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Abstract
We describe all-optical transistor action in photonic bandgap (PBG)
materials doped with active atoms and analyse the advantages of this system
over other all-optical transistor proposals. In the presence of a PBG
material, a coherent laser beam with the frequency slightly detuned from the
resonant atomic transition frequency can drive a collection of two-level
atoms to an almost totally inverted state, a phenomenon strictly forbidden in
ordinary vacuum. By varying the laser field intensity in the neighbourhood
of a threshold value, it is possible to drive the atomic system through a
transition from states in which the atoms populate preferentially the ground
level to almost totally inverted states. In this process, the atomic system
switches from a passive medium (highly absorptive) to a active medium
(highly amplifying). The large differential gain exhibited by the atomic
medium is very robust with respect to nonradiative relaxation and dephasing
mechanisms. The switching action in a PBG material is not associated with
operation near a narrow cavity resonance with conventional trade-off
between switching time and switching threshold intensity. Rather it is
associated with an abrupt discontinuity in the engineered broad-band
electromagnetic density of states of the PBG material. We demonstrate
all-optical transistor action in PBG materials by analysing the absorption
spectrum of a second probe laser beam and we show that the probe beam
experiences a substantial differential gain by slight intensity modulations in
the control laser field. Under certain conditions, the fluctuations in the
number of totally inverted atoms that contribute to the amplification process
are strongly diminished (the statistics of the excited atoms becomes
sub-Poissonian), which, in turn, determines a very low-noise regime of
amplification.

Keywords: All-optical transistor, all-optical switching, photonic bandgap
materials, collective atomic switching, resonance flourescence

(Some figures in this article are in colour only in the electronic version)

1. Introduction: all-optical transistor action

The transmission of information as optical signals encoded
on light waves travelling through optical fibres and optical
networks is increasingly moving to shorter and shorter
distance scales. In the near future, optical networking is
poised to supersede conventional transmission over electric

1 To whom correspondence should be addressed.

wires and electronic networks for computer-to-computer
communications, chip-to-chip communications and even on-
chip communications. The ever-increasing demand for faster
and more reliable devices to process the optical signals offers
new opportunities in developing all-optical signal processing
systems (systems in which one optical signal controls
another, thereby adding ‘intelligence’ to the optical networks).
All-optical switches, two-state and many-state all-optical
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memories, all-optical limiters, all-optical discriminators and
all-optical transistors [1] are only a few of the many devices
proposed during the last two decades. In particular, it has
been suggested that electronic transistors may one day be
replaced by all-optical transistors, which will perform all the
operations that their electronic counterparts do: amplification,
switching, modulation and detection. The ‘all-optical’ label is
commonly used to distinguish the devices that do not involve
dissipative electronic transport [2] and require essentially no
electrical communication of information. The all-optical
transistor action was first observed in the context of optical
bistability [1, 3] and consists in a strong differential gain
regime, in which, for small variations in the input intensity,
the output intensity has a very strong variation, dIT/dII > 1
(IT is the output intensity and II the input intensity). This
analogue operation is for all-optical input what transistor action
is for electrical inputs. The emerging competition between all-
optical devices and their electronic counterparts brings with it
significant practical challenges. The most important demand is
related to the integration of the all-optical devices. In order to
achieve an all-optical chip, the individual components should
have length scales of the 10 micrometre order. In order to
diminish the heating of the chip and the operating power, the
holding power and the switching energy should be minimized.
The switching time of the device should be below 1 ps (the
fastest GaAs transistor has a switching time of about 20 ps).
The large number of interconnections on an all-optical chip
should be insensitive to environmental perturbation and should
operate at room temperature.

1.1. Saturable absorbers and third-order nonlinear
mechanisms

Saturable absorbers (e.g. Na vapour) and third-order
nonlinearities (Kerr media) were among the earliest options
for all-optical processing and switching. The system of choice
is a Fabry–Perot cavity, filled with Na vapour or a Kerr
medium with a cubic dielectric susceptibility χ(3) [1, 3–5].
The basic principle of transistor action in nonlinear Fabry–
Perot interferometers is that very small optically induced
changes in the refractive index of the filling medium can be
used to control the magnitude of the output optical signal.
The nonlinear Fabry–Perot resonator consists of a pair of
plane, partially reflecting mirrors surrounding a nonlinear
medium (in the initial proposal, Na vapour [6]) whose index
of refraction depends on the optical intensity within it. In
resonance conditions, an integral number of half wavelengths
of light would fit inside the cavity. Initially, the device is
tuned slightly off resonance. With increasing input power, the
intensity inside the resonator increases, thereby changing the
index of refraction of the cavity, and pulling it towards the
resonant condition. This in turn increases the intensity inside
the cavity and, implicitly, gives yet further change in the index
of refraction and so on. The positive feedback mechanism
that combines the optical nonlinearity of the material with the
external feedback from the resonance of the cavity can become
very strong and provide a strong differential gain for relatively
small changes in the input intensity. Optical transistor action
is obtained by inducing a weak modulation in the input
beam [3,6] or by introducing a weak-magnitude second pump

Probe (amplified) laser beam

Probe (absorbed) laser beam

Secondary (weak) control laser beam

Figure 1. Schematic description of the transistor action [1]. The
system response exhibits a strong variation at a well defined
threshold value of the control laser field intensity. A second weak
control laser field (whose magnitude is determined by the width of
the threshold region between absorbing and amplifying states) is
used to switch the device. An incident probe beam will be absorbed
or amplified depending upon the magnitude of the total control laser
field.

beam (see figure 1). By replacing the Na vapour with a medium
with a very large χ(3), the threshold switching intensity is
dramatically reduced, while the differential gain is strongly
enhanced. In [7], Miller and Smith were the first to obtain two-
beam amplification and they have used a semiconductor crystal
of InSb, 580 µm thick, with polished parallel faces held at 5 K
in a helium cryostat as a nonlinear Fabry–Perot interferometer.
The effectiveχ(3) nonlinearity was of the order of 10−2 esu (this
huge value was explained in terms of a combination between
semiconductor bandgap effects and power broadening). The
transistor action is obtained by adding to the input ‘holding’
incident beam (the control beam) a low-power chopped beam
as a ‘signal’ and the ‘optical bias’ is increased until gain is
observed. By improving the fabrication of the device, Tooley
et al [8] increased the operating temperature to 77 K and
decreased the holding power to 5 mW. The differential gain
of their device could be as high as 104.

1.2. Other approaches

Another option for all-optical signal processing involves
the nonlinear phase shift induced by the transfer of energy
between the fundamental and the second-order harmonic
waves (cascaded second-order nonlinearities) [9–11]. This
requires lower power and takes advantage of the technological
advances in noncentrosymmetric materials [12,13]. Nonlinear
interactions based on quadratic effects are usually coherent
and allow both phase and amplitude modulation [14]. The
nonlinear phase shift of the fundamental wave in a cascaded
χ(2) process arises from a chain process [15]. Transistor action
in this approach is described in a simple picture in [16,17]. A
3 cm long version of a waveguide second-harmonic converter
in periodically domain-inverted LiNbO3 [18] allows a 1 W
infra-red pump wave to be controlled by a 1 µW injected
second-harmonic signal.

Datskos and Rajic2 have proposed an all-optical transistor
based on photo-induced stress in semiconductors. The laser

2 14 February 2000, Oak Ridge National Laboratory, Media Release.
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light from a diode laser (LED) is absorbed in a waveguide
material. The absorption of light causes stress in the
host material, which in turn strains the material and
produces a small displacement of it. The primary micro-
mechanical waveguide (source) feeds two other micro-
mechanical waveguide channels (drains) and a control
microstructure (gate). Switching is controlled by minor
disruptions (waveguide deflections) of the evanescent field.
This way, the device can redirect light coming from one end
onto two or more channels and becomes actually equivalent
to an electric switch or modulator used in conventional
electronic transistors. Coriasso et al [19] reported all-
optical switching and pulse-routing functionality of nonlinear
multiple-quantum-well ridge waveguides equipped with a
Bragg grating. In a similar system, single-wavelength all-
optical transistor action in a GaAs/AlAs multiple-quantum-
well hetero-nipi waveguide structure has also been shown
in [20].

The major drawbacks of these proposals are related to
their size (most of the devices cannot be scaled down to spatial
extensions smaller than 300 µm), their switching times and
their high power requirements. The switching time of the
device is limited by cavity build-up time, cavity dynamical
effects and nonlinear medium response time. For example, by
operating very close to a very narrow cavity resonance, the
switching threshold can be reduced, whereas cavity build-up
time increases dramatically. Consequently the product of the
switching threshold and switching time remains unacceptably
large. Using materials with large optical nonlinearities also
requires a compromise in the response time of the medium.
Other physical limitations include the lack of scalability and
integrability.

2. Low-threshold all-optical switching and
transistor action near a photonic bandgap

Photonic bandgap (PBG) materials constitute a new class of
dielectrics which carry the concept of moulding and controlling
the flow of light to its most microscopic level. This is
entailed in a fundamentally new optical principle, namely
the localization of light [21, 22], and leads to the inhibition
of spontaneous emission [23], the formation of the photon–
atom bound states [24], very low-threshold nonlinear optical
phenomena [25] and low-threshold collective atomic switching
behaviour. Previous studies [26] suggest that a laser operating
near a photonic band edge may possess unusual spectral and
statistical properties, as well as a low input power threshold.
In certain conditions, a doped photonic crystal exhibits low-
threshold optical bistability in the atomic response to an applied
laser field [27]. In the context of all-optical transistor action,
the photonic band edge, which separates the PBG from the
continuum of propagating electromagnetic modes, facilitates
fundamental switching effects for resonant two-level systems
that are forbidden in ordinary vacuum. In particular, the
Einstein rate equations [28], when applied to a collection of
two-level atoms coherently pumped near resonance in ordinary
vacuum, forbid atomic population inversion in the steady-
state limit. Such inversion often plays a key role in the laser
light emission. As a consequence, it is customary to pump
an active medium to a higher level, followed by incoherent

relaxation to the (population-inverted) excited level that defines
the lasing transition. This type of switching from the ground to
the excited state involves incoherent processes and makes the
conventional laser unsuitable as an ultra-fast optical switch
or transistor. Moreover, the pumping threshold required to
achieve inversion may be unsuitable for all-optical information
processing. On the other hand, in a photonic crystal, a coherent
laser beam with the frequency slightly detuned from the atomic
transition frequency can drive a two-level atom to almost totally
inverted atomic states [25, 29]. In this process, the atomic
system switches from a passive medium (highly absorptive)
to a gain medium (highly amplifying), as a function of the
external driving field. The large differential gain exhibited by
the atomic medium is very robust with respect to nonradiative
relaxation and dephasing mechanisms [29] (associated with
atomic collisions or scattering of phonons from the dielectric
lattice on the atomic system [30]). This switching effect
exhibits collective enhancement when there are many two-level
atoms within a cubic wavelength inside the PBG material [25].
In this case, the ensemble of atoms sharply switches to a highly
inverted state at a sharp threshold value of the applied laser
pump intensity.

A doped PBG material may, in this sense, be used
as an ultra-fast all-optical switch and an all-optical micro-
transistor. Similar to other all-optical transistor proposals [1],
the transition between the absorptive and the amplifying
regime can be modulated with a weak second control laser field
(in phase and in resonance with the main strong pump field).
Unlike other proposals, such as the one described in section 1.1,
the switching effect is not limited to the coupling of light to
a narrow cavity resonance in which there is a conventional
(inverse) relationship between the switching (cavity build-up)
time and the switching intensity threshold. Instead, the PBG-
based switching effect requires the coupling of light emitters
to a broad-band electromagnetic density of modes in which
there is a sharp (discontinuous) jump over a narrow frequency
interval. The engineering of the defect structure within a
three-dimensional PBG provides considerable latitude in the
development of such a device heterostructure. As we show
in section 5, a probe laser field of prescribed wavelength will
experience a substantial differential gain by slight modulations
in the weak control laser field. Under certain conditions, the
fluctuations in the number of the excited atoms that contribute
to the amplification process can be strongly diminished (the
statistics of the excited atoms become sub-Poissonian [25]),
which in turn determines a low-noise regime of amplification.

2.1. Optical mode density near a photonic bandgap

PBG materials typically consist of a two inter-penetrating
dielectric components. The first is a connected high-dielectric-
constant backbone, and the second is a connected low-
dielectric-constant network. For example, a network of criss-
crossing pores in a semiconductor of refractive index 3.5 [31],
or a woodpile structure [32, 33] can provide bandgaps of
20% of the central frequency of the gap. A detailed review
of recent advances in the fabrication of three-dimensional
PBG materials is given in [34]. A fabrication method
using photo-electrochemical etching pores has also been
proposed in [35, 36]. A recent breakthrough using self-
assembly methods [37–40], is a silicon-based inverse opal
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Figure 2. The total electromagnetic density of states for an
optimized inverted square spiral structure [42]. Here ω is the
frequency of the light, a is the lattice constant of the dielectric
structure and c the speed of light.

three-dimensional photonic crystal with a 5% complete three-
dimensional PBG centred near 1.5µm [41]. Very recently [42]
a blueprint for a three-dimensional PBG material amenable
to large-scale micro-fabrication on the optical scale, based
on glancing angle deposition methods, has been suggested.
The proposed chiral crystal consists of square spiral posts on
a tetragonal lattice, and for silicon posts in air background
(direct structure) exhibits a full bandgap of 15% of the central
frequency, while for the inverse structure (air posts in a silicon
background) the bandgap can be as large as 24%. The photon
density of states for this inverse square spiral is shown in
figure 2.

In a real three-dimensional PBG material, the electromag-
netic modes near the upper photonic band edge are concen-
trated in the air fraction of the composite material, and accord-
ingly, this is referred to as the air band. Near the lower photonic
band edge, the electromagnetic energy is concentrated in the
high-dielectric backbone. Accordingly, this is referred to as
the dielectric band. The active ‘two-level atoms’ in our model
calculation can be embedded as quantum dots in the dielectric
backbone or may be laser cooled and trapped into the void re-
gions of the PBG material [43]. As can be seen from figure 2,
if the two-level atomic resonance occurs near a photonic band
edge, the density of electromagnetic modes available to the
atomic transition varies very rapidly with frequency. Inside
the gap this density vanishes, whereas just outside the gap the
density may exceed that of ordinary vacuum. The ability of
an external pump laser to switch spectral characteristics of the
atomic system across the band edge (or near any other discon-
tinuous density of states profile) leads to coherent all-optical
switching and transistor action. In figure 3, we show an artist’s
view of an all-optical transistor based on a three-dimensional
PBG. The heterostructure consists of a three-dimensional PBG
template into which a sequence of III–V semiconductors has
been infiltrated. The middle layer, which acts as a planar
waveguide inside a three-dimensional PBG, is an active region
(quantum dots) sandwiched between semiconductor cladding
layers. The active region is assumed to experience a band edge
type discontinuity within the larger three-dimensional PBG.
The laser beam from above the structure constitutes the main

Figure 3. Possible device heterostructure for all-optical switching
and transistor action. From the left, two low-intensity laser beams
enter the heterostructure from optical fibres combined by a coupler.
The heterostructure consists of a planar waveguide region,
containing quantum dots, sandwiched by a three-dimensional PBG.
From above, the heterostructure is illuminated by the main control
(pump) laser field. On the right of the figure is the amplified signal
field as it leaves the heterostructure.

control (pump) laser field, which drives the ‘atomic’ system
embedded in the square spiral heterostructure. From the left,
two low-intensity laser beams enter the heterostructure from
optical fibres combined by a coupler, as shown on the left of
the figure. One of them adds to the main pump beam with
the role of switching the active medium between the absorp-
tive and amplifying regimes. The second beam constitutes the
signal field, which is amplified or absorbed (depending on the
magnitude of the modulated component of the pump field) as
it propagates through the active medium.

3. Single-atom switching in photonic bandgap
materials

We begin by reviewing the conventional picture of atom–field
interaction, in which a coherent laser field with an average
incident energy density W and frequency ω, interacts with
a collection of N independent two-level atoms in ordinary
vacuum. In the most simplified picture, the dynamical and
steady-state behaviour of the atomic system is governed by the
Einstein rate equations, obtained under the assumption that
the density of states characterizing the photonic reservoir is
slowly varying with the frequency. The rate equation (based
on Fermi’s golden rule for absorption and emission) is

dN2

dt
= −(A + Bab W)N2 + BemWN1, (3.1)

where N2 is the number of excited atoms, N1 is the number of
unexcited atoms andN = N1 +N2 is the total number of atoms.
A,Bem, Bab are the spontaneous emission rate, the stimulated
emission rate and the absorption rate, respectively. In ordinary
vacuum, the stimulated emission rate and the absorption rate
are equal, Bab = Bem = B, so that in steady-state conditions
the ratio of the number of excited atoms with respect to the
total number of atoms is given by

N2

N
= 1

2 + A/(B · W)
. (3.2)

Clearly, the magnitude of the excited atomic population per
atom N2/N , has an upper bound of 1

2 , and in the case of
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ordinary vacuum implicitly prohibits positive values of the
atomic inversion. As a result, coherent optical switching is
not possible in this manner in ordinary vacuum. However,
near a photonic band edge (or other sharp features in the
density of states) the underlying basis for (3.1) is no longer
valid. Fermi’s golden rule for absorption and emission of
light from the atom requires that the density of states in the
electromagnetic reservoir is smooth and featureless. In a more
detailed picture, the interaction of the external laser with the
atom leads to a set of ‘dressed atomic states’ [44], which
are displaced in frequency relative to the ‘bare’ atomic level.
Equation (3.1) is no longer appropriate if the density of states
exhibits significant variation on the frequency scale of the
dressed atomic level shift. In fact we show in the following
analysis that population inversion and other unusual effects can
be achieved at relatively low coherent pumping thresholds, if
the density of states ‘discontinuity’ is sufficiently large.

3.1. Model Hamiltonian

The rapid variations in the photonic density of states (DOS)
with frequency in a PBG material lead to fundamental
modifications in the response of a two-level system to an
external laser field relative to ordinary vacuum. In this
section we consider an effective mass approximation to the full
dispersion relation of a photonic crystal. For a real dielectric
crystal with an allowed point-group symmetry, the band edge
occurs at certain points along the Bragg planes of the lattice and
the electromagnetic dispersion relation may be approximated
byω(k) = ωC+A(k−k0)

2, where k0 is a point of the Brillouin
zone boundary associated with the band edge. We consider a
two-level atom interacting with a quantized electromagnetic
field of a photonic crystal. In the rotating wave approximation
(RWA) and in a frame of reference rotating with the atomic
resonance frequency, ωA, the Hamiltonian describing the total
system is [29]

H = H0 + Hint, (3.3a)

H0 =
∑
λ

h̄�λa
†
λaλ, (3.3b)

Hint = ih̄
∑
λ

gλ

(
a

†
λσ12 − σ21aλ

)
, (3.3c)

where

gλ = ωAd21

h̄

[
h̄

2ε0ωλV

]1/2

eλ · ud ,

and σij = |i〉〈j | (i, j = 1, 2) are the atomic pseudo-spin
operators, σ3 = σ22 − σ11 describes the atomic inversion, aλ
anda

†
λ are the radiation field annihilation and creation operators

and �λ = ωλ −ωA represents the λ-mode detuning frequency
from the atomic frequency. Here, the atomic-dipole moment
d has been chosen to be real without loss of generality by a
convenient choice of the atomic Hamiltonian eigenstates |1〉,
|2〉 phases, with d21 its magnitude and ud the unit vector. eλ ≡
ek,σ , with σ = 1, 2, are the transverse polarization vectors
of the radiation field, and V is the quantization volume. We
now consider that an external single-mode laser field drives the
atomic system described above. The interaction Hamiltonian
between the atom and the laser mode is HAL = −d · EL, with

d = d21 (σ21 + σ12), the atomic electric dipole operator and
EL the transverse electric field operator given by

EL = i

√
h̄ωL

2ε0V
eL

(
aL − a

†
L

)
. (3.4)

Here, eL is the polarization of the laser field, ωL the laser field
frequency and aL, a†

L, the annihilation and creation laser field
operators. We also assume that the laser is in a coherent state
|α · exp (−iωLt)〉, with α = |α| e−iφL , and that the occupation
number of the laser modeNL = |α2| is high enough that we can
disregard the influence of the atomic system on the laser field
radiation and average over the laser field degrees of freedom.
Under these assumptions, HAL can be brought to the usual
RWA form of the interaction between an two-level atom and a
classical coherent monochromatic laser field

HAL = h̄ε
(
σ21 e−i(ωL t +φT ) + σ12 ei(ωL t +φT )

)
.

Here, ε = d21 · E/h̄ is the Rabi frequency, the laser electric
field magnitude |E| = √

h̄ωL/2ε0V ·
√
NLeL, and all the phase

contributions are grouped in φT = φL − π/2. We now couple
the driven atomic system to the radiation reservoir of a photonic
crystal. Using the notations introduced previously, the total
Hamiltonian of the system is given by H = H0 + H1, where

H0 =
∑
λ

h̄ωλ a
†
λaλ + 1

2 h̄ωAσ3 + HAL, (3.5a)

H1 = ih̄
∑
λ

gλ (a
†
λσ12 − aλσ21). (3.5b)

In order to eliminate the explicit time dependence of the
Hamiltonian, we transform to a rotating frame of reference
with the frequency ωL, via the unitary transformation

H ′(t) = R†(t)HR(t) − R†(t)
dR(t)

dt
,

where

R(t) = exp

[
− i (ωLt + φT )

(
1
2σ3 +

∑
λ

h̄a
†
λaλ

)]
.

In the rotating frame of reference, the effective Hamiltonian
becomes

H ′ = H ′
0 + H ′

1, (3.6a)

H ′
0 =

∑
λ

h̄�λ a
†
λaλ + 1

2 h̄�ALσ3 + h̄ε (σ12 + σ21) , (3.6b)

H ′
1 = ih̄

∑
λ

gλ (a
†
λσ12 − aλσ21), (3.6c)

with �λ ≡ ωλ−ωL and �AL ≡ ωA −ωL. For simplicity, from
now on we drop the prime sign on the Hamiltonian.

3.2. Heisenberg’s equations of evolution; the dressed picture

To obtain the dressed states, we diagonalize the atom plus
external field part of the total Hamiltonian. This is done by a
unitary transformation to the dressed atomic basis, defined by
˜|1〉 = c|1〉 + s|2〉, ˜|2〉 = −s|1〉 + c|2〉, where c = cosφ, s =

sin φ, sin φ 2 = 1
2 [1 − sign(�AL)/(4ε2/�2

AL + 1)1/2] and
0 � φ � π/2. The corresponding dressed atomic operators,
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Rij = ˜|i〉 ˜〈j |(i, j = 1, 2), R3 = R22 − R11, are related to the
bare atomic operators by

σ12 = csR3 + c2R12 − s2R21

σ21 = csR3 − s2R12 + c2R21

σ3 = (c2 − s2)R3 − 2cs(R12 + R21).

(3.7)

This transformation leads to the noninteracting dressed state
Hamiltonian

H0 = h̄%R3 + h̄
∑
λ

�λ a
†
λaλ, (3.8)

with % = [
ε2 + �2

AL/4
]1/2

, the generalized Rabi frequency.
We define the time-dependent interaction picture

Hamiltonian H̃1 = U †(t)H1U(t), where the unitary operator
U(t) is given by U(t) = exp(−iH0t/h̄). In this picture, the
interaction Hamiltonian H̃1 takes the form

H̃1 = ih̄'
∑
λ

gλ

[
a

†
λ

(
csR3 ei�λt + c2R12 ei(�λ−2%)t

−s2R21 ei(�λ+2%)t
)]

+ h.c. (3.9)

The dressed atomic operators in this interaction picture exhibit
the time dependence given by R̃12(t) = R12(0) exp(−2i%t),
R̃21(t) = R21(0) exp(2i%t) and R̃3(t) = R3(0). Clearly,
R̃3(t), R̃12(t) and R̃21(t) can be considered as source operators
for the central component, left and right side-bands of the
Mollow triplet at the frequencies ωL, ωL − 2% and ωL +
2%. Hereafter, we drop the tilde on the interaction picture
operators. The Hamiltonian given by (3.9) generates the
following equations of motion:

d

dt
aλ(t) = gλ

{
csR3ei�λt + c2R12ei(�λ−2%)t

−s2R21ei(�λ+2%)t
}
, (3.10a)

d

dt
R21(t) =

∑
λ

gλ

{ − 2cs a†
λR21 ei�λt + c2 a

†
λR3 ei(�λ−2%)t

+2csR21aλe−i�λt + s2R3aλe−i(�λ+2%)t
}
, (3.10b)

d

dt
R3(t) = −2

∑
λ

gλ

{
s2 a

†
λR21 ei(�λ+2%)t

+c2 a
†
λR21 ei(�λ−2%)t

}
+ h.c. (3.10c)

The field operators are eliminated by formally integrat-
ing (3.10a) and substituting the result back into (3.10b)
and (3.10c). Further, we average over the field and atomic
variables. We assume that the radiation field is initially in its
vacuum state i.e. 〈aλ(0)〉 = 〈a†

λ(0)〉 = 〈aλ(0)Rij (t)〉 = 0.
In this analysis, we use a perturbative approach to describe

the first-order non-Markovian corrections to the resonance
fluorescence phenomena in PBG materials. The perturbation
parameter is the coupling constant between the atomic system
and the photonic reservoir associated with the dielectric
structure. The magnitude of this coupling is directly related
to the photonic DOS in the neighbourhood of the resonant
atomic frequency ωA. For the anisotropic model used in
this section, the photonic DOS is continuous and finite over
the entire spectral range of interest—in the effective mass

approximation, the DOS of an anisotropic PBG material is
given by

ρ(ω) ∝
{
(ω − ωC)

1/2 if ω � ωC

0 if ω < ωC
(3.11)

—and, remarkably, the spectral region surrounding the band
edge frequency ωC, which is associated with the most
prominent non-Markovian effects, is characterized by a
relatively low magnitude of the DOS and, implicitly, the
dynamics of the atomic system can be analysed within the
framework of a perturbation approach.

In the Born approximation, we retain terms up to the
second order in coupling strength between the radiation
reservoir of the photonic crystal and the atomic system, and
replace

Rij (t) ≈ e−iL0(t−t ′){Rij (t
′)
} ≈ Rij (t

′). (3.12)

It follows that in the Born approximation 〈Rij (t)Rmk(t
′)〉 ≈

〈Rij (t
′)Rmk(t

′)〉 = 〈Rik(t
′)〉δjm.

We introduce the memory functions G0 (t − t ′) =∑
λ g

2
λe−i�λ(t−t ′) and G± (t − t ′) = ∑

λ g
2
λe−i(�λ±2%)(t−t ′). In

general, the memory functions G0 (t − t ′) and G± (t − t ′)
are determined by the radiation field DOS. For a broad-band,
smoothly varying DOS of the photonic reservoir (as in ordinary
vacuum), the dependence of the memory functions on the
external field can be ignored and the memory time associated
with the photonic reservoir can be considered negligibly small
(the Markovian approximation) and we simplify G0 (t − t ′) =
G± (t − t ′) ≈ (γ /2)δ(t − t ′), where γ = ω3

Ad
2
21/3πε0h̄c

3 is
the usual decay rate for spontaneous emission in the absence
of the PBG materials. However, the DOS of the photonic
crystals exhibits band edge and other Van Hove singularities
as described in the introduction. In such a system with
fast variations of the DOS in the spectral range given by
{ωL−2%,ωL+2%} (shown in figure 4), the distinctive memory
functions introduced previously lead to qualitatively different
behaviour from ordinary vacuum. The system of equations
characterizing the evolution of the atomic operators is further
simplified by making the secular approximation i.e. the fast-
oscillating terms with frequencies 2 and 4% are discarded.
This approximation is valid in the regime % > βA, where
β−1

A is the characteristic time scale of the evolution of the
atomic system. For the anisotropic model of PBG it is given
by βA = ω2

Ad
2
21/8h̄ε0π

2A3/2 [24]. Under these assumptions,
the temporal evolution of the atomic system is described by
the following equations:

d

dt
〈R21(t)〉 = −2c2s2

∫ t

0
dt ′ G∗

0 (t − t ′)〈R21(t
′)〉

−c4
∫ t

0
dt ′ G∗

+ (t − t ′)〈R21(t
′)〉

−2c2s2
∫ t

0
dt ′ G0 (t − t ′)〈R21(t

′)〉

−s4
∫ t

0
dt ′ G− (t − t ′)〈R21(t

′)〉, (3.13a)

d

dt
〈R3(t)〉 = −2c4

∫ t

0
dt ′ G+ (t − t ′)〈R22(t

′)〉

+2s4
∫ t

0
dt ′ G− (t − t ′)〈R11(t

′)〉 + h.c. (3.13b)
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Figure 4. Relevant frequencies and frequency scales in the case of
an anisotropic DOS. The laser frequency ωL, and the atomic
frequency, ωA, are slightly positively detuned from the band edge
frequency ωC.

3.3. Switching by a moderate external field; the
non-Markovian case

For weak and moderate external fields, the Mollow spectral
components may remain close to the DOS discontinuity and it
is necessary to solve equations (3.13a) and (3.13b) without any
additional approximation such as the Markov approximation.
For this purpose, we introduce the Laplace transforms of the
atomic variables, x(p) = R̃3(p) = L{〈R3(t)〉}, z(p) =
R̃21(p) = L{〈R21(t)〉} and the memory functions G̃0(p) =
L{G0(t)}, G̃+(p) = L{G+(t)}, G̃−(p) = L{G−(t)}, where
f̃ (p) = L{f (t)} = ∫ ∞

0 e−ptf (t). With these notations, the
solution of the evolution equations is given by

x(p) = x0p + [s4G̃−(p) − c4 G̃+(p) + c.c.]

p {p + [c4 G̃+(p) + s4G̃−(p) + c.c]} , (3.14a)

z(p) = z0

p + c4G̃∗
+(p) + s4G̃−(p) + 2c2s2[G̃0(p) + G̃∗

0(p)]
(3.14b)

where x0 = 〈R3(0)〉 and z0 = 〈R21(0)〉. In the Laplace space,
the evolution of the dressed atomic population and polarization
satisfy the system (3.14a) and (3.14b).

The time-dependent dressed atomic variables are given
by the inverse Laplace transformation 〈R3(t)〉 = L−1{x(p)},
〈R21(t)〉 = L−1{z(p)}, where

f(t) = L−1{f̃ (p)} = 1

2π i

∫ ε+i∞

ε−i∞
dp ept f̃ (p).

Here, the real number ε is chosen such that p = ε lies
to the right of all singularities (poles and branch points)
of the function to be integrated. The equations (3.14a)
and (3.14b) are simplified by scaling the time variable by
β−1

A (the frequency is then scaled with βA). We numerically
evaluate the inverse Laplace transforms of the atomic variables
using an Adams algorithm [45]. Once the Laplace inversion is
performed, the bare-state atomic averages are obtained through
(3.7).

In ordinary vacuum, the atomic system does not exhibit
steady-state inversion. Consequently (as argued in section 3),

0 0.5 1 1.5

ε/βΑ 

-1

-0.5

0

0.5

1

<
σ 3>

∆
LC

/βΑ =1.01 

∆
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/βΑ =1.20

∆
LC

/βΑ =1.70

∆
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∆
LC

/βΑ =10.0

Figure 5. Atomic population inversion, 〈σ3〉, as a function of the
laser intensity ε/βA for different values of the laser frequency
detuning: �LC/βA = 1.01 (solid curve), �LC/βA = 1.20 (dotted
curve), �LC/βA = 1.70 (dashed curve), �LC/βA = 2.70
(long-dashed curve), �LC/βA = 10.0 (dot–dashed curve). The
atomic detuning is �AL = −βA.

conventional lasers require additional atomic levels to achieve
atomic inversion. In the PBG material, for a given intensity
of the laser field, the atomic system reaches positive inversion
(figures 5 and 6); if the jump in the photonic DOS is quite
large, the atomic system achieves nearly total inversion. This
behaviour is a consequence of the fact that the dressed state |1̃〉
(the left Mollow side-band at the frequency ωL −2%) is placed
in the spectral region with a low DOS and with slow decay,
whereas the dressed state |2̃〉 (the right Mollow side-band at
the frequency ωL + 2%) experiences a large DOS and a rapid
decay. In the long-time limit, the population in the dressed state
|1̃〉 is much larger than the atomic population in the dressed
state |2̃〉. This imbalance of the atomic population between
the dressed states is responsible for the atomic inversion in the
bare picture. The derivation of a steady-state solution for the
atomic inversion is facilitated by the identity limt→∞{F(t)} =
limp→0{p·f̃ (p)} . Since z(p) andx(p)have only complex (not
purely imaginary) poles it follows that the steady-state dressed
atomic polarization vanishes. However, the dressed excited
atomic inversion 〈R3〉st = limt→∞〈R3(t)〉 has a nontrivial
behaviour

〈R3〉st =




−1 if �LC � 2%

s4 − c4√(�LC + 2%) / (�LC − 2%)

s4 + c4
√
(�LC + 2%) / (�LC − 2%)

if �LC > 2%

(3.15)

where �LC = ωL − ωC.
We check the consistency of the solution in two limiting

cases. First, if we place the Mollow spectral components far
outside the gap �LC � 2%, the system reaches the ordinary
vacuum behaviour

〈R3〉st = −c4 − s4

c4 + s4
�⇒ 〈σ22〉st = − (c2 − s2)2

c4 + s4
. (3.16)

This limiting case is consistent with the Markovian approach
(far away from the DOS singularity the photonic crystal
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Figure 6. Atomic inversion 〈σ3〉, as a function of the laser frequency
detuning �LC/βA for different values of the laser intensity:
ε/βA = 0.3 (solid curve), ε/βA = 0.7 (dashed curve), ε/βA = 1.1
(dot-dashed curve). The atomic detuning is �AL = −βA.

reservoir of modes is a Markovian reservoir). On the other
hand, if we place the left spectral components inside the gap
�LC < 2%, the atomic system becomes trapped in the |1̃〉 state:

〈R3〉st = −1 �⇒ 〈σ22〉st = s2 − c2. (3.17)

Consider a near-resonant laser excitation (ωL ≈ ωA). If
we begin with an atom with resonant transition frequency, ωA,
just outside the PBG (say, for instance,�AC ≡ ωA−ωC > 0), it
is possible to drive the system through the transition described
above, simply by increasing the applied field intensity. For a
nearly resonant laser excitation (ωL ≈ ωA), the left Mollow
side-band (at frequency ωA −2%) passes through the photonic
band edge frequency when %crit = �LC/2, while the other
Mollow spectral components remain outside the gap. At this
critical laser intensity, the atomic population exhibits switching
from a noninverted state to an inverted state. In the bare picture,
the atomic inversion can be expressed as

〈σ22〉st =




s2 − c2 if �LC � 2%

(c2 − s2)
s4 − c4

√
�LC+2%
�LC−2%

s4 + c4
√

�LC+2%
�LC−2%

if �LC > 2%.

(3.18)
It is apparent from figure 5 that for moderate values of

the laser intensity, the atomic system switches very sharply
from the ground state to the excited state, at a critical value
of ε. This switching behaviour is caused by the very sensitive
dependence of the dressed atomic population on the relative
position of the Mollow spectrum components. The magnitude
of the effect depends on the actual value of the laser detuning
with respect to the band edge frequency �LC = ωL − ωC.
This interplay between the control parameters is shown in
figure 6, where now the atomic population displays sharp
switching behaviour as a function of the detuning of the laser
field frequency for various choices of the applied laser field
intensity. A stronger switching behaviour is presented in
the next section in the context of collective behaviour of an
ensemble of two-level atoms placed in a PBG material treated

in a Markov approximation. In this case, there is further
collective enhancement of the switching [25]. In particular, we
show that the width of the switching region as measured by the
change in pump intensity required to switch from absorption
to gain is of order 1/N where N is the number of atoms in a
cubic wavelength. This provides very large differential gain.

3.4. The influence of dephasing interactions and nonradiative
relaxation

In order to make closer contact with experiment, we include
phenomenological decay rates, 1/T nr

1 and 1/T2, associated
with other (nonradiative) decay and dephasing, respectively.
Deep inside the gap, where radiative decay is negligible,
the nonradiative contribution may become very important.
In this case, T nr

1 and T2 may be considered as empirical
constants. The nonradiative decay may come from phonon
assisted transitions, if the atom is placed in a solid matrix.
Dephasing occurs if an atomic vapour is placed in the photonic
crystal voids and is collisionally perturbed by the other atoms.
If the atom is implanted in the dielectric region, the interaction
with lattice vibrations of the host dielectric material (elastic
scattering of the phonons on the atomic system) will cause
dephasing. The effect of these additional decay and dephasing
mechanisms was calculated in [29]. Here, we present only the
steady-state results for the dressed atomic population inversion
and polarization

〈R3〉st =




[
− 2c4

√
�LC + 2% +

(
s2 − c2

)
/T̃ nr

1

]
×

[
2c4

√
�LC + 2% + 4s2c2/T̃2

+
(
s2 − c2

)2
/T̃ nr

1

]−1
if �LC � 2%,[

2s4
√
�LC − 2% − 2c4

√
�LC + 2%

+
(
s2 − c2

)
/T̃ nr

1

]
×

[
2s4

√
�LC − 2% + 2c4

√
�LC + 2% + 4s2c2/T̃2

+
(
s2 − c2

)2
/T̃ nr

1

]−1
if �LC > 2%,

(3.19)

where we introduced the scaled nonradiative decay and
dephasing parameters T̃ nr

1 = T nr
1 · βA, and T̃2 = T2 · βA,

respectively.
Clearly, the additional decay and dephasing mechanisms

tend to weaken the switching effect. The robustness of the
switching effect follows from an estimate of the timescale
factor in PBG materials. In the case of the anisotropic model
of the PBG, the timescale factor βA can be expressed as

βA = ωC

1

Ã3

9

256π

(
γ

ω21

)2

,

where we introduced the dimensionless constant Ã =
A/(c2 ωC) (see section 3.1) and γ is the corresponding free
space spontaneous emission rate. The values of ωC, and
Ã, are determined by the specifics of the dielectric structure
considered, and we obtain a very strong dependence on the
curvature of the dispersion relation. Moreover, real band
structure calculations show an extremely sensitive dependence
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Figure 7. Atomic population inversion 〈σ3〉, as a function of ε/βA

and the nonradiative decay rate 1/T̃ nr
1 in the absence of the

phonon-mediated dephasing, 1/T1 → 0. The laser field frequency
detuning is �LC/βA = 1.2, �AL/βA = −1, and �AC/βA = 0.2.

of the curvature of the dispersion relation on the specific
direction in the reciprocal space k0, and produce a wide range
of values for the dimensionless parameter Ã. We are using
in our numerical estimations a timescale factor range 0.8γ �
βA � 10γ , but point out that a more accurate estimation has
to be obtained by using band structure calculations for a real
photonic crystal.

Clearly, as shown in figures 7 and 8, a sizable switching
effect is present even when 1/T̃ nr

1 , 1/T̃2 ≈ 1. It is also
apparent that the nonradiative decay contribution (figure 7) is
much more deleterious to switching effects than the dephasing
mechanisms (figure 8).

4. Collective atomic switching in photonic bandgap
materials

In this section we analyse the atomic population inversion
and the statistics of a system of two-level atoms driven by
an external laser field in a photonic crystal [25, 46]. For large
deviations of the mode density between the components of
the scattered radiation spectrum (Mollow spectrum) [44], the
inversion in the atomic population occurs at low threshold and
for a large total number of the atoms in cubic wavelength,
N � 1, the collective switching from the ground state and the
excited state occurs over a very narrow range of intensity of
the driven laser field. Furthermore, under certain conditions,
the excited atoms exhibit strong sub-Poissonian statistics
and the switching speed exhibits a collective enhancement
proportional to N2. This suggests additional applications to
fast optical switching devices, sub-Poissonian pumping for
lasers [25,47,48] and ‘noiseless’ all-optical transistors (which
preserve the input signal-to-noise ratio). In our theoretical
treatment we limit ourselves to a ‘point interaction’; i.e.,
the spatial extent of the active region of the PBG material
is less then the wavelength of the emitted radiation. We
assume that the concentration of the active atoms belongs to an
intermediate regime, high enough to fulfill the ‘point’ model,
but small enough to allow us to neglect direct interaction
between different atomic dipoles.

Figure 8. Atomic population inversion 〈σ3〉, as a function of ε/βA

and the nonradiative dephasing rate 1/T̃2. The laser field frequency
detuning is �LC/βA = 1.2, �AL/βA = −1, and �AC/βA = 0.2.

4.1. The system description

The coupling between the atomic system and the multi-mode
radiation field of the PBG causes both energy loss and damping
of the atomic polarization. The polarization damping is due
to the phase randomization of the atomic wavefunctions by
thermal and vacuum fluctuations of the electromagnetic field
of the reservoir (the overlap between the ground- and excited-
state wavefunction decays in time) [49]. Moreover, as seen
in the single-atom case, it is necessary to take into account
the additional dephasing that arises from atomic collisions and
elastic scattering of the phonons of the host-confined photonic
material. In the interaction picture and in a rotating frame
of reference (rotating with the laser field frequency ωL) the
Hamiltonian has the form H = H0 + H1 + Hdeph, with

H0 = 1
2 h̄�ALJ3 + h̄ε (J12 + J21) +

∑
λ

h̄�λa
†
λaλ,

H1 = ih̄
∑
λ

gλ

(
a

†
λJ12 − J21aλ

)
,

(4.1)

where now Jij = ∑
k=1,N |i〉k〈j |k (i, j = 1, 2) are the col-

lective atomic operators, J3 = J22 − J11 is the atomic oper-
ator describing the population inversion, �AL = ωA − ωL,
�λ = ωλ − ωL and ωA, ωL, ωλ represent the atomic resonant
frequency, the applied laser field frequency and the frequency
of a mode λ, respectively. The Hamiltonian, Hdeph, accounts
for the additional nonradiative interactions mentioned before.

The collective atomic operators can be expressed using the
Schwinger (bosonic) representation Jij = a

†
i aj , i, j = 1, 2

and a
†
i , aj are the bosonic creation and annihilation operators

of atoms in the states |i〉, |j〉. The usual bosonic commutation
relations are modified by the constraint that the total number
of atoms is fixed, i.e. a

†
i a1 + a

†
2a2 = J11 + J22 = N .

The Hamiltonian part that describes the atom–applied field
system can be diagonalized by means of the dressed state
transformation defined earlier for a single atom. Defining
the dressed state collective operators Rij ≡ ∑N

k=1 |ĩ〉k k〈j̃ |,
we obtain H0 = h̄%R3 +

∑
λ h̄�λa

†
λaλ, while the interaction

Hamiltonian H1, can be cast in the form

H1 = ih̄
∑
λ

gλ

(
1
2 sin 2φ a

†
λR3 ei�λ t + cos2 φ a

†
λR21 ei (�λ−2%)t
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Figure 9. Relevant frequencies and frequency scales in the case of a
steplike DOS.

− sin2 φ a
†
λR21 ei (�λ+2%)t

)
+ h.c. (4.2)

where R3 = R22 − R11. The Hamiltonian Hdeph transforms
similarly, by replacing J3, J12, J21 with

J12 = 1/2 sin 2φ R3 + cos2 φR12 e−2i%t − sin2 φ R21 e2i%t

J21 = 1/2 sin 2φ R3 + cos2 φR21 e2i%t − sin2 φ R12 e−2i%t

J3 = cos 2φ R3 − sin 2φ
(
R12 e−2i%t + R21 e2i%t

)
.

(4.3)

4.2. The master equation formalism

The collective spectral and statistical properties of the Mollow
spectrum in free space are well known [50]. In the
photonic crystal we shall assume that the photonic density
of modes at the atomic frequency exhibits some singularity
(a step discontinuity for instance) so that the Mollow
spectral components experience very different photonic mode
densities. The model is simplified under the assumption that
the photonic DOS, while singular at a given frequency, is
constant over the spectral regions surrounding the dressed-state
frequencies ωL, ωL−2%, ωL+2%, as depicted in figure 9.

In these conditions, the usual formalism of open systems
can be employed to obtain the master equation. We assume
that the radiative and the dephasing reservoirs are statistically
independent, such that we can evaluate separately their
contributions to the master equation describing the temporal
evolution of the atomic system. We consider the interaction
between the atomic system and the reservoirs to be turned
on at t = 0 (initially, there are no correlations between the
system and the reservoir) and make the Born approximation
(discard terms containing contributions higher than second
order in the atomic system–reservoir interaction) and obtain,
in the interaction picture, the following general equation of
evolution [49]:[
∂ρ̃(t)

∂t

]
rad

= −1/h̄2

×
∫ t

0
dt ′ trR{[H̃SR(t), [H̃SR(t

′), ρ̃(t ′)R0]]}. (4.4)

Here, ρ̃(t) is the reduced density operator of the atomic system
(obtained after a trace trR has been performed over the reservoir
degrees of freedom). HSR(t) represents a generic interaction
Hamiltonian between the atomic system and the reservoir (in
our analysis HSR is given by (4.2)). R0 is the initial density
operator of the reservoir (the reservoir state is assumed to be
virtually unchanged by the its coupling to the atomic system),
which for simplicity is considered to be the vacuum state.
The modal DOS depicted in figure 9 allows us to make a
simplifying Markov approximation, in which we replace ρ̃(t ′)
by ρ̃(t) in (4.4). Since the DOS is smooth and featureless in
the vicinity of the individual Mollow sidebands, it is possible
to associate spontaneous emission rates γ0 and γ± with each
of the frequencies ωL and ωL ± 2%. If on the other hand,
the external laser field intensity (Rabi frequency) % was very
small, it would be necessary to incorporate the non-Markovian
radiative dynamics associated with the DOS discontinuity.
Non-Markovian collective dynamics is beyond the scope of
this paper. However as suggested by our single-atom switching
analysis in section 3, we can anticipate that non-Markovian
effects will lead to more robust and lower-threshold collective
switching behaviour. Moreover, we neglect the small energy
shifts caused by atom–reservoir interaction, and discard the
fast-oscillating terms with frequencies ±2%, ±4% in the
expansion of the HSR and the double commutator. This secular
approximation is valid for moderate applied laser fields, such
that% � Nγ0,±. However, the qualitative picture that emerges
is valid even in the absence of this simplifying approximation.

The radiative part of the master equation for the atomic
system, in the ‘dressed’ atomic basis, is then given by [49][
∂ρ̃(t)

∂t

]
rad

= γ0

2
sin2 φ cos2 φ · (

R3ρ̃R3 − R2
3 ρ̃

)
+
γ−
2

sin4 φ · (
R12ρ̃R21 − R21R12ρ̃

)
+
γ+

2
cos4 φ · (

R12ρ̃R21 − R21R12ρ̃
)

+ h.c., (4.5)

where γ0 = ∑
λ g

2
λ δ (ωλ − ωL) and γ± = ∑

λ g
2
λ

δ (ωλ − ωL ∓ 2%). The master equation that we obtained
reduces to the free space case for γ− = γ+ = γ0 [51]. The same
analysis applied to the dephasing interaction and the dephasing
part of master equation, in the ‘bare’ atomic basis, yields

[
∂ρ̃(t)

∂t

]
deph

= γp

2

[
J3ρ̃J3 − J 2

3 ρ̃
]

+ h.c. (4.6)

Here, we introduced a phenomenological dephasing rate γp

(its exact value is dependent on the DOS of the specific
dephasing reservoir considered). Using the transformation
of the bare collective atomic operators to the dressed-state
collective operators, the ‘dressed’ dephasing part of the master
equation can be cast in the form[
∂ρ̃(t)

∂t

]
deph

= γp

2
cos2 (2φ) · (

R3ρ̃R3 − R2
3 ρ̃

)
+
γp

2
sin2 (2φ) · (

R21ρ̃R12 − R12R21ρ̃
)

+
γp

2
sin2 (2φ) · (

R12ρ̃R21 − R21R12ρ̃
)

+ h.c. (4.7)
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4.3. The system analysis

Altogether, the dressed-state master equation for the density
operator in the Born–Markov approximations (using the
secular approximation) has the form

∂ρ̃(t)

∂t
= A0

2

(
R3 ρ̃R3 − R2

3 ρ̃
)

+
A−
2

(
R21 ρ̃ R12 − R12, R21 ρ̃

)
+
A+

2

(
R12 ρ̃ R21 − R21R12ρ̃

)
(4.8)

where A0 ≡ γ0 sin2 φ cos2 φ + γp cos2 (2φ), A− ≡ γ− sin4 φ +
γp sin2 (2φ) and A+ ≡ γ+ cos4 φ + γp cos2 (2φ). We map
the master equation using the dressed-state ket vector basis
{|n〉}n = {|N − n, n〉}n, which describes symmetrizedN -atom
states, in which N −n atoms are in the lower dressed state ˜|1〉,
andn atoms are excited in the upper state ˜|2〉. The dressed-state
ket vector is analogous to the angular momentum eigenvector
with total angular momentum J = N , and projection M =
(2n − N). Using the bosonic representation of the dressed
collective atomic operators, their action on the basis vectors is
given by

R12 |n〉 =
√
n (N − n + 1) |n − 1〉

R21 |n〉 =
√
(N − n) (n + 1) |n + 1〉

R3 |n〉 = (2n − N)|n〉.
(4.9)

In this basis, the diagonal matrix elements of the density
operator, Pn = 〈n|ρ|n〉 = ρn,n, satisfy the equation

∂Pn

∂t
= n(N − n + 1)

[
A−Pn−1 − A+Pn

]
− (n + 1) (N − n)

[
A−Pn − A+Pn+1

]
. (4.10)

In the steady-state limit,
·
ρ̃= 0, the off-diagonal elements

of the density matrix vanish, and the diagonal ones obey the
equation

n(N − n + 1)
[
A−Pn−1 − A+Pn

]
− (n + 1) (N − n)

[
A−Pn − A+Pn+1

] = 0 (4.11)

which can be cast in the form f (n) = f (n − 1) where the
function f (n) is given by

f (n) = (n + 1) (N − n)
[
A−Pn − A+Pn+1

]
. (4.12)

Clearly, f (n) has to be independent of n. It follows that
the solution for P(n) takes a simple form Pn = P0 ξ

n, with
ξ = A−/A+. Here, P0 is obtained from the normalization
condition

∑N
n=0 Pn = 1, as P0 = 1/Z, with Z = ∑N

n=0 ξ
n =(

ξN+1 − 1
)
/ (ξ − 1), analogous to a partition sum. With the

atomic distribution function Pn determined, we can evaluate

〈n〉 =
N∑

n=0

nPn = ξ
∂

∂ξ
ln (Z)

= NξN+2 − (N + 1)ξN+1 + ξ

(ξ − 1)2

= (N + 1) ξN+1

ξN+1 − 1
− ξ

ξ − 1
(4.13a)

〈n2〉 =
N∑

n=0

n2Pn = ξ 2 ∂2

∂ξ 2
ln (Z) + ξ 2

(
∂

∂ξ
ln (Z)

)2

+ξ
∂

∂ξ
ln (Z)

= (
N2ξN+3 − (2N2 + 2N − 1)ξN+2 + (N + 1)2ξN+1

−ξ 2 − ξ
){

(ξ − 1)2
(
ξN+1 − 1

)}−1
. (4.13b)

The dependence of the mean number of atoms in the excited
dressed state |2̃〉 on the parameter ξ is of central importance
in our analysis. To obtain more insight into this dependence,
let us analyse the case in which the number of atoms becomes
very large, N � 1. The parameter space of ξ is scanned first
for the case ξ �= 1 (in particular, for |ξ − 1| � 1/N ). In these
conditions, the mean number of atoms in the dressed excited
state is given by

〈n〉 N→∞−→
{
N − 1 − ξ/(ξ − 1) if ξ > 1

ξ/(ξ − 1) if ξ < 1
(4.14)

whereas if ξ = 1

〈n〉 N→∞�⇒ 1

Z

N∑
n=0

n = 1

N + 1

[
N(N + 1)

2

]
= N

2
. (4.15)

It is clear that ξ = 1 constitutes a critical point of the
problem. Below this critical point, the number of atoms in
the excited dressed state |2̃〉 is independent of the total number
of atoms, whereas above this threshold value, the number of
dressed excited atoms becomes directly proportional to the
total number of atoms in the system (4.14). As shown in
figure 10, the dressed-state population undergoes a ‘phase
transition’ at ξ ≈ 1, characterized by a collective switching
of the dressed atoms from the ground state to the excited state.
The width of the transition region is of order O (1/N), which
implies that for a large number of atoms, the switching effect
is extremely sudden (i.e. the required variation in the intensity
of the external driving field is extremely small). The collective
switching occurs provided that the function ξ(ε) crosses unity
as a function of the applied field intensity. We can rewrite ξ in
the form

ξ = A−/A+ = (
γ−/γ+ sin4 φ + γp/γ+ sin2 2φ

)
× (

cos4 φ + γp/γ+ sin2 2φ
)−1

. (4.16)

Let us assume that the resonant atomic transition is negatively
detuned with respect to the applied laser frequency, i.e. �AL ≡
ωA − ωL < 0, and sin φ 2 = 1

2 [1 + 1/(1 + 4ε2/�2
AL)

1/2].
Under these assumptions, the necessary condition for ξ(ε) to
pass through unity (as a function of pump laser amplitude ε)
is that γ−/γ+ < 1. This requires that the left side-band
component of the Mollow spectrum is placed in the spectral
region characterized by a low DOS (which will correspond to a
gap or pseudo-gap of the PBG material). In the opposite case,
when the resonant atomic transition is positively detuned with
respect to the applied laser frequency �AL ≡ ωA − ωL > 0,
the necessary condition for achieving switching becomes
γ−/γ+ < 1, which corresponds to a mirror image of the
negative-detuning case.
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Figure 10. Typical behaviour of the average number of atoms in the
dressed excited state |2̃〉 as a function of the parameter ξ .

The atomic population per atom on the upper bare state
and the dressed state is given by [25]

〈J22〉
N

= (
1 − 2 sin2 φ

) 〈n〉
N

+ sin2 φ,
〈R22〉
N

= 〈n〉
N

.

(4.17)
In the case when the number of atoms is very large, N � 1,
this becomes

〈R22〉
N

∼=




1 if ξ > 1

1/2 if ξ = 1

0 if ξ < 1

(4.18)

and

〈J22〉
N

∼=




cos2 φ if ξ > 1

1/2 if ξ = 1

sin2 φ if ξ < 1.

(4.19)

Clearly, the atomic population shows a sharp collective jump
in which the active region of the photonic material switches
from an absorptive medium to a gain medium as we change
the intensity of the applied laser field (change in the control
parameter, the angle φ). In this sense, the active region of
the photonic material acts as an all-optical transistor, with
a substantial optical differential gain for a relatively small
change in the input intensity. Let us analyse the dependence of
this jump on various parameters that enter its definition. For
N = 1, the single-atom case, the atomic population per atom
on the upper dressed state (in the Markovian model) is given
by 〈R22〉 /N = ξ/ (ξ + 1). Clearly, in the single-atom case,
no sharp jump can be possible for this system configuration
(smooth DOS over the spectral regions surrounding the
Mollow spectrum components). The dephasing process has
the tendency of diminishing the collective switching (by the
dependence of ξ on γp). The unfavourable influence of the
phonon-mediated dephasing on the collective switching can be
reduced by increasing the atom number or by tuning the laser
field frequency so that the coefficient of γp, sin2 φ, becomes
very small. Clearly, the different mode densities experienced
by the Mollow spectral components have a strong contribution
in the collective switching of the atomic population. We
present in figure 11 the dependence of 〈J22〉 /N on the resonant
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ε/|∆
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Figure 11. Atomic population per atom on the bare excited states
〈J22〉 /N versus ε/ |�| for γ−/γ+ = 10−3, γp/γ+ = 0.5, � = −1,
and for N = 10 (solid curve), 500 (dashed curve) and 5000
(dot-dashed curve).
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Figure 12. Atomic population per atom on the bare excited states
〈J22〉 /N versus ε/ |�AL| for γp/γ+ = 0.5, �AL = −1, N = 5000,
and for γ−/γ+ = 0.3 (solid curve), γ−/γ+ = 0.4 (dashed curve),
γ−/γ+ = 0.5 (dot-dashed curve).

Rabi frequency ε, in the case when we have considered a large
jump in the photonic mode density of the confined photonic
material, given by γ−/γ+ = 10−3 and γp/γ+ = 0.5.

Such a large jump may arise in a three-dimensional
PBG material, but even if the jump is weaker (as for
optical fibres [52] and optical wires [53]), a sizable switching
behaviour is obtained for a sufficiently large number of atoms.
For γp/γ+ = 0.5 and 0.3 < γ−/γ+ < 0.5, the collective
switching behaviour is still important as shown in figure 12.

This switching behaviour characterizes the collective
response of a large number of atoms (in previous plots N =
5000 for the most relevant case), and this collective response
is possible when the left side-band lies near the gap of a
PBG material or in the cut-off region of the optical fibres and
wires, while the right side-band and the central component
lie outside the gap or cut-off region. In the parametric
conditions of figures 11 and 12, the system switches rapidly
from the lower state to the upper state at a well defined
critical value of the control parameter. We emphasize also
that the collective timescale for this switching is proportional
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to N−1. Incorporation of non-Markovian effects near a
three-dimensional photonic band edge leads to an even more
dramatic collective timescale factor, which is proportional to
N−2 [24]. This suggests that this effect may be relevant for
very fast optical switching devices.

We introduce the Mandel q-parameter in order to
characterize the atomic fluctuations in the excited bare and
dressed states, defined by Qd = (〈R2

22〉 − 〈R22〉2)/〈R22〉 and
Qd = (〈J 2

22〉 − 〈J22〉2)/〈J22〉. In the limit of large number of
atoms, the ‘dressed’ and ‘bare’ Mandel parameters become

Qd
∼=




1/N if ξ > 1

N/12 if ξ = 1

1/ (1 − ξ) if ξ < 1,

(4.20)

Qb
∼=




sin2 φ (1 + ξ) / (1 − ξ) if ξ > 1

(N + 2) /6 if ξ = 1

cos2 φ (1 + ξ) / (1 − ξ) if ξ < 1.

(4.21)

Clearly, for N � 1 and ξ > 1, the q-Mandel parameter
Qd

∼= 0, i.e. the dressed-state atomic population inversion
has a strong sub-Poissonian statistics. In contrast, the atomic
statistics on the excited bare state |2〉 depends strongly on the
dephasing rate γp. If we assume that γ−/γ+ � 1, the q-Mandel
parameter Qb becomes Qb

∼= cos2 φ + 8 cos2 φγp/γ+, which
implies that Qb goes to zero only if γp/γ+ � 1. In figure 13
we plot the q-Mandel parameter Qb as a function of the
resonance Rabi frequency ε, for the case of N = 5000 atoms,
γ−/γ+ = 10−3 and 0.5 < γp/γ+ < 0.01, and an expanded
view in the regime of sub-Poissonian statistics of the excited
atoms, respectively. By analysing these figures, we note that
at a critical value of the resonance Rabi frequency ε there is
a strong (proportional to the number of atoms) increase in the
atomic fluctuations, characteristic of a phase transition. For
small dephasing rates as compared with the radiative decay
rate outside the gap

(
γp/γ+ = 0.01

)
, the fluctuations in the

excited state population, well above threshold, are very small.
This may be relevant as a new mechanism of sub-Poissonian
pumping for lasers [25].

5. Gain spectrum for a weak probe beam

In this section we analyse the gain spectrum of a second laser
field which probes the driven atomic system. For simplicity
of illustration, consider a single atom, driven by an external
laser field, and placed in a photonic crystal, exhibiting a
steplike discontinuity in the DOS (the one-atom version of
the system analysed in the previous section). This simplified
picture allows us to obtain analytical results and to provide a
very intuitive picture of the switching and transistor action
mechanisms in photonic crystals. It also provides a lower
bound for the nonlinear switching effects. As discussed in
the previous sections, there are two major enhancements to
this worst case, the first coming from the non-Markovian
character of a true band edge discontinuity (leading to lower
threshold single-atom switching as presented in section 3),
and the second one coming from the collective response of a
system of two-level atoms placed in a photonic crystal (leading
to larger differential gain and faster switching as presented in
section 4). These additional effects provide a dramatic increase
of the sensitivity, magnitude and speed of the switching and
transistor effects.
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ε|∆
AL

|

0

500

Q
B 0.2 0.3

ε|∆
AL

|

0

5

10

Q
B

Figure 13. q-Mandel parameter Qb as a function of ε/ |�|,
γ−/γ+ = 10−3, � = −1, N = 5000, and for γp/γ+ = 0.5 (dashed
curve), γ−/γ+ = 0.1 (dot-dashed curve) and γ−/γ+ = 0.01 (solid
curve). The inset shows an expanded view of the same curves in the
regime of sub-Poissonian statistics of excited atoms.

5.1. Dynamics and steady-state values of the atomic variables

In the case of a single atom (N = 1), the collective atomic
operators Jij of the previous section are replaced by their
single-atom counterparts σij , and the master equation is
simplified by making use of the atomic operator products:
σijσkl = σjkδil , RijRkl = Rilδjk , where i, j, k, l = 1, 2. For
strong external laser fields or large detunings the master (4.8)
can be solved exactly to yield

〈R±(t)〉 = 〈R±(0)〉e−A±t , (5.1)

〈R3(t)〉 = (〈R3(0)〉 − 〈R3〉st) e−A±t + 〈R3〉st, (5.2)

where

A0 = A− + A+, A± = 4A0 + A− + A+

2
,

〈R3〉st = A− − A+

A− + A+
,

(5.3)

and we use the notation R21 = R+, R12 = R−.
In order to understand steady-state positive atomic

population inversion (shown in figures 14 and 15), we
review the intuitive dressed atom picture. In the secular
approximation, the dressed atom approach leads to a simple
(although qualitative) interpretation of the dynamics of
the atomic system and the characteristics of the scattered
radiation [44, 54]. The bare (dressed) picture diagram is
presented on the left (right) side of figure 16. We denote a
state with the atom in its ith bare level and N photons in the
background by the ket vector |i, N〉. The splitting between the
states |1, N + 1〉 and |2, N〉 is given by the detuning between
the atomic and laser frequency �AL = ωA −ωL. However, the
states |1, N+1〉 and |2, N〉 are coupled by the laser mode–atom
interaction Hamiltonian, the matrix element characterizing
this interaction being proportional to the Rabi frequency ε:
〈2, N |HAL|1, N+1〉 ≈ ε. Since�AL and ε are small quantities
compared with ωL, we can neglect all the couplings between
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Figure 14. Steady-state atomic population inversion 〈σ3〉 as a
function of ε/|�AL| in the absence of the additional dephasing
γp = 0. Different curves correspond to different ratios of the decay
constants, varying from γ−/γ+ = 10−5 (continuous curve) to
γ−/γ+ = 1 (double-dot-dashed curve).
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Figure 15. Steady-state atomic population inversion 〈σ3〉 as a
function of ε/|�AL| in the presence of the additional dephasing, and
for γp/γ+ = 10−3. Different curves correspond to different ratios of
the decay constants, varying from γp/γ+ = 0 (continuous curve) to
γp/γ+ = 0.5 (double-dot-dashed curve).

different atom⊗laser manifolds, characterized by different
numbers of photons in the laser field, N .

In the case of negative detunings of the atomic
frequency with respect to the frequency of the laser field
(sign(�AL) = 1), we have sin(φ) < cos(φ) and the
dressed ground state, |1̃〉, is mostly comprised of the
bare excited state |2〉, whereas the dressed excited state,
|2̃〉, is mostly comprised of the bare ground state, |1〉.
Also, from the dressed state diagram and the equation
of evolution of the dressed state inversion (5.1), we note
that the dressed excited state |2̃〉 is populated as a result
of the transitions |1̃〉 → |2̃〉 (which occur at a rate
|〈1̃, N |Hint|2̃, N − 1〉|2 = A−) and de-populated as a
result of the transitions |2̃〉 → |1̃〉 (which occur at a rate
|〈2̃, N |Hint|1̃, N − 1〉|2 = A+).

Ω
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Figure 16. Bare atom and dressed atom state diagram.
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Figure 17. Dressed steady-state atomic population inversion 〈R3〉 as
a function of ε/|�AL| in the absence of the additional dephasing
γp = 0. Different curves correspond to different ratios of the decay
constants, varying from γ−/γ+ = 10−5 (continuous curve) to
γ−/γ+ = 1 (double-dot-dashed curve).

In the ordinary vacuum case (γ− = γ+ = γ0),
the rate of population of the dressed excited state |2̃〉 is
always larger than the de-population rate (for �AL < 0,
sin2(φ) > cos2(φ) �⇒ A− > A+) and the dressed
system will always end up in a stationary state with a larger
population on the excited state |2̃〉 than the ground excited
state |1̃〉. As the dressed excited state |2̃〉 is dominated by
the bare ground state |1〉, the bare atomic system cannot be
inverted [54]. In the case of a frequency-dependent reservoir
(γ− �= γ0 �= γ+), the inequality A− > A+ does not
automatically hold. We can find a certain range for detunings,
�AL and Rabi frequencies, ε, such that, in the steady-state
limit, the dressed state |2̃〉 is less populated than |1̃〉. The
condition to preferentially populate the ground excited state
|1̃〉 is

A+ > A− �⇒ γ+ c4 > γ− s4. (5.4)

We solve the threshold equation A+ = A− to obtain the
condition for switching. Using the dependence on sin(φ)
and cos(φ) of the Rabi frequency ε, and introducing the new
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variable y = 1/
(
4ε2/�2

AL + 1
)1/2

(subject to the constraint
0 � y � 1), we obtain

γ+ − γ−
4

y2 − γ+ + γ−
2

y +
γ+ − γ−

4
= 0. (5.5)

If γ+ > γ−, (5.5) admits a single solution

y = γ+ + γ− − 2
√
γ+ γ−

γ+ − γ−
. (5.6)

Or, equivalently, the threshold Rabi frequency can be expressed
as

εthr

|�AL| =
4
√
γ+γ−√

γ+ − √
γ−

= 4

√
γ−
γ+

×
[

1 −
√

γ−
γ+

]
. (5.7)

We note the threshold Rabi frequency depends only on the
detuning and the relative magnitude of the jump in the photonic
DOS (through the ratio γ−/γ+). The decay constant γ0, and
the dephasing rate γp do not affect the threshold intensity since
their effect is to populate and depopulate the dressed states |1̃〉,
|2̃〉 at the same rate.

In figure 17 we plot the ‘dressed’ steady-state atomic
population inversion R3, as a function of the resonance Rabi
frequency for different magnitudes of the jump in the photonic
DOS, γ−/γ+.

5.2. Absorption and dispersion of a weak probe beam

We now consider that in addition to the pump laser field, the
atomic system is probed by a second laser field, of frequency
ω [55–57]. The probe field is assumed to be sufficiently weak
to not disturb the dressed picture of the atomic system. The
linear susceptibility of this system is given in terms of an
electric field correlation function evaluated in the absence of
the probe field [44]

χ(ω) = iA
∫ ∞

0
〈[E+(t), E−]〉ste

iωt dt. (5.8)

Here A is a normalization constant, the index s indicates that
the average is evaluated in the steady-state limit and E± are the
positive and negative frequency components of the scattered
electric field. In the ordinary vacuum case (γ− = γ+ = γ0), the
positive and negative frequency components of the scattered
electric field are taken to be proportional to the atomic dipole
operator

σ12(t) = csR3e−iωL t − s2R12e−i(ωL−2%)t + c2R21e−i(ωL+2%)t .

(5.9)
However, in the case of a photonic crystal, the atomic-dipole
moment has spectral components that encounter different
photonic DOSs, and, implicitly, have different radiative rates
(γ0, γ−, γ+). In equation (3.10a), which describes the
temporal evolution of the λ-mode annihilation operator, aλ,
there is a clear correlation between the frequency at which the
‘source operators’ R3, R12 and R21 oscillate (�λ, �λ ± 2%,
respectively) and the photonic DOS available for the specific
λ-mode considered (through the λ dependence of the coupling

constant gλ). Accordingly, the positive and negative frequency
components of the scattered electric field are given by [58]

E+(t) =
√

γ0

2
csR3(t) +

√
γ+

2
c2R12(t)e

−2i%t

−
√

γ+

2
s2R21(t)e

2i%t , (5.10)

E−(t) = [E−(t)
]†

. (5.11)

Using (5.10) and the fact the off-diagonal elements of the
density matrix operator vanish in the stationary limit, in
the strong-driving-field limit the central component at the
frequency ωL disappears, and the linear susceptibility has two
well separated components, at the frequenciesωL±2% [44,54]

χ(ω) = χ(+)(ω) + χ(−)(ω), (5.12)

with

χ(+)(ω) = iAγ+c
4
∫ ∞

0
〈[R12(t), R21]〉ste

i[ω−(ωL+2%)]t dt,

(5.13)

χ(−)(ω) = iAγ−s4
∫ ∞

0
〈[R21(t), R12]s〉ei[ω−(ωL−2%)]t dt.

(5.14)
The correlation function present in (5.13) can be evaluated
using the quantum regression theorem [59]

[R21(t), R12] = [R21, R12] e−A±t (5.15)

[R12(t), R21] = [R12, R21] e−A±t (5.16)

where A± are defined in (5.3). Finally, the real and imaginary
parts of components of the linear susceptibility χ(ω) in the
Markovian approximation are given by

χ
(+)
R (ω) = A γ+ c4 (P+ − P−) · ω − (ωL + 2%)

[ω − (ωL + 2%)]2 + A2±
,

(5.17)

χ
(−)
R (ω) = A γ− s4 (P− − P+) · ω − (ωL − 2%)

[ω − (ωL − 2%)]2 + A2±
,

(5.18)

χ
(+)
I (ω) = −A γ+ c4 (P+ − P−) · A±

[ω − (ωL + 2%)]2 + A2±
,

(5.19)

χ
(−)
I (ω) = −A γ− s4 (P− − P+) · A±

[ω − (ωL − 2%)]2 + A2±
(5.20)

where P± represent the dressed excited and ground state
populations given by

P+ = 〈R22〉st = A−
A− + A+

(5.21)

P− = 〈R11〉st = A+

A− + A+
. (5.22)

Similar to the ordinary vacuum case [55], the imaginary
part of the linear susceptibility consists in one absorptive
component and one amplifying component (note the sign
difference between χ

(+)
I and χ

(+)
I ). In contrast to ordinary

vacuum, the photonic crystal allows us to control the absorptive
or amplifying character of the individual components (through
variations in the intensity of the driving laser field).
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Figure 18. The real and imaginary parts of the linear susceptibility
of the probe beam as a function of the detuning of the probe beam
frequency, ω, with respect to the driving laser field frequency ωL, for
ε/|�AL| = 0.178, γ−/γ+ = 0.001, γ0/γ+ = 1, ε/γ+ = 2.5 and in the
presence of a small amount of phonon-mediated dephasing,
γp/γ+ = 0.1. The atomic resonant frequency is detuned negatively
from the laser field frequency, �AL = ωA − ωL < 0.

In particular, it is possible to switch a given sideband
from being absorptive to exhibiting gain through a small
change in the pump laser intensity. This property can be
easily understood using the dressed-state diagram depicted
in figure 16. Unlike the fluorescence spectrum, the
absorption signal is proportional to the difference of the
population between the dressed levels involved in the transition
(multiplied by the transition rate between the levels). In
contrast, the fluorescent signal depends only on the population
of the initial state of the transition (multiplied by the transition
rate) [44, 54]. Clearly, the character of the absorption signal
components is determined by the sign of the dressed atomic
inversion, which in turn is determined by the intensity of the
driving field (see figure 19). In figure 18, we plot the real and
imaginary parts of the linear susceptibility of the probe beam
as a function of the detuning of the probe beam frequency,
ω, with respect to the driving laser field frequency ωL, for
ε/|�AL| = 0.178, γ−/γ+ = 0.001, γ0/γ+ = 1, ε/γ+ = 2.5
and in the presence of a small amount of phonon-mediated
dephasing, γp/γ+ = 0.1.

In ordinary vacuum, one Mollow sideband exhibits
weak gain and the other sideband exhibits strong absorption.
However, there is no switching of a given sideband with
pump intensity. In the photonic crystal switching takes
place. Moreover, the amplitude of the amplifying component
is of the same order of magnitude as the amplitude of the
absorbing component and easily detectable in a pump–probe
spectroscopy experiment. The components are separated
by a spectral distance proportional to the intensity of the
driving field and their relative magnitude can be optimized by
variations in the driving field. In figure 20, we show the gradual
transition through the threshold region of the imaginary part of
the susceptibility of the probe beam and note that the threshold
point (in the ε/|�AL| parameter space) is characterized by a
total transparency of the active medium. As the intensity of
the driving laser field passes through the threshold intensity,
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Figure 19. The imaginary part of the linear susceptibility of the
probe beam (absorption spectrum) as a function of the detuning of
the probe beam frequency, ω, with respect to the driving laser field
frequency ωL, for γ−/γ+ = 0.001, γ0/γ+ = 1, ε/γ+ = 2.5 and in the
presence of a small amount of phonon-mediated dephasing,
γp/γ+ = 0.1. The two curves correspond to different Rabi
frequencies, ε/|�AL|, one of them (continuous curve) below the
inversion threshold ε/|�AL| = 0.178, and the other one (dashed
curve) above the threshold intensity ε/|�AL| = 0.189. The atomic
resonant frequency is detuned negatively from the laser field
frequency, �AL = ωA − ωL < 0, and for this choice of parameters,
the threshold intensity is εthr/|�AL| = 0.183.

Figure 20. The imaginary part of the linear susceptibility of the
probe beam as a function of the detuning of the probe beam
frequency, ω, with respect to the driving laser field frequency ωL,
and the Rabi frequency of the driving laser field ε/|�AL|, for
γ−/γ+ = 0.001, γ0/γ+ = 1, and in the absence of the
phonon-mediated dephasing, γp = 0. The atomic resonant
frequency is detuned negatively from the laser field frequency,
�AL = ωA − ωL < 0.

the active medium switches from an absorptive medium to a
gain medium at a relatively well defined intensity of the driving
field.

6. Conclusions

We have analysed the atomic switching in photonic crystals
using two simple models and suggested its relevance to all-
optical transistor action. As a function of the intensity of the
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pump (control) laser, the active region of a photonic material
(the atomic system) sharply switches from an absorptive
medium (the atom spends most of its time in the ground
state) to a gain medium (higher probability to find the atom
in its excited state). This is a very fundamental effect
arising from the modification of the electromagnetic vacuum
in a photonic crystal. This effect is forbidden in ordinary
vacuum by the Einstein rate equations. We have shown that
a weak second probe laser beam experiences a substantial
differential gain when the pump (control) laser intensity is
in the neighbourhood of the threshold value. This switching
of the response of a probe beam (at a given frequency) to
a small change in the pump (control) beam is absent in
ordinary vacuum. In the first model, we considered an atom
in a PBG material coupled to a three-dimensional photonic
band edge and driven by an external laser field of moderate
intensity. Using a non-Markovian analysis of the system,
we demonstrated switching behaviour as a function of both
laser field intensity and detuning frequency. The condition
that triggers this jump in the atomic population inversion
corresponds to driving the left component of the atomic
spectrum inside the gap, while the central resonance and
the right side band remain outside the gap. In the second
model, we presented an analysis of the population inversion
and the excitation statistics of two-level atoms, driven by a
strong laser field, in a vacuum with a step discontinuity in the
electromagnetic DOS. Assuming a moderately strong pump
laser, we used a Markov approximation for radiative dynamics
and demonstrated collective switching and sub-Poissonian
atomic population statistics. For a large number of atoms,
even when the discontinuity in the photonic DOS is not so
large, the switching occurs, albeit at a higher pump threshold.

Based on these two simple models we suggest that if both
non-Markovian and collective enhancement are incorporated
in a single model, many desirable features of all-optical
switching and all-optical transistor action will follow. These
include low pumping threshold, very large differential optical
gain and very fast response time, all in a very compact
(20 µm scale) device. In addition to steady-state operation
as an all-optical transistor, it is of considerable interest to
modulate the pump (control) field with input from an optical
communication network. In this case, picosecond pulses of
light could modulate the total pump (control) field back and
forth across the switching threshold. In this way, pulses of light
from the probe beam could be routed (amplified rather than
absorbed) through the device, depending on whether a pulse
from the pump field has reached the device. This provides an
all-optical packet switching function. Since the gain spectrum
experienced by the probe beam can be controllably displaced in
frequency from the (modulated) pump frequency, this system
could be used as an all-optical wavelength converter for
data, from the pump to the probe. The relatively narrow
spectral range of amplification of the proposed device can
be dramatically increased by using an inhomogeneous active
medium, with a broad distribution of resonant atomic transition
frequencies. This occurs quite naturally if the active layers
consist of quantum dots exhibiting a distribution of sizes. In
this case the gain spectrum (and corresponding bandwidth of
the switching device) may be considerably broadened relative
to the narrow fluorescence side band shown in figure 19.

A second type of inhomogenous broadening occurs due to
local environments experienced by individual quantum dots.
In particular, the local electromagnetic DOS will vary from
point to point in space, leading to broadening of the spectral
region available for switching. It is of considerable interest
in this context to evaluate local density of states (LDOS)
discontinuities for realistic device heterostructures and to
examine in detail the relationship between the switching
threshold energies, switching speeds and corresponding
coupling speeds of optical information in and out of the device.

A physical realization of this all-optical switching sys-
tem could come from the growth of a III–IV semiconductor
device heterostructure around a suitable PBG template. The
heterostructure would consist of an active region of quantum
dots sandwiched within a planar waveguide with an engineered
electromagnetic DOS, between semiconductor cladding layers
above and below exhibiting a large three-dimensional PBG.
The quantum dots would then ‘feel’ the electromagnetic DOS
presented by the defect layer within the larger PBG. Due to
the size distribution of quantum dots, there would be a natu-
ral broadening of the gain spectrum experienced by the probe
beam as discussed above. Positional randomness of the dots
within the semiconductor backbone would also lead to ‘inho-
mogeneous’ broadening of the switching threshold. An al-
ternative realization of the effects described in this paper is
through trapping and cooling real atoms in the void regions of
a PBG crystal. The electric field distribution for a laser mode
in the vicinity of the upper band edge (the so called ‘air’ band)
has strong intensity peaks in the void region of the material,
which can act as an optical trap for active atoms [43,60]. The
trapped atoms will exhibit little interaction with the lattice of
the dielectric host, thus minimizing additional decay and de-
phasing effect. A third possible realization of the all-optical
switching we discussed, is from real atoms embedded in the
dielectric backbone of a PBG material. The radiative transition
of the erbium atom comes from the atomic 4f shell, which is
screened by the outer shells from the environmental influence.
At low temperatures, the erbium atoms suitably implanted in a
silicon-based PBG material may have very sharp single-atom-
like features [61] (the most intense line at 1.537 µm has a full
width of 0.0005 µm).

Clearly, the experimental observation of atomic switching
depends strongly on the influence of the dielectric host material
on the active atoms. By including these effects in our
calculations, we have shown that a sizable switching effect
is present even in the presence of nonradiative decay and
dephasing contribution (0.08γ � 1/T nr

1 , 1/T2 � γ ). The
influence of dephasing is weaker than that of the nonradiative
decay. In our model involving a single atom near a three-
dimensional photonic band edge, switching occurs when % ≈
βA, where % is the generalized Rabi frequency, and βA is the
typical timescale of the atomic system evolution. Since βA

depends strongly on the specific photonic crystal used, we
limit ourselves to general considerations about the order of
magnitude of the laser field intensity, I , required to produce
switching. If we neglect the detuning of the atomic frequency
with respect to the laser frequency, it can be easily shown
that [62]
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For a typical optical transition (with dipole moments between
10−1 and 101 au) a laser field of 0.5 mW mm−2 intensity will
produce a Rabi frequency of 0.1 GHz (which is of the order
of magnitude of βA). Including non-Markovian dynamics and
collective effects of many atoms within a single model should
improve this estimate considerably.

The central question in the realization of a PBG all-optical
transistor is whether dielectric microstructure exhibiting a suf-
ficiently large jump in the local electromagnetic DOS over a
sufficiently small frequency interval can be realized in practice.
While an ideal band edge exhibits a large jump, it is well known
that the DOS associated with a real band edge can differ con-
siderably from that of mathematical idealization when disorder
effects and finite sample effects are considered. Another option
is to engineer a more specific DOS profile by selectively intro-
ducing defect bands inside the large three-dimensional PBG
of the host photonic crystal. This may offer more flexibility in
designing the optimum device heterostructure.
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