-
dom variations in the exposure threshold from point to point
in the bulk photo-resist. This, in turn, may cause “roughen-

ing” of the interface between “exposed” and “unexposed”
polymer even though the iso-intensity contours are perfectly
smooth. Therefore, it is useful to maximize the gradient of
the intensity pattern at precisely the threshold intensity iso-
surface. This minimizes the spatial extent of “exposure
roughening”. In order to compare the intensity contrasts for
the fcc, bcc, and sc structures, we define an average intensity
contrast factor for an iso-intensity surface atI thr, CavgsI thrd as

CavgsI thrd =

E
]V

¹W fDIsrWdg ·dAW

sI0 + 2I thrdE
]V

nW ·dAW
, s40d

whereV corresponds to the region which becomes the inte-
rior of the resulting structure and]V corresponds to its sur-
facesi.e., the iso-intensity surfaced. In other words, the con-

TABLE I. Global intensity contrast in the interference patterns
of the various beam configurations. The global intensity contrast is
defined as the ratio of the amplitude of the varying part of the
intensity, maxsu2DIsrWdud, and the background intensityI0. The use of
elliptical polarizations improves the global intensity contrast for
each of the three structures.

Structure Polarizations I0 maxsu2DIsrWdud Contrast

fcc elliptical 4Î3 4Î2 0.816

linear 11.97 4Î2 0.472

bcc elliptical 4Î2 4Î2 1

linear 10.17 4Î2 0.556

sc elliptical 6.06 6 0.989

linear 7.35 6 0.816

FIG. 18. Photonic band structure diagrams for the optimizedsad
fcc, sbd bcc, andscd sc holographic photonic crystals structures
characterized by an 11.9:1 dielectric contrast. The positions of the
high symmetry points together with the corresponding irreducible
Brillouin zones are shown in the insets.

FIG. 19. The relative size of the full photonic band gap as a
function of the index of refraction of the solid material, for the
optimized fcc, bcc, and sc structures. The background is assumed to
be air. The threshold index of refraction for the emergence of a
photonic band gap is 1.97 for the fcc structure, 2.24 for the bcc
structure, and 2.77 for the sc structure. The inset shows a magnified
view of the curve, near the threshold indices of refraction for the fcc
and bcc structures.
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trast factor gives the average value of the intensity gradient
along the iso-intensity surface, normalized by the iso-
intensity value. Normalization by the iso-intensity value
means that the contrast factor is not symmetric with respect
to a solid volume fraction of 50%. Using Gauss’ theorem and
taking the area of the iso-intensity surface asA, the contrast
factor can be rewritten as

Cavg =
1

sI0 + 2I thrdA
E

V

¹W 2fDIsrWdgdV. s41d

Figure 20 shows a plot of the average intensity contrast fac-
tor, Cavg, as a function of the volume fraction of solid for the
fcc, bcc, and sc structures. The contrast factor is calculated
by discretizing the conventionalscubicd unit cell in 2563

boxes and sampling the appropriate intensity pattern. The
area of the iso-intensity surface in the cubic cell is calculated
by approximating the surface with a triangular mesh. The
volume integral is calculated by taking

E
V

¹W 2fDIsrWdgdV→ o
DIsrWdøI thr

¹W 2fDIsrWdgv,

wherev is the volume of the small voxels and¹W 2fDIsrWdg is
calculated analytically from the corresponding intensity pat-
tern. The solid part of the photonic crystal corresponds to
regions where the intensity exceeds the threshold value. This
could be achieved using negative photo-resists and double
inversion. Near the respective optimal solid volume fractions
s<22%d, the contrast factors for the fcc and bcc structures
are approximately equal and larger than the sc contrast fac-
tor. However, near 78% solid volume fractionswhich corre-
sponds to the inverted structured, the bcc contrast factor be-
comes larger than the fcc contrast factor. This is relevant if a
single inversion process is used in conjunction with a nega-

tive photo-resist, or if double inversion is used with a posi-
tive photo-resist.

In addition to considering average intensity gradient, we
examine the minimum intensity gradient for various iso-
intensity surfaces by finding the figure of meritf14g:

Cmin = min
DIsrWd=I thr

u¹W fDIsrWdg/sI0 + 2I thrdu. s42d

This is calculated analytically for every point on the tri-
angular mesh used to approximate a given iso-intensity sur-
face. The regions where contrast is minimum along the
threshold iso-intensity surface represent the weak points of
the photonic crystal template. These regions are most suscep-
tible to disorder in the holographic process. Shown in Fig.
21, Cmin gives a measure of the worst case for each iso-
intensity surface. In this case, the fcc interference pattern has
the best characteristics near the optimized volume fraction of
22%, whereas the fcc and bcc patterns have similar charac-
teristics near 78% volume fraction. It should be noted that
the sc interference pattern appears to achieve the worst case
near both the optimized direct and inverted volume fractions.

Finally, we consider the sensitivity of the holographic
photonic crystals to imprecision in the laser beam param-
eters. We do this by considering the trajectories of the pho-
tonic band edges as beam polarizations and amplitudes are
perturbed from the optimal configurations. Figure 22 shows
the photonic band edges of the fcc, bcc, and sc structures as
a single beam amplitude is perturbed from the optimal value.
Only the worstsmost sensitived case out of the four possible
beam perturbations is shown for each of the structures. The
fcc structure shows the most robustness against amplitude
perturbations, allowing the single beam amplitude to range
from 70% to 250% of the optimal value before the gap
closes, with the bcc structure showing similar characteristics.
On the other hand, a 10% perturbation in the single beam
amplitude closes the gap in the case of the sc structure. Next,
we consider perturbations to the polarization vectors in the

FIG. 20. The plot of the average intensity contrast factor,Cavg,
as a function of the volume fraction of solid for the fcc, bcc, and sc
structures, created using elliptically polarized beams which produce
minimal background intensities. The solid part of the photonic crys-
tal corresponds to regions where the intensity exceeds the threshold
value.

FIG. 21. The plot of the minimum intensity contrastCmin

=minDIsrWd=I thr
u¹W fDIsrWdg / sI0+2I thrdu as a function of the solid volume

fraction for the fcc, bcc, and sc intensity patterns which produce
minimal background intensities using elliptically polarized beams.
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optimal elliptically polarized beam configurations used to
create the structures described in this paper. Recall Eq.s16d
where we write an elliptical polarization vector as the sum of

two linear polarizations such thateW =cosswdUW +eib sinswdRW .
Figure 23 shows the photonic band edges of the three struc-
tures when the quantity tanswd, which describes the relative
amplitude of the two linear components, is perturbed from
the optimal value. The dependence of the photonic band
edges on perturbations ofb, the relative phase between the
linear polarization components, is shown in Fig. 24. For both
graphs, only the worst case out of the four possible pertur-
bations for each structure is displayed. For these elliptically
polarized beam configurations, it is noted that the photonic
band gap of the bcc structure is most robust against beam
parameter perturbations, while the sc structure displays the
least robustness. Finally, we consider perturbations to a
single polarization angle,w, for the optimal linearly polar-
ized beam configurations in Fig. 25, by changing the polar-

ization angle of a single beam. Figure 25 shows the photonic
band edges of the inversion symmetric fcc, bcc, and sc struc-
tures as the polarization angle of the most sensitive beam is
perturbed. In the worst case, the photonic band gap of the
bcc structure remains open after an 8° change in a single
polarization angle, whereas for the fcc structure, a 6° pertur-
bation closes the gap. Again, the sc structure is least robust.

VI. CONCLUSION

In summary, we have derived beam configurations for cre-
ating fcc, bcc, and sc photonic crystals using holographic
lithography through simple, intuitive symmetry consider-
ations. The guiding principle in this procedure is that a large
PBG can be obtained by choosing a structure with the small-
est possible irreducible Brillouin zone. The fcc structure,
which resembles the diamond network structure, exhibits a

FIG. 22. The photonic band edges of the optimized fcc, bcc, and
sc structures as functions of perturbations in the holographic beam
amplitudes,DEi. The structure is assumed to consist of a material of
dielectric constant 11.9 in an air background.

FIG. 23. The photonic band edges of the optimized fcc, bcc, and
sc structures as functions of perturbations in the ratio tanswd fsee
Eq. s16dg. The structure is assumed to consist of a material of di-
electric constant 11.9 in an air background.

FIG. 24. The photonic band edges of the optimized fcc, bcc, and
sc structures as functions of perturbations in the angleb fsee Eq.
s16dg. The structure is assumed to consist of a material of dielectric
constant 11.9 in an air background.

FIG. 25. The photonic band edges of the optimized fcc, bcc, and
sc structures as functions of perturbations in single linear polariza-
tion anglesw. The structure is assumed to consist of a material of
dielectric constant 11.9 in an air background.

TIMOTHY Y. M. CHAN, OVIDIU TOADER, AND SAJEEV JOHN PHYSICAL REVIEW E71, 046605s2005d

046605-16



full photonic band gap of 25% when made with materials
with a dielectric contrast of 11.9:1. Our results also reveal
that an optimized geometrical structure within the unit cell
enables the bcc lattice to exhibit a PBG comparable to that of
the widely studied diamond lattice. Here the photonic band
gap is 21% for materials with a dielectric contrast of 11.9:1.
Finally, we have found a simple cubic holographic architec-
ture which exhibits a PBG of roughly 11% in the case of
Si:air materials. This sc PBG material can be achieved using
a simple “umbrella configuration” for the interfering laser
beams. In each case, we find that an equivalent but inverted
structure can be achieved simply by changing the threshold
intensity. This implies that there need be no distinction be-
tween direct structures and structures made by inversion
techniques. The beam configurations which we describe are
optimal with respect to maximizing the intensity contrast in
the respective laser interference patterns. The fcc and bcc
structures exhibit similar contrast near the optimal filling
fractions, while the sc structure displays worse contrast. For
all three structures, the use of elliptically polarized beams
enables better intensity contrast than can be achieved by the
use of linearly polarized beams alone. We have also studied
the sensitivity of our holographic structures to perturbations
of the amplitudes and polarization angles of the holographic
laser beams. The fcc and bcc structures each continue to
exhibit full photonic band gaps even as a single linear polar-
ization angle is adjusted by 6° or a single beam amplitude is
adjusted between 70% and 240% of the optimal value. These
structures also show robustness against perturbations in a
single polarization when elliptical polarizations are used.
These results suggest that holographic lithography provides a
fault-tolerant approach to PBG micro-fabrication.

All three of the structures we describe yield photonic
band gaps centered at wavelengths approximately twice the
wavelength of the incident interfering laser beams. There-
fore, in order to achieve PBGs at the 1.55mm wavelength

preferred for telecommunications, it is necessary to use a
photo-resist or other photo-polymerizable material which can
be exposed by laser beams of wavelength of about 750 nm.
The SU-8 negative photo-resist which has been used in sev-
eral experimental studiesf13,47,49g is intended for near-
ultraviolet rather than near-infrared lithographyf66g. Other
issues to be considered are the postprocessingsinfiltration
and inversiond limitations imposed on the final, high-index
structure. For example, in some architectures, an infiltration
process may not be able to produce complete inversions of a
template, and pockets of air may persist in thicker regions of
the infiltrating materialspartial inversiond. The presence of
such imperfections may have a deleterious effect on the op-
tical properties of the resulting photonic crystal.

Finally, it is of considerable interest to incorporate line
and point defects into photonic crystals for use in optical
microchips. Photonic crystal templates created using optical
interference lithography offer a unique opportunity for the
inclusion of such defects. After the photo-resist has been
exposed by interference patterns such as those described in
this paper, a localized exposure technique such as direct laser
writing f34,35g by two-photon absorption can be used to pat-
tern the photo-resist further with the desired defects. In such
a scheme, defects can be introduced at the templating stage
into the bulk photo-resist, rather than after the photonic crys-
tal has been synthesized. In the latter situation, complications
can arise due to scattering of the “writing” laser beam at the
numerous air-dielectric interfaces. These possibilities suggest
that optical interference lithography together with direct laser
writing can provide a powerful platform for the eventual cre-
ation of optical microchips containing circuits of light in a
photonic band gap.
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