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1. Introduction

In these lectures I hope to give you an introduction to bottom quark physics,

and a feel for the theoretical issues which are involved. Because of time

constraints, I cannot cover all aspects of the field, so I have chosen to focus

on a few key ideas. The most important is the idea of “factorization”. This

is a word which is used to mean many different things in particle physics, but

here I use it in the very general sense of separating long and short-distance

physics. This is important for B decays, because much of the theoretical

progress in the subject relies on being able to separate the short-distance

physics at scales 1/mW and 1/mb which determines the quark-level process

(and for which perturbation theory is a useful tool) from the complex long-

distance physics of hadronization. Effective field theory will be introduced

as a tool which makes this factorization automatic.

The outline of these lectures is as follows: First, I will discuss the use

of precision measurements of b quark transitions to probe physics at or

above the weak scale. I will then discuss the extent to which b-flavoured

hadrons may be used to probe the interactions of b quarks, and then look

at some important applications. Finally, I will briefly discuss some current

directions of research. Throughout the lectures I will use the decay b→ sγ

to illustrate the concepts, since a complete understanding of this decay

requires almost all of the theoretical machinery I will discuss.

1
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2. Precision Measurements and Flavour Physics

As you have heard in many lectures at this school, there are many good

reasons to believe that the standard model is not the correct description

of nature at scales above a few hundred GeV or so. A strongly-interacting

symmetry-breaking sector and supersymmetry in one of its many forms are

perennial favourites for new physics, as are the more recent ideas of large

extra dimensions and Little Higgs models. All of these theories conjecture

new particles at the 100 GeV-few TeV scale. Unfortunately, to date no

experimental evidence for such particles has been found.

Historically, there have been two ways to discover new particles experi-

mentally. The first is to build ever-larger colliders which can directly create

more and more massive particles. The second is to perform precision low-

energy measurements, which corresponds to looking for new physics via

virtual effects. While the first is usually preferable, because it’s easiest to

study particles if you can actually make them, important complementary

information can be found by following the second path. This is the course

being pursued at the B factories at SLAC and KEK, as well as by many

other precision low energy experiments, and has has a number of important

successes in the past. Here are a few examples:

(1) Virtual c quark loops contribute toK0−K̄0 mixing via the diagrams

in Fig. 1. From the measured size of the mixing, Gaillard and Lee1

were able to predict that mc had to be less than a few GeV.

Figure 1. Quark-level diagrams contributing to K0
− K̄0 mixing.

(2) Similarly, virtual t quark loops contribute to B0 − B̄0 mixing. In

1986, the ARGUS and UA1 experiments measured a rate for this

process that was much larger than expected2, implying a top quark

mass greater than 50− 100 GeV. This was the first evidence for a

heavy top quark.

(3) Precision electroweak measurements (mostly at LEP) determined

mt = 169+16 +17
−18 −2 GeV3, making it fractionally one of the best known
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quark masses, before it was even discovered.

Indeed, the constraints from precision measurements puts strong con-

straints on a variety of new particles at the few TeV scale, and has even

been dubbed the “little hierarchy” problem - the fact that there appears to

be a sizeable hierarchy between the Higgs mass in the Standard Model and

the scale of new four-fermi operators.

It is straightforward to calculate the Standard Model contribution to

flavour transitions at the quark level. Since there are many more possible

transitions than free parameters, one could therefore in principle compare

with experiment and either discover discrepancies or place constraints on

models of new physics. However, there is a problem: when comparing

with experiment the theoretical predictions often have large theoretical er-

rors arising from the difficulties in relating the underlying quark process

to the observed hadronic process (denoted by the black blobs in Fig. 1).

Even purely leptonic interactions can be plagued by hadronic uncertainties

through loop effects, as the next example illustrates. Dealing with this issue

will occupy much of these lectures.

Example: g − 2 of the muon

An instructive example of the importance of understanding low-energy

QCD is provided by the recent measurement of the anomalous magnetic

moment of the muon by the E821 experiment at Brookhaven4. As is well

known, there was initially great excitement in the community due to a

reported 2.6 σ discrepancy between theory and experiment:

(ath
µ − aexp

µ )× 1011 = 426± 150exp ± 67th. (1)

where aµ ≡ 1
2 (g−2). This was seen as a possible signal of new physics, such

as the supersymmetric contributions such as those in Fig. 2. Unfortunately,

the discrepancy was reduced to a little over one standard deviation when

a sign error was found in the theoretical calculation5. Nevertheless, it is

worth considering what the theoretical limitations on this prediction are, to

determine what level of discrepancy would be required to be a convincing

signal of new physics.

The bulk of the contribution to g− 2 arises from QED diagrams, which

have been calculated to a quoted precision of ±3 × 10−11. Electroweak

corrections give a much smaller contribution, but with a comparable error.

These are both reliable because they are purely perturbative calculations.

Unfortunately, even with muons, low-energy hadronic physics creeps in, via
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Figure 2. A supersymmetric contribution to g − 2 of the muon.

the vacuum polarization graph in Fig. 3(a). Fortunately, while this graph

is nonperturbative, the hadronic contribution to the photon vacuum polar-

ization may be measured experimentally via e+e− annihilation to hadrons,

as well as hadronic τ decay, via a dispersion relation6. (This is discussed

in more detail in a different context in Section 3.4.)

Unfortunately, there is also a “light-by-light” scattering contribution,

shown in Fig. 3(b), which cannot be extracted from data. This contribution

is therefore typically estimated using models of hadrons, not from QCD7.

A recent estimate5 of this contribution to aµ is (80± 40)× 10−11, but the

size of this error is controversial. The only completely model independent

analysis is based on chiral perturbation theory, where there is a contribution

from the unknown coefficient of an operator which could easily be several

times larger than this uncertainty:

aLL
µ (had) =

(

13+50
−60 + 31C̃

)

× 10−11 (2)

where C̃ is a nonperturbative parameter which is expected, on dimensional

grounds, to be of order 1. However, a value of 2 or 5 is equally natural; even

the original discrepancy could be fit with C̃ ∼ 10. Fitting the experimental

result gives

C̃ = 7± 6 (3)

(where we have added the uncertainties in Ref. 8 in quadrature). Most

Figure 3. Contributions of (a) vacuum polarization and (b) light-by-light scattering
to the muon anomalous magnetic moment. The blobs contains low-energy quarks and
gluons and so are strongly interacting.
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importantly, the contribution of C̃ is roughly the size of the proposed new

physics contributions.

What this means is that it is extremely hard to convincingly extract

signs of new physics from this measurement. Since we are currently un-

able to calculate C̃ from first principles, we are forced to rely on models

of low-energy hadronic physics. Certainly, some models are demonstrably

better than others5, but the agreement between theory and experiment is

good enough that without a model-independent treatment of the hadronic

physics it is very difficult to convincingly argue that a discrepancy of this

order could be a sign of new physics, rather than a failure in our under-

standing of low-energy QCD. Furthermore, it is difficult to see how this

theoretical error could be reduced in the future without a fully nonpertur-

bative calculation.

The moral of this story is that, when searching for new physics in preci-

sion experiments, we need precise and model-independent predictions with

quantifiable error estimates. If hadrons are involved anywhere, this neces-

sarily involves being able to systematically deal with low-energy QCD.

2.1. b quarks as probes of New Physics

Before looking for deviations from the Standard Model, we need to under-

stand it. As indicated in Fig. 4, we observe a complicated pattern of flavour

transitions, which follow a well-defined hierarchy. In the Standard Model,

this pattern arises because of the hierarchy of the CKM matrix,

Lcc = − g√
2
Wµ

(

ū c̄ t̄
)

L





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









d

s

b





L

+ h.c. (4)

where

VCKM =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 ∼





1 λ λ3

λ 1 λ2

λ3 λ2 1



 (5)

and λ = sin θC = 0.2205±0.0018 is the Cabibbo angle. Since λ is small, it is

useful to treat is as an expansion parameter. This allows us to write a par-

ticularly useful parameterization of the CKM matrix due to Wolfenstein9:

VCKM =







1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1






+O(λ4). (6)
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Figure 4. The relative magnitudes of quark transition amplitudes in the Standard
Model.

λ is known at the ∼ 1% level, A = 0.83 ± 0.03 is known (due to mea-

surements I will later discuss) at the ∼ 5% level, and ρ and η have larger

uncertainties.

A huge number of quark transitions is therefore determined by these

four parameters (in addition to the quark masses, gauge couplings, and

gauge boson masses), a few of which are shown in Fig. 5. The standard

model is therefore extremely predictive, and the goal of the B factories

and other precision low-energy experiments is to test these predictions as

redundantly as possible.

Figure 5. Some flavour-changing transitions.

Transitions between quarks of different charge, such as b → c`ν̄` and

b → cud̄, are dominated by tree-level graphs in the SM and many of its

extensions, and therefore simply reflect the CKM hierarchy. At one loop,

however, things get more complicated. The decays denoted “FCNC” are

flavour-changing-neutral current decays, in which the transition is between
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quarks of the same charge. These decays are forbidden at tree level in

the SM, but can arise through loop diagrams such as those in Fig. 6, and

so are related in a complicated way to the various SM parameters. (In

addition, the GIM mechanism10 ensures that they are also forbidden in

the limit of degenerate intermediate quarks.) Hence, the amplitudes for

FCNC processes are suppressed in the SM, and so new physics at the few

hundred GeV scale may contribute at a comparable level to these decays, as

illustrated schematically in Fig. 7. Thus, rare b decays provide a sensitive

Figure 6. FCNC processes in the standard model. Note that some four-fermion transi-
tions, such as b → uūd (which in turn determines the hadronic process B → ππ) receive
comparable contributions from tree-level and one-loop “penguin” amplitudes, because
the tree level amplitude is suppressed by the small CKM element Vub. This “penguin
pollution” is a serious impediment to the theoretical prediction for such decays, as will
be discussed in Sec. 4.2.2.

probe of the structure of flavour physics at high energy scales. Since there

are many such transitions determined by a small number of parameters in

the standard model, one can place strong constraints on (or discover!) new

physics by studying as many transitions as possible.

The preceding arguments hold for transitions involving any of the

quarks; however, b quarks are particularly good probes of short-distance

physics. There are a number of reasons for this, both theoretical and ex-

perimental, but one of the most important is that there are a number of

observables that can be cleanly predicted in the SM, despite the complica-

tions of hadronization. As we will discuss in these lectures, many of these

arise because the b quark is heavy: mb � ΛQCD, so b decays are short-

distance compared with the QCD scale. However, clean observables are

not restricted to the b system; for example, some rare kaon decays (such

as K → πνν̄) are also very clean theoretically, and are also being intensely

studied11.

Let me make a couple of additional comments on the CKM matrix:

(1) CP Violation: VCKM has a single nontrivial phase (i.e. a phase
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Figure 7. A contribution to b → sγ from new physics.

that cannot be absorbed in a field redefinition), which in the

Wolfenstein parameterization is put into Vub = |Vub|e−iγ and

Vtd = |Vtd|e−iβ (these two parameters are not independent in the

SM). This phase violates charge-parity (CP) invariance of the the-

ory, and in the SM is responsible for the observed CP violation in

the K and B systems. In the presence of CP violation, the rate for a

decay and its CP conjugate may differ: Γ(B → f) 6= Γ(B̄ → f̄), and

so measurement of CP conjugate rates may be used to determine

the phase.

CP violation is interesting for a number of reasons. First of all,

it is interesting in its own right, in particular because the observed

universe is highly CP-asymmetric: there is far more matter than

antimatter. Hence, CP violation is necessary to explain the observed

state of the universe12. For our purposes, however, it is interesting

because (i) the SM is highly predictive (there is only one phase in the

CKM matrix, and so all CP violation depends on the same phase)

and (ii) the CP invariance of QCD may be used to get clean hadronic

measurements of this phase, and hence to test the CKM picture (as

will be discussed in Sec. 4.2.2). Note that the presence of a single

nontrivial phase is a general feature of a 3 × 3 unitary matrix, so

the weak interactions with three generations naturally violate CP

(and hence CP violation is not a mystery, as is sometimes stated).

(2) The Unitarity Triangle: It is customary to express all of this

graphically. The unitarity of VCKM leads to the relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (7)

Since each CKM element is a complex number, this relation may be

drawn as a triangle the complex plane, as illustrated in Fig. 8. The

length of the base of the triangle has been scaled to 1 by dividing

each side by |VcdVcb| = sin θC |Vcb|, and the apex is at the point

(ρ, η) as defined in Eq. (6). The angles β and γ are the CKM phases

defined in Eq. (6), and α ≡ π−β−γ. This construction is known as
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Figure 8. The unitarity relation (7) in the complex plane.

the “unitarity triangle” (UT). There are two other such triangles,

arising from the two other unitarity relations, but the relation in

Eq. (7) has the further property that each term is of order λ3, so

the sides of the unitarity triangle are of comparable length, while

the other triangles have two sides much longer than the third and

so are almost flat. This in turn means that the sides and angles

of the UT should be measured with comparable precision to obtain

useful constraints. Note that in the absence of CP violation, the UT

would collapse to a line. Hence, by performing only CP conserving

measurements of the sides of the triangle, one may determine the

CP violating phase in VCKM.

The UT provides a convenient way to plot constraints on the SM

from different experiments, as illustrated in Fig. 9. Note, however,

that it can be misleading as a guide to new physics: two measure-

ments of a given parameter may be redundant in the SM, but in

the presence of new physics are as interesting as measurements of

two different parameters. For example, the CP violation in both

B → J/ψKs and B → φKs is proportional to sin 2β in the SM.

However, in the presence of new physics which contributes to the

b → ss̄s transition but not to b → cc̄s this need no longer be true,

and so both measurements are important. Thus, the goal is not

simply to measure the sides and/or angles of the unitarity triangle,

but rather to measure as many different quark-level transitions as

possible, to look for deviations from the SM predictions. Currently,

all determinations of sides and angles of the UT are consistent with

one another within the errors (see Fig. 9).
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Figure 9. The experimental constraints on the unitarity triangle from different pro-
cesses, and the best fit (as of summer, 2002).

3. From Quarks to Hadrons

In the last lecture we discussed how precision measurements of b quark

transitions provide a sensitive probe of New Physics. Unfortunately, we

can only do experiments on hadrons, not free quarks and gluons, and a

simple quark transition like b → cud̄ can give rise to many complicated

hadronic process, such as B → Dπ, B → Dρ or B → Dππππ, etc., all

of which are completely incalculable analytically. The problem, of course,

Figure 10. An incalculable mess.
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is that even though the decay of a b quark is a short-distance process,

occurring over a typical distance scale r ∼ 1/mb, hadronization is by its

very nature long-distance (r ∼ 1/ΛQCD) and nonperturbative.

Fortunately, a Feynman diagram like that in Fig. 10 is in fact a ter-

rible representation of the physics of B decay. If you were to actually

calculate this diagram, you would find loop integrals containing wildly dis-

parate scales - mW (the scale of the short-distance physics underlying the

decay), mb (the typical energy release of the decay) and ΛQCD (the scale

of hadronization). Some of the physics would be perturbative, and some

nonperturbative. The short-distance physics would be independent of the

complications of hadronization, whereas the long-distance physics would be

insensitive to many of the details of the short-distance physics (just as fluid

mechanics is insensitive to the structure of the proton). Thus, a näıve dia-

grammatic analysis obscures much of the important physics of the process,

and the corresponding simplifications.

Example: b→ sγ

We can illustrate this with an instructive example. Suppose we were par-

ticularly sheltered theorists who had never heard of hadronization, but

wanted to calculate the rare FCNC process b→ sγ in perturbation theory.

As discussed in the previous section, because this decay arises at the loop

level in the SM, new physics at the weak scale can be competitive with the

SM rate, and so it provides a sensitive probe of weak-scale physics. We

therefore need to be able to calculate the rate in the SM, where it gets

contributions from the diagrams in Fig. 11.

Figure 11. Feynman diagrams contributing to b → sγ decay in the SM at one loop.
The contribution from intermediate u quarks is negligible.

Since we know about perturbation theory and infrared divergences we

know we have to include graphs with both real and virtual gluons to have

an infrared safe quantity. The decay is dominated by the t quark loop, and
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we find at O(αs)
13

Γ(b→ Xsγ) =
αG2

Fm
5
b

128π4
|V ∗

tsVtb|2
[

F2

(

m2
t

m2
W

)

+
4

3

αs

π

(

log
m2

t

m2
b

+ c

)]

(8)

where14

F2(x) = −2

3

{[

−1

4

1

x− 1
+

3

4

1

(x− 1)2
+

3

2

1

(x− 1)3

]

x− 3

2

x2

(x − 1)4
log x

}

+

[

1

2

1

x− 1
+

9

4

1

(x− 1)2
+

3

2

1

(x− 1)3

]

x− 3

2

x3

(x− 1)4
log x, (9)

Xs denotes s or s+gluon, c is a non-logarithmic term, and I have neglected

small terms suppressed by powers of m2
s/m

2
b .

When we tried to compare with experiment, we would discover that

nobody had measured the decay rate for the quark level process b→ Xsγ.

However, we could argue that the final state quarks and gluons have to

hadronize to something, so the appropriate thing to compare this to would

be the sum of the decay rates to all final states containing a strange quark

and a hard photon (K∗γ,K∗∗γ,Kπγ, etc.). Such decays are called inclusive

decays, to be distinguished from exclusive decays to a specific hadronic

state. The measured inclusive branching fraction is15

Br(B → Xsγ) = (3.3± 0.4)× 10−4 (10)

Comparing this with the theoretical prediction in Eq. (8) is, however, prob-

lematic.

At tree level, Eq. (8) gives to a branching fraction of about 1.3×10−4, or

almost a factor of three smaller than observation. Before we get too excited

about having seen evidence for new physics, we notice that the one-loop

correction to this result is huge, because it contains a term proportional

to logm2
t /m

2
b. This provides an enhancement by about a factor of seven,

which counteracts the αs/π suppression from the loop. Indeed, the one-

loop correction is more than a factor of two larger than the tree level result!

There is also a large scale uncertainty in this result: evaluating αs(µ) at

µ = mb increases the predicted branching fraction by almost an order of

magnitude to 1.2 × 10−3, or about four times the observed rate, while

choosing µ = mW lowers the prediction to about 7 × 10−4. Both mW

and mb are relevant scales in the problem, so there is no obvious way to

choose between them. The difference is formally a two-loop effect, but the

corresponding uncertainty in the branching fraction is huge. Perturbation

theory is therefore showing no signs of converging: two-loop, one-loop and

tree level effects are all about the same size.
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Clearly, we have a problem if we want to do precision physics. At the

moment we have no idea whether the experimental result is in accord with

the SM. Despite the fact that αs(mb)/π is less than 0.1, perturbation theory

is failing badly because of these logarithmic enhancements. Nor will this

problem stop at two loops - at n’th order in perturbation theory we will find

terms proportional to αn
s logn(m2

t /m
2
b). It looks like we can only predict the

decay rate to within an order of magnitude, much less the ∼ 10% precision

required to compete with the experimental result, and there is no way we

can use this mode to search for new physics.

Physically, this makes no sense. The scale mb is large enough for per-

turbation theory to be valid, and the scales mW and mt are completely

irrelevant to a decaying b quark - a b quark can’t resolve anything smaller

than its Compton wavelength, so as far as the b quark is concerned, it is

decaying via a point interaction. The poor behaviour of perturbation the-

ory must just be an artifact of the fact that we are not calculating things

sensibly. A sensible theory of b decay should never contain logarithms of

mt/mb or mW /mb in matrix elements.

Furthermore, we have been rather glib in comparing the quark-level

process with the inclusive hadronic process. The decay of a b quark to free

quarks and gluons is not the same as the decay of a B meson to all possible

hadrons:

(1) The initial states are different. A b quark bound in a hadron is not

the same as a free b quark - it is interacting with a complicated

state of strongly-interacting quarks and gluons, and so is not at

rest. In addition, there are dynamical light quarks and gluons in

the initial state. As a practical matter, the parton-level rate in

Eq. (8) is proportional to m5
b . Since this factor arises from phase

space, we might be tempted to replace this with m5
B for B meson

decay, which changes the prediction by about 50%. With no good

reason as yet to choose one over the other, this is a large source of

uncertainty.

(2) The final states are different. If we were to measure the inclu-

sive hadronic invariant mass spectrum, we would find broad peaks

at the masses of all the possible kaon resonances superimposed on

a continuum from multiparticle hadronic states, while the parton

level prediction has a peak at ms followed by a perturbative tail

from gluon and light-quark bremsstrahlung. Since the partons must

hadronize to something, we may argue that if we average both dis-
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tributions over a large number of resonances the two results should

be equal (this idea is called “quark-hadron duality”), but how many

resonances is enough? Should this argument also work for semilep-

tonic D decay, which is dominated by only two resonances (the K

and K∗)?

Both of these problems arise because of the interplay of physics at the

decay scale mb with the hadronization scale ΛQCD. Furthermore, in the

limit mb → ∞ (or, more precisely, ΛQCD/mb → 0) both should vanish -

an infinitely massive b quark is unaffected by collisions with light degrees

of freedom, the difference between mb and mB is of order ΛQCD and so a

subleading effect, and in the limit mb →∞ there is a always a large number

of hadronic resonances to average over. Thus, we expect

Γ

(

B →
∑

Xs=K∗, K∗∗,
...

Xsγ

)

= Γ

(

b→
∑

Xs=s,sg,

sgg,sq̄q,...

Xsγ

)

+O (ΛQCD/mb) . (11)

However, on dimensional grounds these corrections should be at the 10%

level, and as our phase space argument above indicates, may be much larger.

If we really want to use B decays to look for new physics, we need a sys-

tematic way of calculating ΛQCD/mb corrections.

3.1. Effective Field Theory

The two problems raised in the previous examples (ΛQCD/mb corrections

and large logarithms in perturbation theory) look different, but both have

a common origin: the presence of multiple scales in the problem

mW , mt � mb � ΛQCD. (12)

To make progress, we need a tool which systematically disentangles the

scales. This is the whole purpose of Effective Field Theory (EFT). Since

Ira Rothstein has lectured extensively on EFT’s at this school16, I will be

brief in my treatment and just stress the essential features17.

The idea behind EFT is that the theory you use to calculate physics

at a given scale µ should only contain degrees of freedom relevant at that

scale. Anything happening at shorter distance scales - virtual heavy particle

exchange, high momenta in loops - can’t be resolved by external particles

with momenta ≤ µ, and so is replaced in the EFT by local interactions.

Short-distance physics is therefore removed from the dynamics and simply

enters in the values of the coefficients of the local operators in the effective

Lagrangian.
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This is the same reasoning behind the multipole expansion in electro-

statics: if we have a distribution of charges of size r0 and are interested

in physics at distances of order r ∼ r0 away, we need to know the precise

charge distribution. On the other hand, at distances r � r0, it is much

more efficient to expand the theory in powers of r0/r. At leading order,

we only need to know the total charge to determine the potential. If we

wish to be more accurate, we can include the dipole moment, quadrupole

moment, etc, systematically expanding the true result in powers of r0/r.

It is important to stress that EFT’s are useful whether or not we know

the “full” (short-distance) theory. Even if we had a theory of quantum

gravity, we wouldn’t use it to calculate projectile motion. Similarly, the

fact that we have a renormalizable theory of the weak interactions doesn’t

mean that this is the appropriate theory to calculate low energy (µ� mW )

processes. It may seem like we are stepping back seventy years, but Fermi’s

theory of the weak interactions, appropriately generalized, is actually the

appropriate theory in which to calculate at low energies.

3.2. mW > µ > mb: Four-fermi theory generalized

A familiar example of at EFT is four-fermi theory, the EFT of the weak

interactions at scales much less than mW . Suppose we were interested

in nonleptonic b → c decay. At leading order this is determined by the

diagram in Fig. 12(a). However, all external momenta in this graph are of

order mb, while the mass of the W boson is mW � mb, so according to the

rules of EFT it should not be present in the theory. This is easy enough to

implement: since the momentum transfer q through the W boson is� mW ,

we can expand the amplitude in powers of q2/m2
W :

iA =
ig2Vcb

8

1

q2 −m2
W

c̄γµ(1− γ5)bd̄γµ(1 − γ5)u

= −4iGFVcb√
2

c̄Lγ
µbLd̄LγµuL

(

1 +
q2

m2
W

+ . . .

)

(13)

where ψL ≡ 1
2 (1−γ5)ψ. This amplitude may be reproduced to arbitrary or-

der in q/mW in an EFT with noW boson, but a series of higher-dimensional

operators:

LSM → Leff = LQCD+QED −
4GFVcb√

2

[

c̄Lγ
µbLd̄LγµuL

− 1

m2
W

c̄Lγ
µbLD

2
(

d̄LγµuL

)

+ . . .

]

(14)
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This procedure of determining the coefficients of the operators in the EFT

Figure 12. For momentum transfers q � mW , the W boson may be integrated out of
the effective theory and replaced by a series of nonrenormalizable operators.

by demanding that the full and effective theories give the same physics is

called matching, and the W (along with the Z, higgs and t quark) is said

to have been “integrated out” of the theory. In principle the EFT has an

infinite number of terms, but for q2 � m2
W (as is the case for b decays) it

is usually sufficient just to keep the first order or two.

At tree level this is all quite trivial, but the power of this approach

becomes evident when considering radiative corrections. Consider the one-

loop correction to the weak matrix element in Fig. 13 (a), and the cor-

responding diagram in the EFT (b). The full theory graph is a mess to

Figure 13. Radiative correction to b decay in the full and effective theories.

calculate (because it contains four propagators, two of which are massive),

and is a complicated function of mb and mW . By power-counting, it is UV

convergent. The effective theory graph is quite a bit simpler to calculate,

but by power counting is UV divergent. This extra divergence looks wor-

risome, but it shouldn’t be: the EFT is designed to get the physics right

only at scales µ� mW . The full theory is convergent because at momenta

µ � mW the W propagator softens the high-momentum behaviour of the

loop integral. Since the EFT isn’t supposed to get the physics right at
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momenta ≥ mW , it is not surprising that it is divergent. (Both graphs are

also IR divergent.)

The EFT graph therefore requires additional renormalization. The re-

sult is then scheme-dependent, so it is not clear that it is telling us anything

useful. However, the full theory graph will contain logarithms of the form

∑

ij

cij ln
m2

W

pi · pj
(15)

where the pi’s are the external momenta in the graph, in addition to in-

frared divergent logarithms of the gluon mass (if we choose to regulate the

theory this way). These are the large logarithms which we encountered in

the previous section, and which can spoil the convergence of perturbation

theory. Since the EFT gets the physics of the external states right, it must

reproduce these logarithms, and so must contain terms of the form

∑

ij

c′ij ln
µ2

pi · pj
(16)

where c′ij = cij+O(1/m2
W ), and the renormalization scale µmust appear in

this way on dimensional grounds. In addition, the infrared divergences arise

from low-momentum physics, so are identical (at leading order in 1/m2
W )

in the two theories.

Thus, as advertised, at one loop the EFT correctly reproduces the low-

energy physics (the logarithms) of the full theory. Of course, there are

other important, non-logarithmic terms, but in the EFT these do not arise

from loop graphs, but rather are contained in the coefficients of operators in

the effective Lagrangian. These must be included for consistency, because

before we can consistency calculate radiative corrections in the EFT, we

must also calculate the radiative corrections to the matching procedure in

Fig. 14 - in other words, we must adjust the coefficients of the four-fermi

operators in the EFT to ensure that matrix elements are the same in the

two theories up to O(αs, 1/m2
W ). This is illustrated schematically in Fig.

14. In this case, we find that we must add an additional operator to the

effective Lagrangian,

O2 = c̄LT
aγµbLd̄LT

aγµuL. (17)

whose coefficient is just given by the difference of the one-loop calculations

in the full and effective theories. Thus, the difference in the finite pieces

of the graphs goes into the coefficient C2(µ). Furthermore, to work consis-

tently to this order in αs, matrix elements of O2 in the effective theory are

only evaluated at tree level.
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Figure 14. One-loop matching.

In general, then, the effective Lagrangian may be written

Leff = LQCD+QED +
∑

i

Ci(µ)Oi (18)

where the Oi’s denote operators renormalized at the scale µ, and the Ci(µ)’s

are determined by matching to a given order in αs.

Note that in order for this whole procedure to work, it is crucial that

logarithms of external momenta (as well as infrared divergences) are iden-

tical in the full and effective theories - otherwise, the difference between

the graphs in the two theories could not be written as the matrix element

of local operators. Tree-level matrix elements of local operators can only

contain powers of external momenta (from derivatives), not logarithms.

At this point it may seem that we’ve gone through a long song-and-

dance for no apparent reason. The EFT graphs may be simpler than the full

theory graphs, but we have to calculate both to do the matching conditions.

So what have we gained?

(1) We have explicitly factorized the long- and short-distance physics,

with µ serving as the factorization scale. The long-distance physics

(the logs of µ2/pi · pj) is contained in the matrix elements of the

operators Oi, while the short-distance logs of mW /µ are contained

in the coefficients in the effective Lagrangian. Note that the long-

distance physics is process-dependent (differing for different external

states) whereas the short-distance physics is incorporated into the

parameters of the theory, and so is independent of the particular

process being studied.

(2) Because the matching conditions are independent of the external

states, we may calculate them using any external states we choose.

In particular, if we are working at leading order in 1/m2
W , we may

calculate the matrix elements in both theories between external

states with zero momentum, which will greatly simplify the cal-

culations. Both theories will give infrared divergent results, but the
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infrared divergences will cancel in the matching.

(3) Finally, since the renormalization scale µ is arbitrary, we can elim-

inate large logarithms in matrix elements by simply choosing to

renormalize the theory at µ ∼ mb. Note that there appears to be

a tradeoff here: choosing µ ∼ mb makes perturbation theory work

well for matrix elements, but poorly for the matching conditions,

since the coefficients Ci(µ) in Eq. (18) will contain the large loga-

rithms. However, the renormalization group gives us the best of

both worlds: we can calculate the matching conditions in the EFT

renormalized at µ ∼ mW , where perturbation works well for the

Ci’s, and then use the renormalization group equations (RGE’s)

to lower the renormalization scale to µ = mb, where we calculate

matrix elements.

Let me elaborate on that last point. Matrix elements of the effective

Hamiltonian are physical, and so independent of the unphysical renormal-

ization scale µ. Thus,

µ
d

dµ
〈Ci(µ)Oi〉 = 0 (19)

and so

µ
d

dµ
Ci(µ) =

∑

j

γjiCj(µ) (20)

where d/dµ is the total derivative, including the change in the coupling

g(µ):

µ
d

dµ
= µ

∂

∂µ
+ β(g)

∂

∂g

β(g) = µ
dg

dµ
≡ β0

g3

16π2
+ . . . (21)

and β0 = −(11 − 2nf/3) for nf light quark flavours. The anomalous di-

mension matrix is defined by

γji ≡ Z−1
jk

(

µ
d

dµ
Zki

)

(22)

where Zij relates the bare and renormalized operators,

Obare
i = ZijOj . (23)
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The RGE is solved by diagonalizing the anomalous dimension matrix; for

the simple case where there is only one operator O(µ), the solution is

C(µ2) =

(

αs(µ1)

αs(µ2)

)−
γ0

2β0

C(µ1) (24)

where the anomalous dimension of the operator O is γ0αs(µ)/4π. Expand-

ing this out gives

C(µ2) =

(

1− αs(µ2)

4π
γ0 ln

µ1

µ2
+
αs(µ2)

2

32π2
γ0(γ0 + 2β0) ln2 µ1

µ2
+ . . .

)

C(µ1).

(25)

and we see that the complete series of leading logs of µ2/µ1 has been

summed by the RGE and put into the coefficient function C(µ2).

The procedure is then straightforward. We calculate the matching con-

ditions at the high scale µ = mW , where perturbation theory works well.

Then, using the RGE, we evolve the coefficients from µ = mW to µ ∼ mb.

The large logarithms are summed to all orders in the Ci(µ)’s, and matrix

elements at µ = mb contain no logarithms of m2
b/m

2
W .

Note that the leading logs in Eq. (25) correspond to matching at tree

level, running at one loop and taking matrix elements at tree level. In-

cluding the one-loop matching corrections and one-loop matrix elements

corresponds to including terms of order αn+1
s lnn µ1/µ2. This is the same

order as the terms summed using the two-loop running, and so both must

be included to work consistently at this order. Thus, as a general rule, the

matching conditions and matrix elements must be evaluated at one lower

order in αs than the anomalous dimensions of the operators.

3.2.1. Semileptonic decay

Let me illustrate this with a few examples. In the SM, there are many

flavour changing operators in the effective theory belowmW , but for a given

process one only deals with the appropriate subset of operators. Semilep-

tonic b → c (or b → u) decay is the simplest: at leading order in 1/mW ,

the only operator is

O(µ) = c̄Lγ
µbLν̄eγµeL. (26)

Since c̄γµ(1− γ5)b is a partially conserved current in QCD (because chiral

symmetry is only softly broken by the quark masses mc and mb), this

operator requires no additional renormalization, and so does not run below



January 26, 2004 10:20 WSPC/Trim Size: 9in x 6in for Proceedings tasi˙02

21

the scale mW . Thus,

C(mb) = C(mW ) = −4GF√
2
Vcb (27)

and there are no large logarithms of mb/mW in the semileptonic b decays

to sum. The final result is

Γ(b→ Xc`ν̄) =
G2

F |V 2
cbm

5
b

192π3
f(mc/mb) +O(αs) (28)

where

f(x) = 1− 8x2 + 8x4 − ... (29)

and the O(αs) terms do not contain any logarithms of mW .

3.2.2. Nonleptonic b→ c decay

Nonleptonic decays are considerably more complicated. The simplest non-

leptonic decay, the ∆b = 1, ∆c = 1 (i.e. b → cqq̄) transition, is mediated

at tree level by the operator

OI = c̄Lγ
µbLd̄LγµuL (30)

where

CI(mW ) = −4GF√
2
VcbV

∗
ud. (31)

However, under renormalization, diagrams such as that in Fig. 13 (b) re-

quire a counterterm with a different colour structure:

OII = c̄L,iγ
µbjLd̄L,jT

aγµu
i
L (32)

where i and j are explicit colour indices. (OII is just a convenient linear

combination ofO1 andO2 from the previous discussion.) The corresponding

RGE is therefore a matrix equation

µ
d

dµ

(

CI(µ)

CII(µ)

)

=
αs(µ)

4π

(

γ11 γ12

γ21 γ22

) (

CI(µ)

CII(µ)

)

(33)

where, at one loop,

γ11 = γ22 = −2, γ12 = γ21 = 6. (34)

Since γ12 and γ21 are nonzero, OI and OII mix under renormalization. The

solution to Eq. (33) is

CI,II(µ) =
1

2

[

(

αs(mW )

αs(µ)

)
6

23

±
(

αs(mW )

αs(µ)

)− 12

23

]

. (35)
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Thus, even though CII(mW ) = 0 at tree level, it is induced for µ < mW .

Using αs(mW ) = 0.12 and αs(mb) = 0.22, we find

CI(mb) = 1.11, CII(mb) = −0.26. (36)

3.2.3. b→ sγ decay

The ∆b = 1, ∆s = 1 FCNC decay b → sγ is more complicated still. The

diagrams in Fig. 11(a, b) match onto an operator in the EFT of the form

O7 ∼ s̄Lσ
µνbRFµν (37)

whose matrix element determines the decay rate at tree level. However,

O7 mixes under renormalization with a whole slew of other operators. For

example, the operator b̄Lγ
µcLc̄LγµsL requires O7 as a counterterm from the

graph in Fig. 15. It turns out that a total of eight operators are required18:

Figure 15. O2 and O7 mix under renormalization. This is a two-loop graph, but it con-
tains only one strong loop and so contributes to the leading order anomalous dimension
matrix.

Heff =
4GF√

2
VtbV

∗
ts

8
∑

i=1

Ci(µ)Oi (38)

where

O1 = (c̄Lβγ
µbLα) (s̄LαγµcLβ) , O2 = (c̄Lαγ

µbLα) (s̄LβγµcLβ)

O3 =
∑

q=u..b

(s̄Lαγ
µbLα) (q̄LβγµqLβ) , O4 =

∑

q=u..b

(s̄Lαγ
µbLβ) (q̄LβγµqLα)

O5 =
∑

q=u..b

(s̄Lαγ
µbLα) (q̄RβγµqRβ) , O6 =

∑

q=u..b

(s̄Lαγ
µbLβ) (q̄RβγµqRα)

O7 =
e

16π2
mbs̄Lασ

µνbRαFµν , O8 =
g

16π2
mbs̄Lασ

µνT a
αβbRβG

a
µν (39)

and the α’s and β’s are colour indices. At leading order in αs only C2(mW ),

C7(mW ) and C8(mW ) are nonzero, but the other operators mix with these
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under renormalization, so one needs an 8× 8 anomalous dimension matrix

to obtain C7(mb). Furthermore, the calculation is complicated considerably

by the fact that the mixing of O2 −O6 with O7 and O8 first occurs at the

two-loop level, through diagrams like that in Fig. 15. Since there is only one

QCD loop in these diagrams, they contribute to the anomalous dimension

matrix at leading order.

The leading order (LO) RGE’s for b → Xsγ were first solved by Grin-

stein, Springer and Wise18 in the simplified approximation in which the

mixing of O3−O6 with O7 and O8 was neglected. With this simplification,

they found

C7(mb) =

[

αs(mW )

αs(mb)

]
16

23

{

C7(mW )− 8

3
C8(mW )

[

1−
(

αs(mb)

αs(mW )

)
2

23

]

+
232

513

[

1−
(

αs(mb)

αs(mW )

)
19

23

]}

. (40)

The complete anomalous dimension matrix was later completed by

Misiak19; the results differ from this by about 10%. Resumming the lead-

ing logs in this way increases the tree level theoretical prediction in Eq. (8)

by roughly a factor of three, bringing the prediction into agreement with

the measurement, Eq. (10). However, there is still about a 25% theoretical

uncertainty in this prediction, just by varying the renormalization scale by

about a factor of two about µ = mb. For precision physics, this uncertainty

is still disturbingly large, and to reduce it the next-to-leading-order (NLO)

calculation is required.

The complete NLO calculation of b→ Xsγ is probably the most involved

QCD calculation ever performed. There have been many papers over the

past ten years to get to the current state of the art20. The complicating

factor is that, since the leading order RGE equations involve two-loop dia-

grams, the NLO calculation requires three-loop anomalous dimensions, as

well as two-loop matching conditions and matrix elements. The current

state of the art gives20

Br(b→ Xsγ)
theory

Eγ>1.6 GeV
= (3.57± 0.30)× 10−4. (41)

Comparing this with the experimental result, Eq. (10), we see that as long

as the 1/mb corrections relating this to the branching fraction for B → Xsγ

are small, there is little room for discovering new physics in this decay. Since

the NNLO calculation requires four-loop calculations, it is unlikely that the
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theoretical error in this prediction will be able to be signficantly reduced

anytime soon.

3.3. µ < mb: HQET

In the parton model calculation of inclusive B widths no scales below mb

appear in the calculation, so it is sufficient to work with the effective four-

fermi theory discussed in the previous section, renormalized at µ = mb.

This is a consequence of the fact that at leading order in 1/mb the decay

is entirely determined by short (r ≤ 1/mb) distance physics. On the other

hand, decays to specific final states (exclusive decays) do get contributions

from long distance physics, since that determines the details of hadroniza-

tion. For example, to calculate the exclusive process B → K∗γ instead of

the quark level process b → Xsγ, we need to know the matrix elements of

all eight operators (39) in the effective Hamiltonian (38) between a B me-

son and a K∗, which are all determined by long-distance physics. Thus, in

keeping with the EFT philosophy, we would like to work in an EFT which

factorizes the physics of the parton-level decay at µ = mb from the physics

at lower scales.

Since the long-distance contribution to exclusive decays is nonpertur-

bative, it’s not clear that switching to an EFT will be particularly useful,

since EFT doesn’t give us any new tools to solve strongly coupled theories.

However, there are still reasons to switch to an EFT description:

(1) The EFT allows us to identify simplications (in particular, approx-

imate symmetries) which (in some cases) still allow us to say some-

thing about the hadronic physics.

(2) The only way to calculate nonperturbative physics is to use lattice

gauge theory. It is extremely inefficient to attempt to simulate a

wide range of energy scales on the lattice, since the lattice spacing

must be very fine (to simulate short distances correctly) and the

lattice must be large (to fit the long-distance physics in). It is much

more efficient to take care of the short-distance physics analytically,

and only simulate the long-distance physics on the lattice. EFT

does this automatically for us: an EFT renormalized at µ can be

matched smoothly onto a theory with a lattice spacing a ∼ 1/µ.

I won’t have much to say about lattice gauge theory in these lectures, so I

will instead focus on the first point.

In general, factorizing physics at mb from lower scales in B decay is



January 26, 2004 10:20 WSPC/Trim Size: 9in x 6in for Proceedings tasi˙02

25

a much trickier procedure than simply integrating heavy particles out of

the theory, since in a given decay there are partons carrying large (∼ mb)

momenta (such as the constituents of the K∗ in B → K∗γ decay), so there

may be both hard (∼ mb) and soft (∼ ΛQCD) momentum transfers in the

same process. This should be contrasted with four-fermi theory, where no

external momenta are of order mW . It is not obvious how to unravel the

physics at these different scales, making it complicated to construct the

appropriate EFT. I will say a little bit at the end of these lectures on the

general problem, but in this section I will discuss an important case where

we do not have to worry about such subtleties.

“Heavy Quark Effective Theory”21,22,23 (HQET) is the EFT for a single

heavy quark in which all hadronic momentum transfers are much smaller

than mb. This is much simpler than the general case because the scale mb

never enters the dynamics, so there is no complicated dynamical unraveling

of scales required. This is the appropriate theory for semileptonic B to D

decay, for example, at least in the region of phase space in which the D

recoils slowly. However, it is not appropriate for B → K∗γ decay, since in

the limit mb → ∞ the recoiling K∗ carries energy of order mb/2, which is

not � mb in any limit.

HQET is conceptually a bit different from four-fermi theory. We can’t

simply integrate the b quark out of the theory as we did the W bosona,

because there are b quarks in the external states. Instead, since all hadronic

momentum transfers in HQET are (by definition) � mb, it is convenient

to split the b quark momentum into a “large” piece (scaling like mb) and a

“residual” piece (scaling like ΛQCD):

pµ
b = mbv

µ + kµ (42)

where vµ is a fixed four-velocity (usually chosen to be the four-velocity of the

meson, although any velocity differing from this by at most O(ΛQCD/mb)

will do). Since all momentum transfers are soft, scattering in the EFT can

only change the residual momentum kµ. The EFT can then be obtained

by expanding amplitudes in powers of kµ/mb.

This is easy to do: for example, expanding the b quark propagator in

powers of kµ/mb gives

p/+mb

p2 −m2
b + iε

=
mbv/ +mb

2mbv · k + iε
+O

(

kµ

mb

)

=

(

1 + v/

2

)

1

v · k + iε
+ . . . (43)

aalthough we do integrate out b quark loops
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which can then be inverted to give the kinetic term in the EFT:

LHQET = b̄viD · vbv +O

(

1

mb

)

. (44)

Note that the propagator includes the projector 1
2 (1+v/), which projects out

the upper 2 (particle) components on the b field, so the EFT is a theory of

2 component spinors bv. The bv fields have also been defined with a large

phase exp(imbv · x) relative to the QCD field, so that derivatives acting

on the bv’s pull down factors of kµ instead of pµ
b . The Feynman rules for

HQET are shown in Fig. 16.

Figure 16. Feynman rules for HQET at leading order.

Let me make some comments:

(1) Working for simplicity in the rest frame of the meson, vµ =

(1, 0, 0, 0), we see that the propagator is just the nonrelativistic

energy k0 of a static quark, and that it couples only to the electric

field (via the scalar potential A0). Such objects had actually been

extensively studied before the advent of HQET - they are called

Wilson lines, and are simply static colour charges. Indeed, this is

exactly what a heavy quark looks like in the mQ → ∞ limit: since

all external momenta are negligible compared with mQ, interactions

can’t change the 4-velocity of the heavy quark, so in its rest frame

it is just a static source of colour.

(2) The leading order HQET Lagrangian has no reference either to mb

or to the spin of the quark. Physically, this is because of the pre-

vious comment: as long as mQ is much greater than any external

momentum, the mass of the heavy quark is irrelevant to its dynam-

ics - it’s just a static source. Furthermore, the magnetic moment of

a particle is inversely proportional to its mass, so the colour field of

an infinitely massive quark only depends on its total charge, not its

spin. This simple observation has profound implications, because

it means that HQET has an enhanced symmetry compared with

QCD: for nh heavy flavours, long-distance QCD is symmetric un-

der the interchange of either spin state of any of the heavy flavours
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with the same four-velocity. Hence, the Lagrangian for HQET with

nh heavy flavours with the same four-velocity,

L =

nh
∑

i=1

h̄i,viD · vhi,v (45)

has an SU(2nh) spin-flavour symmetry. This will prove very useful

shortly. Note that the symmetry exchanges quarks of the same

velocity, not momentum.

(3) We can easily go to higher orders in 1/mb by matching Green’s

functions24,25. For example, the three-point quark-quark-photon

vertex can be expanded using the Gordon decomposition

ū′A/u = ū′
[

(p+ p′)µ

2mb
+ i

qνσ
µν

2mb

]

Aµ

= v · Aū′ u+
1

2mq
(k + k′) · Aū′ u+ i

qν
2mb

ū′σµνAµu. (46)

The first term arises from the leading order kinetic term in the La-

grangian; the second two arise from dimension five operators which

can be added:

LHQET = b̄v iD · v bv +
1

2mb

(

b̄v(iD)2bv + CF (µ)
g

2
b̄vσ ·Gbv

)

+O(1/m2
b). (47)

The first correction term is just the k2/2m kinetic energy term,

while the second corresponds to the chromomagnetic moment of

the b quark, and CF (mb) = 1. This term is the leading operator

which breaks the heavy quark spin symmetry.

Weak Currents:

In addition, we can match weak currents between the full and effective

theories. At leading order in αs and 1/mb, this is trivial. For example, the

weak b→ c current matches onto the current

C(µ)b̄vγ
µ(1− γ5)c, C(mb) = 1 +O(αs) (48)

in HQET. However, unlike in the full theory, this operator requires ad-

ditional renormalization in the EFT. From the diagrams in Fig. 17, the

current has an anomalous dimension21,22

γO = − g2

4π2
(49)



January 26, 2004 10:20 WSPC/Trim Size: 9in x 6in for Proceedings tasi˙02

28

and so

C(µ) =

(

αs(mb)

αs(µ)

)−6/25

C(mb) (50)

But now we must be careful - this gives the correct running between µ = mb

Figure 17. Diagrams contributing to the anomalous dimension of a heavy-light current
in HQET.

and µ = mc. But below µ = mc, we now restrict all momentum transfers

to be < mc, which means we must match onto a new EFT where the c

quark is treated as heavy as well,

L = b̄viD · vbv + c̄v′ iD · v′cv′ +O(1/mb,c) (51)

and the current is

C(v · v′, µ)b̄vγµ(1− γ5)cv′ +O(1/mb,c). (52)

The anomalous dimension for this current is26

γT =
g2

3π2
(v · v′r(v · v′)− 1) (53)

where

r(w) =
1√

w2 − 1
ln

(

w +
√

w2 − 1
)

(54)

and so

C(v · v′, µ) =

(

αs(mb)

αs(mc)

)−6/25 (

αs(mc)

αs(µ)

)..

C(mb), µ < mc. (55)

Note that at when v = v′ (v · v′ = 1), the anomalous dimension γT

vanishes, and the heavy-heavy current doesn’t run. This is because of the

enhanced symmetry I mentioned earlier: when v = v′, the Lagrangian (51)

has an SU(4) spin-flavour symmetry which interchanges the spin compo-

nents of both heavy flavours. The current b̄vΓcv (for any Γ) is a generator

of this symmetry. It is therefore related to a conserved charge, and so its

anomalous dimension in HQET vanishes.
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3.4. Inclusive Decays and the OPE

For general inclusive decays, we can’t näıvely use HQET. Because the final

state particles typically carry large (O(mb)) momentum, it is not true that

all the hadronic momentum transfers are soft. However, as we have argued

on physical grounds, at leading order in ΛQCD/mb, B meson decay is iden-

tical to free b quark decay. The argument depended on scale separation, so

it is not surprising that we should be able to formulate the problem in the

EFT language. The trick is that because the final state particles are highly

energetic, through a bit of cleverness in the complex plane we can relate

the physical decay amplitude to an amplitude in which the decay products

off their mass shells by O(mb). In this region they may be integrated out

of the theory just like a massive W boson, and we may treat the rest of

the problem in HQET. This trick is called an operator product expansion

(OPE), and its use long predates b physics.

e+e− → hadrons and τ decays

In a classic 1975 paper, Poggio, Quinn and Weinberg27 showed that the

ratio

R(s) =
σ(e+e− → hadrons +X)(s)

σ(e+e− → µ+µ− +X)(s)
(56)

(where X denotes additional photons and fermi-antifermion pairs) was cal-

culable in perturbation theory. It is instructive to go through their argu-

ment to see how it applies to the case of B decays.

The optical theorem tells us that R(s) is proportional to the imaginary

part of the photon self-energy (see Fig. 18)

R(s) = 12π ImΠ(s+ iε) (57)

where

Πµν(q2) = i

∫

d4x eiq·x〈0|T jµ
EM(x)jν†

EM(0)|0〉. (58)

Independent of perturbation theory, we know the analytic structure of

Figure 18. The optical theorem.
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Π(q2): it is analytic everywhere except along the real axis for q2 > 4m2
π,

where there is a branch cut due to real intermediate states, as shown in

Fig. 19(a). (There are also isolated poles due to positronium bound states,

but these are not important for our discussion.) Near the branch cut there

are resonances which are sensitive to the details of long-distance QCD, so

perturbation theory breaks down; however, in unphysical regions far from

the cut we expect perturbation theory to be valid.

Figure 19. The analytic structure of Π(q2) in the q2 plane. The wavy line denotes the
branch cut due to real external states. (a) The smeared ratio for e+e− → hadrons is
determined by Π(q2) in the unphysical region. (b) The phase space integral along the
path C1 for hadronic τ decay may be deformed to the path C2, in the unphysical region.

Of course, we are interested in the physical region. However, Poggio et.

al. pointed out that if we average the value of R over a region of size ∆,

Cauchy’s theorem allows us to relate this to Π(q2) in the unphysical region,

where there are no hadrons:

R̄(s,∆) ≡ ∆

π

∫ ∞

0

R(s′)

(s′ − s)2 + ∆2
ds′ =

1

2i
[Π(s+ i∆)−Π(s− i∆)] . (59)

This shouldn’t come as a surprise. For q2 � Λ2
QCD annihilation is a short-

distance process. For a fixed physical value of q2 the cross-section might

be sensitive to long-distance physics (since q2 could be sitting just above or

below a threshold), but if we average over a number of states these effects

should cancel out, leaving us with a purely short-distance process. This

idea is called “global duality”, and it suggests that perturbation theory

should be appropriate for sufficiently smeared observables. (The definition

of “sufficient” here can be problematic, but in general it means that many

resonances are averaged over.)

This argument only strictly holds in the q2 → ∞ limit. To see how
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corrections arise, let’s study this in a bit more detail. In the physical region,

Π(q2) is nonlocal: the intermediate hadronic state is on shell, and so can

travel a long distance. On the other hand, in the unphysical region the

final-state quarks, like the virtual W in four-fermi theory, are far offshell,

and so can be integrated out of the EFT and replaced by a series of local

operators, as illustrated in Fig. 20. This procedure is called an operator

Figure 20. The operator product expansion (OPE) for Π(q2). The sum is over all
operators with the quantum numbers of the vacuum. O0 is the identity operator, and
O1 = Ga

µνGµνa.

product expansion (OPE) - morally, it’s the same as integrating heavy

particles out of the EFT, but in this case the intermediate particle isn’t

necessarily massive, just constrained by the kinematics to be far offshell.

Just as in an EFT, the matrix elements of operators of increasing dimension

are suppressed by powers of Λ2
QCD/q

2, and so for q2 � Λ2
QCD we can

truncate the series after the first order or two. The expression for the

cross-section therefore has the form

R(s) ∼
∑

i

Ci(µ)〈0|Oi|0〉 (60)

where the Oi’s include all operators with the quantum numbers of the

vacuum, and as in an EFT, the C′
is are calculated order by order in per-

turbation theory. The leading order operator (denoted O0 in the figure)

is the unit operator. Since its matrix element receives no radiative cor-

rections, its coefficient is given by the imaginary part of the perturbative

vacuum polarization, which is just the parton-level cross-section. Thus, as

advertised, at leading order the OPE simply reproduces the parton model.

The leading correction arises from the operator O1 = Ga
µνG

µνa, whose co-

efficient is obtained by calculating the T-product of two currents in which

two soft gluons are also emitted, and expanding the result in powers of the
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external gluon momenta. By dimensional analysis, the matrix element of

O1 is proportional to Λ4
QCD, so the leading corrections to the parton model

are suppressed by Λ4
QCD/s

2.

This technique has many applications. In addition to e+e− annihilation,

it can also be easily extended to hadronic τ decays28,

τ → ντ + hadrons (61)

which has been used to extract αs(mτ ) with high precision. In this case the

smearing is automatically done by the phase space integral, as illustrated

in Fig. 19(b). The phase space integral of the imaginary part of Π(s) from

s = 0 to s = m2
τ (weighted by the appropriate kinematic functions) is

equivalent to the weighted contour integral of Π(s) along the curve C1. C1

may be deformed to C2, which lies almost entirely in the unphysical region,

and so the OPE may be applied to the integrated rate.

OPE for B decays:

For B decays similar arguments hold, although in this case the initial state

contains a B meson rather than the vacuum29. This is in fact not much of

a complication, since the QCD vacuum is also nonperturbative and compli-

cated, and in both cases the hadronic physics enters in the matrix elements

of local operators. In addition, in both cases the matrix element of the

leading operator is normalized, so that the leading order calculation repro-

duces the parton model. As with τ decays, the phase space integral over

the lepton momentum in B decays performs the smearing automatically.

As in Eq. (58), the decay rate is proportional to the imaginary part of

the T-product of two weak currents. We can then decompose this into

different Lorentz structures:

T µν = − i

2mB

∫

〈B|T j†µbc (x)jν
bc(0)|B〉e−iq·xd4x

= −gµνT1(q
2, q · v) + vµvνT2(q

2, q · v)− iεµναβvαqβT3(q
2, q · v)

+qµqνT4(q
2, q · v) + (vµqν + vνqµ)T5(q

2, q · v). (62)

Because the heavy meson rest frame defines a vector vµ, the Ti’s are func-

tions of q2 and q · v instead of just q2. For fixed q2, the analytic structure

of the Ti’s in the q · v plane is shown in Fig. 21. The left-hand branch cut

corresponds to physical intermediate states for the decay process, while the

right-hand cut corresponds to intermediate states containing a q̄ quark and

two b quarks (which is related to scattering, not decay). The differential
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decay rate is given by the integral over the left-hand cut,

dΓ ∼
∫ m2

b

0

Im T µνLµν d(P.S.)

∼
∮

C1

Im T µνLµν d(P.S.)

∼
∮

C2

Im T µνLµν d(P.S.) (63)

where (dP.S.) denotes the relevant phase space factors, and the curves C1

and C2 are shown in the figure. Because of the analytic structure of Π, we

are free to deform the contour C1 into C2, which lies far from the resonances.

We then perform an OPE for the intermediate state, as illustrated in Fig. 21.

In addition to integrating out the intermediate hadronic state, in performing

Figure 21. The analytic structure of T µν . The phase space integral on the path C1

may be deformed to the path C2.

the OPE for B decay we also switch to HQET, since the matrix elements of

the resulting operators are to be evaluated at a renormalization scale below

mb. Explicitly, for semileptonic b → u decay, the forward matrix element

of T µν between free quarks with momenta pb = mbv + k is

ūγµPL(mbv/ − q/+ k/)γνPLu

(mbv − q + k)2 + iε
= (mbvα − qα)

ūγµγαγνPLu

(mbv − q)2 + iε
+O(kµ/mb)

= Pµν h̄vPLhv

(mbv − q)2 + iε
+O(kµ/mb) (64)

where Pµν = 1
2 (mbvα − qα)(vνgαµ + vµgαν − vαgµν + iεαµνλvλ). Note that

in the expansion, the external current q is taken to be of order mb, while

kµ ∼ ΛQCD. Taking the imaginary part converts the denominator to a



January 26, 2004 10:20 WSPC/Trim Size: 9in x 6in for Proceedings tasi˙02

34

delta function,

− 1

π
Im

1

(mbv − q)2 + iε
= δ

(

(mbv − q)2
)

. (65)

The axial piece of the matrix element of b̄vPLbv vanishes in B-mesons, so

at leading order the imaginary part of the nonlocal T-product is given by

the matrix element of the local operator

O0 = b̄vbv (66)

with coefficient given by Eq. (64). This operator is a symmetry current

of the theory - it just counts the number of b quarks in the state - so its

matrix element is fixed by symmetry. With the conventional normalization

of states,

〈B|h̄vhv|B〉 = 2mB. (67)

Thus, just as for e+e− annihilation and τ decay, the leading term in the

OPE simply reproduces the free quark process, as calculated in perturbation

theory.

At subleading order, the only dimension four operator is h̄vD
µhv. By

Lorentz invariance, its matrix element must be proportional to vµ, so

〈B|b̄vDµbv|B〉 = vµ〈B|b̄vv ·Dbv|B〉. (68)

However, from Eq. (44), the leading order equation of motion in HQETb

is v · Dhv = 0, so the matrix element vanishes at this order. Thus, there

are no corrections to the parton model at O(1/mb)! We will discuss higher

order corrections in the next section.

Note that one immediate implication of the OPE is that inclusive decay

rates for b-flavoured mesons are determined by parton-level kinematics,

not hadron kinematics. In particular, the rate for B → Xsγ decay is

therefore proportional to m5
b , not m5

B, since the latter would introduce a

1/mb correction to the parton rate, which we have seen is absent.

4. Applications

In the last few sections I introduced the main theoretical tools that allow

us to factorize long and short-distance physics. Now we proceed to some

applications.

bAn important, but sometimes unappreciated, feature of the equations of motion is that
they may always be applied at the operator level, even though the quarks in hadronic
matrix elements are not on shell. See Ref. 30.
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4.1. Inclusive Decays: Corrections to the parton model

We saw in the previous section that up to O(1/mb), inclusive B decay rates

are the same as that of free b quarks to quarks and gluons. To obtain higher

accuracy, we must include in the OPE operators of dimension five, of which

there are only two. Their matrix elements are conventionally denoted as

λ1 =
1

2mB
〈B|b̄v(iD)2bv|B〉

λ2 =
1

6mB
〈B|gb̄vσµνG

µνbv|B〉. (69)

(In another convention, these matrix elements are denoted µ2
π = −λ1 +

. . . and µ2
G = 3λ2 + . . . , where the ellipses denote terms suppressed by

powers of 1/mb.) These are the same operators which appear in the HQET

Lagrangian Eq. (47), and correspond to the kinetic energy of the heavy

quark in the meson, and the chromomagnetic energy. Since the latter is

the leading operator which violates spin symmetry, it may be determined

from the experimentally measured B −B∗ mass splitting,

λ2 =
1

4
(m2

B∗ −m2
B) +O(ΛQCD/mb) ' 0.12 GeV2 (70)

while λ1 cannot be simply related to meson masses. Thus, up to

O(Λ2
QCD/m

2
b), inclusive quantities may be expressed in terms of only two

unknown parameters, mb and λ1. From the HQET Lagrangian (47), the

meson and quark masses are related via

mB = mb + Λ̄− λ1 + 3λ2

2m2
b

+ . . . (71)

so mb may be exchanged for Λ̄, the energy of the light degrees of freedom

in the meson.

At the price of introducing even more parameters, one may continue to

expand to higher orders in 1/mb. At O(1/m3
b) there are two more operators,

whose matrix elements are defined as

ρ1 ≡
1

2mB
〈B|b̄v(iDµ)(iv ·D)(iDµ)bv|B〉

ρ2 ≡ −
i

6mB
εαµβδ〈B|b̄v(iDα)(iDµ)(iDβ)γδγ5bv|B〉. (72)

In addition, there are the T-products of 1/mb corrections to the HQET

Lagrangian with the operators (69), for a total of six unknown quantities.

For most quantities, expressions are available up to O(1/m3
b), although

uncertainties at this order mean that the 1/m3
b terms are typically used to

estimate theoretical uncertainties.
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4.1.1. Total decay widths:

For example, for b→ sγ we have, at tree level31,

Γ(B → Xsγ) =
αG2

Fm
5
b

32π4
|VtbVts|2|C7(mb)|2

[

1 +
λ1

2m2
b

− 9λ2

2m2
b

+ . . .

]

.

(73)

The λ2 term, which is known, reduces the rate by about 2%, while the

λ1 term is less than a 1% effect for reasonable values of λ1. The 1/mb

corrections are therefore very small for this decay, and do not appreciably

shift the prediction (41).

The semileptonic B → Xc`ν decay width is proportional to the CKM

matrix element Vcb. The result is29

Γ(B → Xceν̄) = Γ0

[

f0(m̂q) +
1

2m2
b

f1(m̂q, λ1, λ2) +A0(m̂q)
αs

π

]

, (74)

where

Γ0 =
G2

Fm
5
b |Vcb|2

192π3

f0(m̂q) = 1− 8m̂2
q + 8m̂6

q − m̂8
q − 24m̂4

q ln m̂q ,

f1(m̂q, λ1, λ2) = λ1

(

1− 8m̂2
q + 8m̂6

q − m̂8
q − 24m̂4

q ln m̂q

)

(75)

+λ2

(

−9 + 24m̂2
q − 72m̂4

q + 72m̂6
q − 15m̂8

q − 72m̂4
q ln m̂q

)

and A0 contains the one-loop radiative corrections32. Hence, with a pre-

cise determination of Λ̄ and λ1, a precise determination of Vcb is possible.

Finally, setting mc = 0 in this expression, we obtain the rate for B → Xu`ν,

Γ(B → Xueν̄) =
G2

Fm
5
b |Vub|2

192π3

[

1 +
λ1 − 9λ2

2m2
b

+

(

25

6
− 2

3
π2

)

αs

π
+ . . .

]

.

(76)

4.1.2. Differential widths and spectra:

We can construct an OPE not only for total decay rates, but also for differ-

ential rates and therefore spectral moments. There has been much recent in-

terest in such quantities because they allow the nonperturbative parameters

Λ̄, λ1 (and, in principle, higher order terms) to be determined experimen-

tally. This not only allows the rates in the previous section to be predicted

with high accuracy, but consistency between different observables provides

a stringent test of the whole OPE picture for inclusive decays. Some quan-

tities of particular recent interest include the first moment of the photon

energy spectrum in B → Xsγ decay31,33, the first moment of the hadronic
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energy spectrum in B → Xc`ν̄ decay34, and various weighted spectral mo-

ments of the charged lepton spectrum in B → Xc`ν̄ decay35. Working

to O(1/m2
b), each of these observables constrains a linear combination of

Λ̄ and λ1. For example, the results of several recent CLEO analyses are

shown in Fig. 22. This analysis obtained36

Figure 22. Experimental constraints on Λ̄ and λ1, from 36. Note the consistency be-
tween the different measurements.

m
(1S)
b = 4.82± 0.07E ± 0.11T GeV,

λ1 = −0.25± 0.02ST ± 0.05SY ± 0.14T GeV2 (77)

where the “1S” mass m
(1S)
b is an example of a short-distance b quark mass,

which is preferred for practical purposes to Λ̄ because of the poor behaviour

of perturbation theory when the quark pole mass is used in calculations.c

Global fits to a variety of spectral moments have also been performed by

various groups, using expressions up to O(1/m3
b), which give comparable

results38.

cThis is a fascinating side issue which I have no time to discuss here. See Ref. 37 for
further discussion.
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Combining these values with the experimental measurement of the

semileptonic B → Xc width gives36

|Vcb| = (40.8± 0.5± 0.4± 0.9)× 10−3 (78)

where the first error is from the uncertainty in the total semileptonic width,

the second from mb and λ1, and the third an estimate of higher order

corrections.

4.1.3. Vub and the shape function

In principle, one could use Eq. (76) and the values of mb and λ1 from the

moment fits to determine Vub from the total inclusive semileptonic b → u

width, with a theoretical uncertainty at the ∼ 5% level. However, because

of the ∼ 100× background from b → c decays, the inclusive b → u rate

can only be measured in restricted regions of phase space where the charm

background is absent. In these restricted regions, the usual OPE breaks

down.

This is easiest to see by instead considering the analogous situation in

inclusive b→ Xsγ decay. Suppose we were interested not in the total rate

but instead in the differential rate dΓ/dEγ This is in fact an important

experimental quantity, since one has to impose a hard cut on the photon

energy Eγ & 2.2 GeV to eliminate background from b→ c decay, and it is

important to know how much of the b → sγ this cuts out. Unfortunately,

the OPE gives us little information. At tree level the decay is purely two-

body, so the photon energy spectrum is just a delta function at Eγ = mb/2.

At higher orders in the OPE it doesn’t look much better - higher order

terms are proportional to derivatives of delta functions at the same point,

so this spectrum makes no sense unless we integrate it over some region

of Eγ . Radiative corrections populate the region E < mb/2 because of

gluon bremmstrahlung, but the resulting theoretical spectrum does not

have peaks due to the various hadronic resonances. This is an example of

quark-hadron duality failing if the rate is not sufficiently inclusive. But

how large a region must we integrate over?

The OPE tells us. The denominator T-produce of the currents for b→
Xsγ is

D =
m2

b

(mbv + k − q)2 + iε
=

1

(mbv − q)2 + 2k · (mbv − q) + k2 + iε
(79)

where kµ is the residual momentum of the b meson, defined in Eq. (42).

Writing qµ = xmbn̄
µ/2, where n̄µ is a light-like vector, and x = 1 corre-
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sponds to the maximum photon energy at the parton level, this becomes

D =
1

1− x+ k̂ · n+ (1− x)k̂ · n̄+ k̂2 + iε
(80)

(where k̂ ≡ k/mb). There are three possible regions:

(1) 1 − x � ΛQCD/mb: This is the usual assumption for the OPE. In

this region, the denominator in (80) may be expanded in powers of

kµ/mb, and the result matched onto local operators.

(2) 1 − x . Λ2
QCD/m

2
b: In this region, there is no sensible 1/mb ex-

pansion of the denominator, and the OPE breaks down. This is

physically reasonable: in this region, the invariant mass of the final

hadronic state is constrained to be of order ΛQCD, and so the de-

cay is dominated by a small number of resonances, and one would

expect an inclusive description to fail. Indeed, in this region the

leading term of the OPE is the same size as all the other terms in

the denominator, and so the expansion in powers of 1/mb doesn’t

converge.

(3) 1 − x ∼ ΛQCD/mb: In this region, the maximum invariant mass of

the final state is of order (ΛQCDmb)
1/2 � ΛQCD, and one would

expect an inclusive description to be valid. However, in this region

k̂ ·n and 1−x are both of order ΛQCD, and one cannot treat the k̂ ·n
term as a perturbation. This is often known as the shape function

region.39

In the shape function region, the usual OPE fails, but we may still expand

the denominator in powers of ΛQCD/mb:

D =
1

1− x+ k̂ · n+ iε
+ · · · ⇒ ImD = −πδ(1− x+ k̂ · n) + . . . (81)

A delta function containing the residual momentum is not related to the

matrix element of a local operator; instead, it is given by the function

f(ω) ≡ 〈B|b̄ δ(ω + iD̂ · n)b|B〉. (82)

This is a strange-looking object, but it looks less peculiar if we perform a

Fourier transform in ω and look at it in position space,

f̃(t) ≡ B̄|b̄(0)P exp

[∫ t

0

n ·A(t′)dt′
]

b(t)|B〉 (83)

where the P denotes path-ordering, and t measures the distance along the

light-like direction nµ: b(t) ≡ b(tn/mb). This is a nonlocal operator where
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the b and b̄ fields are separated by a light-like displacement, and the path-

ordered exponential is there to restore gauge invariance. (This is technically

known as a light-like Wilson line.) In n·A = 0 gauge, the function f(ω) gives

the amplitude for the light-cone component of the residual momentum kµ

to be ω. f(ω) is therefore the light-cone distribution function of the heavy

quark residual momentum; it is often referred to as the “shape function”.

(The shape function was actually originally defined as an integral of f(ω),

but this nomenclature seems to have stuck.)

Thus, at leading order in ΛQCD/mb the nonperturbative contribution to

the photon spectrum in b→ Xsγ is given, in the region 1− x ∼ ΛQCD/mb,

is determined by the light-cone distribution of the heavy quark residual

momentum.39

At this stage we don’t seem to have gained anything. However, the

function f(ω) is universal. Consider, for example, the shape of the hadronic

invariant mass spectrum in b→ Xu`ν̄ decay. In this case,

D =
m2

b

ŝ0 + 2k̂ · (v − q̂) + k̂2 + iε
(84)

where qµ is the momentum transfer to the leptons and ŝ0 ≡ (v − q̂)2 is

the parton-level hadronic invariant mass.d If ŝ0 � 1, then mbv − q is

almost a lightlike vector, so we write mbv− q = mb/2n̄
µ +∆µ. Thus, when

∆µ ∼ ΛQCD, we have s0 ∼ n̄ ·∆ ∼ O(ΛQCDmb), and

D ∼ 1

ŝ0 + k̂ · n+ iε
+ · · · ⇒ ImD = −πδ(ŝ0 + k̂ · n) + . . . (85)

Comparing this with Eq. (81), we see that the hadronic invariant mass

spectrum is determined in the region s0 . ΛQCDmb by the same function

that determines the shape of the photon spectrum near the endpoint of the

b → Xsγ. A similar argument shows that the rate for B → Xu`ν̄ in the

region E` > mb − ΛQCD is given by the same distribution function.

More precisely, at leading order in 1/mb the various spectra are deter-

dThis differs from the physical hadronic invariant mass (mBv − q)2; however, we won’t
worry about that complication here.
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mined by convoluting f(ω) with the appropriate kinematic functions:

1

Γ

dΓ

dÊγ

(B → Xsγ) = 2f(1− 2Êγ) + . . .

1

Γ

dΓ

dÊ`

(B → Xu`ν̄) = 2

∫

θ(1 − 2Ê` − ω)f(ω) dω + . . . (86)

1

Γ

dΓ

dŝH
(B → Xu`ν̄) =

∫

2ŝ2H(3ω − 2ŝH)

ω4
θ(ω − ŝH)f(ω − Λ̂) dω + . . .

This is useful phenomenologically for determining the CKM mixing an-

gle |Vub|. As mentioned in Sec. 4.2.1, the semileptonic width for b→ u decay

is only easily experimentally accessible in restricted regions of phase space,

such as E` > (m2
B − m2

D)/2mB, or sH < m2
D

40, where background from

b → c decay is absent. Because m2
c/m

2
b ' ΛQCD/mb, this corresponds in

both cases to the shape function region. The shape function f(ω) may then

be measured in B → Xsγ decay and then used to predict either the charged

lepton or hadronic invariant mass spectrum in semileptonic B → Xu decay

to obtain a theoretically clean measurement of |Vub|.
At subleading order in 1/mb the universality is broken, and new sub-

leading shape functions are required, introducing theoretical uncertainty

into the extraction of |Vub|. The expansion has been carried out systemat-

ically to O(1/mb), while large O(1/m2
b) effects due to annihilation graphs

has also been considered41.

4.2. Exclusive Decays and Symmetries

4.2.1. B → D∗`ν̄ and Vcb

In Sec. 3.3 I discussed the fact that HQET has a spin-flavour symmetry

which is not manifest in QCD. We made us of this in Sec. 3.4, where we

used the fact that the operator b̄vbv is a generator of that symmetry, and

therefore its matrix element is fixed (matrix elements of symmetry gener-

ators are related to conserved charges). However, heavy quark symmetry

gives us much more information. Any operator of the form

h̄i,vΓhj,v (87)

for any Dirac structure Γ and heavy flavours i and j is a generator of the

symmetry, and so has an absolutely normalized matrix element. Physically,

this just corresponds to the fact that exchanging the heavy quark in a meson

with another heavy quark of arbitrary spin has no effect on the light degrees

of freedom in the meson. This is true because, as we have discussed, in the
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mQ → ∞ limit a heavy quark simply behaves as a static source of colour

charge, and the so the light degrees of freedom are insensitive to the mass

and spin of the quark.

The most important phenomenological application of this symmetry

is to semileptonic B → D/D∗`ν̄ decays. Isgur and Wise22 showed

that heavy quark symmetry implies that all matrix elements of the form

〈H(∗)
i (v′)|h̄i,v′Γhj,v|Hj(∗)(v)〉 (where Hi(∗) denotes either the pseudoscalar

(D or B) or vector (D∗ or B∗) meson with a heavy quark of flavour i = c, b)

could be related to a single universal function:

〈H(∗)
i (v′)|h̄i,v′Γhj,v|H(∗)

j (v)〉 ∼ ξ(v · v′). (88)

ξ(v · v′) has been dubbed the “Isgur-Wise function”. It has the additional

property that, because of the absolute normalization discussed in the pre-

vious paragraph,

ξ(1) = 1. (89)

This means that all form factors for semileptonic B → D and B → D(∗)

decay are known at the kinematic point where the c quark moves with the

same velocity as the c quark (i.e., the q2 transfer to the leptons is maximal.)

We can use the EFT machinery to calculate the corrections to this

prediction. Quite generally, we can write the differential decay rate

dΓ

dw
(B̄ → D(∗)eν̄e) =

G2
F

48π3
|Vbc|2(mB −mD∗)2m3

D∗(w + 1)3
√

w2 − 1

×
[

1 +
4w

w + 1

m2
B − 2wmBmD∗ +m2

D∗

(mB −mD∗)2

]

|F (w)|2 (90)

where

F (w) = ξ(w) +O(αs) +O(1/mc,b) (91)

and w ≡ v · v′. The complicated w dependence just comes from the phase

space integrals.

Radiative Corrections: These arise from perturbative corrections to

matching conditions, as well as running of the b̄Γc current below µ = mb,

and so are completely calculable. The one-loop running calculation has

already been discussed in Sec. 3.3. From our previous results, then, we get

the leading perturbative correction to Eq. (90),

c̄γµ(1− γ5)b→
(

αs(mb)

αs(mc)

)6/25

c̄vγ
µ(1 − γ5)bv (92)
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and so

F (1) =

(

αs(mb)

αs(mc)

)6/25

+O(αn+1
s lognmc/mb) +O(1/mb,c). (93)

At next order, the current must be matched to O(αs) accuracy,

and the running performed to two loops (resumming all terms of order

αn+1
s lognmc/mb). This calculation has been done42. For practical pur-

poses, however, logmc/mb is not very large, and so it is not necessary to

sum terms of order αn
s logmc/mb to all orders. Instead, one typically uses

a fixed order calculation. This therefore includes terms of order α2
s which

are not enhanced by powers of logmc/mb, but neglects terms of O(α3
s) and

higher.

Power Corrections: Just as the Lagrangian has corrections correspond-

ing to higher dimension operators, so the weak current matches in the

EFT onto additional operators. For general v and v′, the only operator at

O(1/mc) is

c̄v′ i
←−
D/γµ(1 − γ5)bv (94)

and so at O(1/mc) we need the matrix element

〈D(∗)(v′)|c̄v′ i
←−
D/γµ(1− γ5)bv|B(v)〉 (95)

There are three possible form factors required to describe the matrix ele-

ments of this operator in HQET. Furthermore, additional 1/mQ corrections

arise due to T-products of 1/mQ operators in the effective Lagrangian and

the leading order current,

〈D(∗)(v′)|T (c̄v′γµbv,L1)|B(v)〉. (96)

However, at zero recoil (v = v′) things simplify dramatically: both of these

corrections vanish, although each for a different reason.

• The T-product in (96) vanishes by the Ademollo-Gatto theorem

when v = v′. The theorem states that the symmetry breaking

corrections to matrix elements of an approximate symmetry current

are second order in the breaking terms in the Lagrangian.

• The matrix element (95) can be related, when v = v′, to the matrix

element of the operators c̄v
←−
D · vbv, which vanishes by the equations

of motion.



January 26, 2004 10:20 WSPC/Trim Size: 9in x 6in for Proceedings tasi˙02

44

Thus, we have the nice result that the leading nonperturbative effects to

the absolute normalization of the Isgur-Wise function at zero recoil are of

order ΛQCD/m
2
c, not ΛQCD/mc.

25 This immediately raises this prediction

to a reasonable level of precision, since corrections of order Λ2
QCD/m

2
c are

expected to be of order 5%.

Putting everything together, we find

F (1) = 1 + η
(1)
A

αs(mb)

π
+ η

(2)
A

(

αs(mb)

π

)2

+ δ1/m2 +O
(

α3
s, 1/m

3
b,c

)

= 0.960± 0.007 + δ1/m2 +O
(

α3
s, 1/m

3
b,c

)

(97)

where η
(1)
A and η

(2)
A are perturbatively calculable, and δ1/m2 refers to the

incalculable O(1/m2
c,b) corrections. There have been a number of attempts

to estimate the size of these corrections from quark models, sum rules and

other methods. Combining the results in the literature gives the rough

estimate43

δ1/m2 = −5.5± 3% (98)

which gives the result

F (1) = 0.91± 0.04. (99)

Combining this with the world averaged measured value of dΓ/dw at the

endpoint gives the value44

|Vcb| = (41.9± 1.1expt ± 1.8theory)× 10−3. (100)

Note that this is not as precise as the result from inclusive decays, Eq. (78).

However, it is based on a completely different approach, both theoretically

and experimentally, and so the agreement between the two results within

errors is a nontrivial check on the validity of the 1/mb expansion.

4.2.2. B → J/ψKs and sin 2β

I have been focusing in these lectures on the heavy quark expansion and

its application to decay rates, etc. in CP conserving quantities, but I must

say something about CP violation. The B factories were designed, after

all, to study the SM picture of CP violation and while I cannot give this

subject its due, I would like to at least mention it45. It also provides a nice

illustration of another situation where we can use symmetry considerations

to make model-independent predictions for hadronic processes. In this case,

the relevant symmetry of QCD is CP.
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Consider charged B decay to some final state f . The amplitude for this

decay may be written as

Af = 〈F |H |B+〉 =
∑

k

Ake
iδkeiϕk . (101)

The sum over k corresponds to the sum over different amplitudes (or op-

erators) which contribute to the decay. In general, such amplitudes are

complex, since there may be real intermediate states, as shown in Fig. ... .

The phase ϕk is the weak phase which is present in the weak Hamiltonian

itself.

Similarly, the amplitude for the CP-conjugate process B− → f̄ may be

written

Āf̄ = 〈f̄ |H |B−〉 =
∑

k

Ake
iδke−iϕk . (102)

The important thing is that, because QCD is CP-conserving, the strong

amplitude is unchanged in the CP-conjugate process. The only change in

the amplitude arises because the CP-violating weak phase flips sign.

This immediately can give rise to CP-violation in the rates, since the

different amplitudes can interfere, and so we can have |Af |2 6= |Ā2
f̄
. The

problem is that in general, this interference depends on the values of the

strong amplitudes Ake
iδk, which in turn depend on long-distance QCD. For

most decays, then, it is difficult to translate measured CP violation into a

determination of the weak phases ϕk.

However, if we are clever, we can find processes for which the strong

phase drops out. A famous example is the decay B → J/ψKs, which

proceeds dominantly via the b → cc̄s process. (There is also a “penguin”

diagram which contributes to the decay, but it is proportional to the same

weak phase, so the argument still holds.) Since it is dominated by one

amplitude, it does not appear that we will get any CP violation, since CP

violation requires the interference of at least two amplitudes. However,

there is another amplitude hidden in the process: the B0 can oscillate into

a B̄0, which can then decay, and this mixing carries a relative phase (due to

Vtd in the Wolfenstein parametrization) which can interfere with the decay.

Thus, we really do have two interfering amplitudes, and the relative phase

between them is β.

More precisely it is easy to show that

Γ(B̄0(t)→ ψKS)− Γ(B0(t)→ ψKs)

Γ(B̄0(t)→ ψKS) + Γ(B0(t)→ ψKs)
= − sin 2β sin ∆mt+O(λ2) (103)
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and thus this measurement provides a clean measurement of sin 2β. The

current world average, from Belle and Babar, is15

sin 2β = 0.79± 0.14. (104)

This is shown in Fig. 8 along with the other experimental constraints, and

is clearly in good agreement with the SM expectation.

A similar analysis holds for the rarer decay B → φKs, which proceeds

primarily via the penguin decay b→ ss̄s. Since in the SM in the Wolfenstein

parameterization, neither b→ cc̄s nor b→ ss̄s contains a weak phase, both

measurements measure the phase β in mixing. However, since the second

process occurs at the loop level in the SM, it is easy to cook up models of

new physics which contribute a large phase to the b → ss̄s amplitude, so

consistency of the measured β from the two processes provides an important

test of the SM. Indeed, there has been recent excitement over a possible

discrepancy between these measurements46:

sin 2β(B → φKs) = −0.96±0.50+0.09
−0.11 (BELLE)

sin 2β(B → φKs) = −0.19+0.52
−0.50 ± 0.09 (BABAR) (105)

However, the experimental errors are high enough that the discrepancy with

Eq. (104) cannot be considered more than a tantalizing hint at present.

Unfortunately, it is not so easy to come up with decays which are dom-

inated by a single amplitude like this. For example, we could try a similar

trick with b → uūs to try to predict CP violation in B → ππ. In this

case, the relative phase between the amplitudes is γ + β = π − α, so one

could hope to use this decay to determine sin 2α. However, as shown in Fig.

6(c), this process receives contributions from both the tree-level b → uūs

amplitude and a penguin amplitude. The latter is a one-loop process, but

since it is a strong loop there is no reason for it to be suppressed, and it

contributes with different weak and strong phases. Thus, without knowing

the relative amplitudes between the tree and penguin processes, we can

no longer make a model-independent determination of α in this manner,

and more complicated and/or less theoretically rigorous approaches must

be used.

5. Conclusions

In these lectures I have discussed some of the most important applications

of the heavy quark expansion to B decays. This is a large and rapidly

evolving field. The applications I have discussed are mostly “classic”, in

that the theory was developed a number of years ago and is well understood.
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Recently, there has been much work attempting to further exploit (gen-

eralized) factorization in B decays, and to make use of the resulting sim-

plifications, in particular to better understand nonleptonic decays. As

an important example, several years ago, Beneke, Buchalla, Neubert and

Sachrajda47 proposed a generalized form of factorization applicable to two-

body nonleptonic decays. Within their framework, they showed that so-

called näıve factorization, in which matrix elements of two currents are

written as the product of matrix elements of the individual currents, arises

model-independently from QCD leading order in 1/mb and αs. This claim

has generated much interest in the field, both phenomenological and theo-

retical, as the validity of the arguments has been heatedly debated. More

recently, an EFT description which encompasses the kinematics of these de-

cays, dubbed Soft-Collinear Effective Theory (SCET) has been developed48.

Since the kinematics are much more complicated than in HQET - with hard,

soft and collinear momenta possible - the EFT is more complicated, and

(I believe) not completely understood. However, much progress has been

made in understanding the interplay of the various scales, and this is an

active and rapidly-evolving field.
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