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e jets in final states are backgrounds to new physics processes
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Jets in QCD

e jets in final states are backgrounds to new physics processes

e structure of jets contain signatures of hard scattering process -
can allow us to distinguish SM origin from new physics

 jets are sensitive to QCD over a wide range of energy
scales
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NB There is no unique definition of a jet - lots of choices on the market.

ex: Sterman-Weinberg jet definition (“cone” algorithm):

20

aSCF

(—4In28Ind —3Ind+...)

(o) 7T

for 8«1, jets are narrow and large logarithms can spoll perturbation
theory - sign of a multiscale process.
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NB There is no unique definition of a jet - lots of choices on the market.

ex: JADE, kr1, anti-Kkr, ... (“cluster” algorithms)

JADE: Calculate invariant mass of each pair of
particles, look at smallest:

’a‘ -if M2 < jQ? combine particles into a
// J, pseudoparticle, repeat
- \ -ifM?2 > jQ7 stop -> each pseudoparticle is a
% o

kt: same as JADE, but variable is

(These are “exclusive” jet definitions, relevant for e+e-

. | evant for ¢ 2 . (Ei Ej
machines. For hadron colliders, want “inclusive” jet Yij = Mij min (| —, —
definitions)

E;’ E;
f2~1—|—a31n2j—|—a§ln4j—|—...

for j«1, jets are narrow - same problem - again, fixed order PT
does not give reliable predictions.
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This is an old problem in pQCD (early 90’s). Typically, leading logs
are assumed/claimed to exponentiate. Current status:

SW: formal resummation of leading logs claimed, but unclear
(Mukhi & Sterman, 1982)
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This is an old problem in pQCD (early 90’s). Typically, leading logs
are assumed/claimed to exponentiate. Current status:

SW: formal resummation of leading logs claimed, but unclear
(Mukhi & Sterman, 1982)

JADE: no known way to resum ... leading logs do NOT
exponentiate (Brown & Stirling, 1990)
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JADE at O(a?):

HI,’L HM)“J“ -~
, JAOE
i JQL M H"‘<JQ # //)g

Individually, gluons 1 and 2 would form jets with the quark
and antiquark, respectively (this is the information in the O(as)
result)

BUT there are regions of phase space where JADE makes a
third jet out of the gluons ... this contributes to the rate at
leading log (O (a2 In* 5)) but we don’t see it from the one-
loop RGE! (kr was invented to avoid this).
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This is an old problem in pQCD (early 90’s). Typically, leading logs
are assumed/claimed to exponentiate. Current status:

SW: formal resummation of leading logs claimed, but unclear
(Mukhi & Sterman, 1982)

JADE: no known way to resum ... leading logs do NOT
exponentiate (Brown & Stirling, 1990)

kt: leading/subleading logs claimed to be resummable

(Brown & Sterling; Catani,
Dokshitzer & Webber)

Qu: is there a more systematic approach, generalizable to all
orders?
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The Bigger Picture:

All collider QCD problems are inherently multiscale.
Traditional QCD approach relies on factorization theorems

ex: p+p — tt+ X

0000|'000

O 0 ‘.AmmuM,, =
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o(p(P1) + p(P2) — tt + X)

B / dw1dz: Z fr(x1)fi(x2) - 0(qp(x1P) + qr(x2P) — tt)
0 f

+...
*
N\ @ /) — g
\ 0 = S
( D) - X
iy \_.‘.‘cototm’t,.i-- 0020 500 0L

(Feynman, Bjorken)
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o(p(Py) + p(P2) — ti + X)

N / dzidrs ) | fr(z1)fr(x2) ©(ar (21 P) + Gy (2 P) — th)
0 f

O 0 _.‘mmuM' ‘ - ““"‘ U (

V() ‘v' \w -' llf‘.
’..‘W

(Feynman, Bjorken)
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o(p(P1) + p(P2) — tt + X)
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(Feynman, Bjorken)
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o(p(Py) + p(P2) — ti + X)

1
— / dxidxs ’@ o(gf(x1P) + qGs(x2P) — tt)
0
I

+ ...
SHORT DISTANCE: cross section for free quarks

(and gluons) - can calculate in perturbation theory

LONG DISTANCE: f¢(x1) :probability to find
parton f with fraction x, of longitudinal momentum
of proton ("parton distribution function”) - property
of the PROTON - can’t calculate ... but
UNIVERSAL (can measure in another process)

Factorization: short and long-distance contributions are separately

well-defined (IR, collinear safe)
February 16, 2010 Johns Hopkins 14
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The proofs of factorization are long and complicated

(and based on exhaustive analysis of Feynman
diagrams ...)
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(Collins, Soper, Sterman, 1980’s)
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... but the physics is simple: ‘Separation of Scales l

o,

S S A/'"

e top quark production is a short-
distance process, hadronic physics is
long-distance -

e hadronic physics cannot resolve details
of short-distance physics -
hadronization is independent of details
of scattering (so parton distributions
are universal)

February 16, 2010 Johns Hopkins

1
— A
I"‘b
1
re~— ~10"%¥ m
my
“short” distance
“long” distance
r o~ ~ 107° m
Aqcp
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With restrictions on the final states, there are more scales in the
problem, and factorization gets more complicated:

ex: DY near threshold - sum large logs A+ energy
Q
Soft £+ __ qz_{_e_
P, X
Q(1l—r1)
£ Soft
1 do e ACh [ ( T ) ]
- T, — H;; 27 —— —Sthr 1— ’
o0 dg? Q%.: 1) [ e, g 2 (O e ) Ao
X.fi(SCM ll')fj(gbv /1’) Z_
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With restrictions on the final states, there are more scales in the
problem, and factorization gets more complicated:

A €nergy

PJ" %Q <<E __)\2@
PJ_~ Q([,A)-AL) (at least) 3 scales

(+AacD)

February 16, 2010 Johns Hopkins 18

Monday, February 22, 2010



800

Effective field theory - Wikipedia, the free encyclopedia
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Effective field theory

From Wikipedia, the free encyclopedia
(Redirected from Effective theory)

In physics, an effective field theory is an approximate theory (usually a
guantum field theory) that includes appropriate degrees of freedom to
describe physical phenomena occurring at a chosen length scale, while
ignoring substructure and degrees of freedom at shorter distances (or,
equivalently, at higher energies).

Contents [hide]

1 The renormalization group

2 Examples of effective field theories
2.1 Fermi theory of beta decay
2.2 BCS theory of superconductivity
2.3 Other examples

3 See also

4 References and external links

Johns Hopkins
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Effective field theory

e isa TOOL to separate scales in a multiscale process - a “turn-
the-crank” approach to factorization

e different momentum regions can be treated separately
(perturbative, extracted from experiment, lattice, etc.)

e renormalization group can be used to sum logs of small
parameters

February 16, 2010 Johns Hopkins
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We do this all the time in classical electrodynamics:

Physics at r~L is complicated - depends on details of
charge distribution

February 16, 2010 Johns Hopkins
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We do this all the time in classical electrodynamics:

1N

BUT ... if we are interested in physics at r>>L, things
are much simpler ...

February 16, 2010 Johns Hopkins 22
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We do this all the time in classical electrodynamics:

... can replace complicated charge distribution by a POINT
source with additional interactions (multipoles)...

February 16, 2010 Johns Hopkins
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Multipole expansion:

q ﬁCE 1 Lqd 5
V("’)Z;

\ e
-~ \ /)
| l l . o
{ ' . .
| — o o e o o \ ;

g, Pi, Qz Y e short distance quantities (depend on details of
d charge distribution)

<1> , <w_;> : <wzf3 > , -+ :long distance quantities (independent of
r r r short distance physics)

FACTORIZATION!

higher multipole moments <-> new effective interactions from
“iIntegrating out” short distance physics .. effects are suppressed by
powers of L/r

February 16, 2010 Johns Hopkins 24
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Field Theory generalization: Effective Field Theory

-at low momenta p<<A, a theory can be described by an effective

Hamiltonian where degrees of freedom at scale A have been “integrated
out”:

C;
H.g = Hg + E i
Ami
/ i
G \ J/
Hamiltonian in \/
A->c0 limit corrections determined by matrix elements of

operators O; - power counting determined by
dimensional analysis

C,,'s :shortdistance quantities (in QCD:
perturbatively calculable if A >>Aqcp)

<On> ! S : long distance quantities (in QCD:
nonperturbative ... need to get them elsewhere)

February 16, 2010

Johns Hopkins
Monday, February 22, 2010
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Field Theory generalization: Effective Field Theory

-at low momenta p<</, a theory can be described by an effective
Hamiltonian where degrees of freedom at scale A have been “integrated
out”:

C;
H.g = Hg + E O;
Ami
/ i
G \ J/
Hamiltonian in \/
A->c0 limit corrections determined by matrix elements of

operators O; - power counting determined by
dimensional analysis

C,,'s :shortdistance quantities (in QCD:
perturbatively calculable if A >>Aqcp)

<On> /g : long distance quantities (in QCD:
nonperturbative ... need to get them elsewhere)

- Effective Field Theory automatically factorizes the calculation
- by keeping more terms, can work to arbitrary accuracy in 1/A

February 16, 2010 Johns Hopkins
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(1) “Classic” (4-fermi theory and the like):

X
Oz
‘Zi:)% »_ﬁgz_»_) > >
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(1) “Classic” (4-fermi theory and the like):

X
Oz
‘21?751{— »_ﬁgz_»_) > >

(2) “Modern”; Heavy Quark Effective Theory (“HQET”)

é % )g /‘é an EFT of heavy, coloured,
/' ﬁ %% stable objects - b, ¢ quarks
QCD: heavy quark

HQET: Wilson line (static source of colour
charge)
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(1) “Classic” (4-fermi theory and the like):

X
Oz
‘21?751{— a—%—»—) > >

(2) “Modern”; Heavy Quark Effective Theory (“HQET?)

é % )E /§5 an EFT of heavy, coloured,
/' ﬁ %% stable objects - b, ¢ quarks
QCD: heavy quark

HQET: Wilson line (static source of colour
charge)

(3) “Post-Modern”: Soft-Collinear Effective Theory (“SCET”)

an EFT of energetic, light
coloured particles - jets!

DJ

February 16, 2010 Johns Hopkins
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EFT has some advantages over traditionally pQCD approach:

e systematically improvable - can look beyond leading order
e simplifies proofs of factorization

e conceptually simpler framework, unifying pQCD ingredients of
power counting, gauge invariance, RG evolution, etc.

e turn-the-crank!

Our goal (long-term): understand factorization in jet production in
lepton and hadron colliders using SCET.

Simple “warm-up” question: can we use SCET to sum
large logs in dijet rates?

February 16, 2010 Johns Hopkins 27

Monday, February 22, 2010



Soft-Collinear Effective Theory (“SCET”*): the Essentials

What is the correct EFT to describe the dynamics of a very

LIGHT, ENERGETIC quark?

February 16, 2010

<
Py ~ (@, \°Q,AQ)

*(Bauer, ML and Fleming, Phys.Rev.D63:014006,2000; Bauer, Fleming, Pirjol
and Stewart, Phys.Rev.D63:114020,2001, ...)

(originally developed to describe B decays in jetty regions of phase
space, but soon extended to traditional perturbative QCD problems)

Johns Hopkins 28
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Soft-Collinear Effective Theory (“SCET”): the Essentials

What is the correct EFT to describe the dynamics of a very
LIGHT, ENERGETIC quark?

ps ~ (NQ,N°Q, N Q) Interactions with soft
gluons don’t deflect
the worldline of the
<« <« energetic quark

Pl ~ (Q,0%Q,0Q)  Pq ~ (Q,A°Q,AQ)

February 16, 2010 Johns Hopkins 29
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Soft-Collinear Effective Theory (“SCET”): the Essentials

What is the correct EFT to describe the dynamics of a very
LIGHT, ENERGETIC quark?

ps ~ (A2Q,\’Q, \°Q) Interactions with soft

"o 220\ gluons don’t deflect
Pg ~ #(Q. 20 2Q) g the worldline of the
<« <« energetic quark
Pl ~ (Q,0%Q,0Q)  Pq ~ (Q,A°Q,AQ)

pe ~ (1= 2)(Q,NQ, Q)

BUT ... the quark can also split into two hard, collinear partons

February 16, 2010 Johns Hopkins 30
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Soft-Collinear Effective Theory (“SCET”): the Essentials

What is the correct EFT to describe the dynamics of a very
LIGHT, ENERGETIC quark?

Interactions with soft

gluons don’t deflect
i §> the worldline of the
PJ 3 « a energetic quark
< <

/%VW 3,

BUT ... the quark can also split into two hard, collinear partons
- get a JET of final state particles

- Jet energy is large, invariant mass is parametrically smaller
2 2
E;~Q Py~ AQ K Q

February 16, 2010 Johns Hopkins
Monday, February 22, 2010
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energy

Soft-Collinear Effective Theory (“SCET”): the Essentials A

1 Q

“Soft” particles  p“ = (pT,p~,pL) ~ (A°Q,2\°Q,\°Q)

“Collinear” particles p* = (pT,p~,p.) ~ (Q,\’Q, \Q)

collinear quark T —_ — = — — soft quark

A Q
- need a separate field for each momentum scaling (a hallmark of “postmodern”
EFT’s)

- in situations with multiple collinear directions, need multiple collinear fields
- couplings are interesting, because each field “sees” the others in different
ways ...

February 16, 2010 Johns Hopkins 32
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What SCET buys us: Soft and collinear modes FACTORIZE:

jet of collinear
Soft particle couples to

particles
collinear jet as a lightlike

soft particle can’t resolve jet - just Wilson line
sees a colour charge moving at
speed of light

Similarly, partons moving different collinear directions factorize:

collinear particles couple
to other jets as lightlike
Wilson lines moving in
anticollinear direction

@ . . . .
collinear particles in this
jet can’t resolve structure

of the other jet

February 16, 2010 Johns Hopkins 33
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Factorization at the level of the Lagrangian can be used
to prove various factorization theorems:

A Energy

“*hard” function B Q

v
do~H- -JX S

120

“let” function “soft” function

(this form of factorization has been known since the 9
1980’s, but now it is manifest in the Lagrangian) - )\ Q

February 16, 2010 Johns Hopkins
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Factorization at the level of the Lagrangian can be used
to prove various factorization theorems:

A Energy

Q

“*hard” function

120

“let” function “soft” function

(this form of factorization has been known since the 9
1980’s, but now it is manifest in the Lagrangian) - )\ Q

February 16, 2010 Johns Hopkins
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Factorization at the level of the Lagrangian can be used
to prove various factorization theorems:

A Energy

“*hard” function

|
do ~ H
= A\
“let” function  “soft” function
(this form of factorization has been known since the 9
1980’s, but now it is manifest in the Lagrangian) -1 )\ Q

February 16, 2010 Johns Hopkins
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Factorization at the level of the Lagrangian can be used

to prove various factorization theorems:

“*hard” function

|
v
do ~ H -J

“let” function “soft”

(this form of factorization has been known since the
1980’s, but now it is manifest in the Lagrangian)

February 16, 2010 Johns Hopkins

A Energy
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“*hard” function
|

“let” function “soft” ction

A Energy

Q

I

AQ

A0

cutoff/
renormalization
scale

each of H, J and S depends on physics at a single scale -
choose renormalization scale appropriately, using RGE to evolve
to appropriate scales sums large logarithms in perturbation theory

February 16, 2010 Johns Hopkins
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Technical aside ... zero-bin subtraction

Manohar and Stewart, Phys.Rev.D76:074002,2007

Describing different momenta of the same (in QCD) field with
separate fields can be subtle ... i.e. what is the difference
between a p — O collinear mode and a soft mode??

A: none! need to avoid double-counting

:‘(%ﬂtl’h
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Technical aside ... zero-bin subtraction

Manohar and Stewart, Phys.Rev.D76:074002,2007

Describing different momenta of the same (in QCD) field with
separate fields can be subtle ... i.e. what is the difference
between a p — O collinear mode and a soft mode??

A: none! need to avoid double-counting

- includes integration over soft region
=N (already accounted for in soft loop)
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Technical aside ... zero-bin subtraction

Manohar and Stewart, Phys.Rev.D76:074002,2007

Describing different momenta of the same (in QCD) field with
separate fields can be subtle ... i.e. what is the difference
between a p — O collinear mode and a soft mode??

A: none! need to avoid double-counting

includes integration over soft region
(already accounted for in soft loop)

“zero-bin”
In most examples before this work, the zero-bin integral was scaleless and vanished in
dimensional regularization, but it will be critical to getting phase space integrals right.

February 16, 2010 Johns Hopkins 39
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Back to ete” — jets: how do we calculate this in SCET?

20

Eoutside cone < 2/BQ L___)
/" 4
///Jr

=

For definiteness, ook at three different jet definitions: SW, JADE, K,
calculate 2-jet rate in SCET at O(as)

February 16, 2010 Johns Hopkins
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At O(ais), a jet definition just determines the dijet region in 3-body
phase space:

February 16, 2010 Johns Hopkins
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At O(ais), a jet definition just determines the dijet region in 3-body
phase space:

(pip1sp1) @
(3, p3 - P5) Sc)#‘l‘

S)

February 16, 2010 Johns Hopkins 41

Monday, February 22, 2010



At O(ais), a jet definition just determines the dijet region in 3-body
phase space:

(pip1sp1) @
(3, p3 - P5) Sc)#‘l‘

—

n

(p3,0,0) h
W\é&&ﬁ

n
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At O(ais), a jet definition just determines the dijet region in 3-body
phase space:

(pip1sp1) @
(3, p3 - P5) Sc)#‘l‘

February 16, 2010 Johns Hopkins
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At O(ais), a jet definition just determines the dijet region in 3-body
phase space:

_I_ n
b3 N\A%h
A ®)
n
Q (. p101) n
n
n

(p3.p5 %) @

© 0

February 16, 2010 Johns Hopkins 41
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How do we do integrate over the 2-jet region in SCET?

February 16, 2010 Johns Hopkins
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How do we do integrate over the 2-jet region in SCET?

P},F (1) partition phase space?

February 16, 2010 Johns Hopkins
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How do we do integrate over the 2-jet region in SCET?

p (1) DW
A - SCET has no hard cutoff on momenta

February 16, 2010 Johns Hopkins
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How do we do integrate over the 2-jet region in SCET?

p (1) DW
A - SCET has no hard cutoff on momenta

(2) integrate all modes over all phase space”

February 16, 2010 Johns Hopkins 45
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How do we do integrate over the 2-jet region in SCET?

p (1) DW
A - SCET has no hard cutoff on momenta

(2) MMWW
- particles can’t carry momenta apove the

cutoff!

February 16, 2010 Johns Hopkins 46
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How do we do integrate over the 2-jet region in SCET?

p (1) DW
A - SCET has no hard cutoff on momenta

(2) MMWW
- particles can’t carry momenta apove the

cutoff!

(3) as (2), but be consistent with power cgemting

February 16, 2010 Johns Hopkins 47
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(3) as (2), but be consistent with power counting:

(p7.p1,07)

)

(p3 P35 ,05) L (kT ky k)
+ (p3 . k3. p3) +

_ — - 1
(p5r7p2 7p5_) (p;—»k2 apé_) (p;_?kQ >p2 )

QCD n-collinear Nn-collinear soft

)

All of these processes occur, but momenta of different modes scale
differently with i:  pF ~ Q P ~ AQ kY~ A2Q

Phase space constraints must be consistent with scaling:

h ~ Q(N\%,1, )\
p1~ O ) M123 = (p1 + p3)?
— 7.+ 3
~ AZ,AZ,A2 ~Y p]_ k3 —I— O(A )
5041_ D3 Q( ) . - ,
O(X7)
h

so QCD constraint M2, < jQ? = p; k3 < jQ? in SCET

February 16, 2010 Johns Hopkins 48
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ex: JADE Mg, = jQ

Mgg =jQ?
h h
h
Mc?g =jQ*
JQ \ so{f
— > p;
n JQ 1-/)Q @ n
ki kg
Mf?g =jQ?
e
NB: phase space integrals M2 = §Q?
are unbounded in some o \
directions - get new UV JQ
divergences in phase
space integrals
>
: > D3 : > ks
JQ (1-7)Q @ o JQ
February 16, 2010 Johns Hopkins (zero-bin is the same as the soft phase space) 49
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P3
Q
ex: Kr (1- V5)Q | Yoz = 02
ng Ye
VY@ \
g h o Yag = Ye N h
> D3
Vi@ 1-=vy)Q Q@ soft
n (O bin) n
ki kg
A A A A

«~— Ygg = Yc

Yqg = Ye — VYQ

«~—Ygqg = Ye

@
[
—->

Vi@ Q2 (1-Vy)Q Q VyQ
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(1) Hard scale: matching onto SCET operator Oo
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do ~

JXS
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(2) Jet scale: emission of collinear gluons (incl. zero-bin subtraction)

—_ n
h -—

g

(loop graphs are scaleless - vanish in dim. reg.)

Vi@

1 a;Cr (3 2 3. u? [T N 7)
—o7 = —+ —Inj+ -1 2In—Inj —3In“j — — + —
JOGJADE 27 (26 + e Y + 2 an2 i Q2 J 7773 + 2
1 . a;Cr 2 2 pu? u? 2
_— ~40bin S| -1 2 -
soTRBe = 2L (-G T i gt )
1 1 i
_o.'n = 5.71 _ O.Obln
o0 JADE 0_0( JADE JADE
a;C 2 3 2 2 3 2 Z 2
_wCr (2 8 2 80
27 €2  2¢ € jQ? 2 jQ3 7 Q32 2

February 16, 2010
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do~ H' ! JRS
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(3) Soft scale: emission of soft gluons

(loop graphs are scaleless - vanish in dim. reg.) \/*
71Q —
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do~ H- -J XS
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Combine the results - reproduce QCD result
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Comments:

(1) zero-bin is non-trivial and required - phase space region is not
necessarily the same as soft

February 16, 2010 Johns Hopkins
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Comments:

(1) zero-bin is non-trivial and required - phase space region is not
necessarily the same as soft

(2) UV divergences in soft and collinear phase space integrals
cancel ... demonstrate with explicit IR regulator

February 16, 2010 Johns Hopkins
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Comments:

(1) zero-bin is non-trivial and required - phase space region is not
necessarily the same as soft

(2) UV divergences in soft and collinear phase space integrals
cancel ... demonstrate with explicit IR regulator

UV divergences

2

1 as;Cp (2 5 D? p?  pi 3 pf)
—o? = -1 —In“"—=4+2In—In— + —In— ce
O_OO'JADE Zym <€ n n Q2+ an nQ2—|—2 nc22 +
2

1 a,Cr [ 2 p3 p3 ) ( p3 p%) ( p3 p%) u2>
—o5 = — | In—= + In —= In—4+In—-—=|—2(ln— +1n In
oo TIADE = oo ( c <an2 Tiger) T\ Mg T e Q) qr) T

2 2 2 2
iof“ADE = @sCr (2 In P In P2 + § In Pr + E In &> + ... UV divergences cancel in sum
o0 27 Q* Q* 2 Q* 2 Q@2
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Comments:

(1) zero-bin is non-trivial and required - phase space region is not
necessarily the same as soft

(2) UV divergences in soft and collinear phase space integrals
cancel ... demonstrate with explicit IR regulator

(3) the soft physics is more subtle than it appears ...

February 16, 2010 Johns Hopkins
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Comments:

(1) zero-bin is non-trivial and required - phase space region is not
necessarily the same as soft

(2) UV divergences in soft and collinear phase space integrals
cancel ... demonstrate with explicit IR regulator

(3) the soft physics is more subtle than it appears ... it appears we
can use the RGE to renormalize H, J, S at the appropriate scales
and sum leading logs in the dijet rate ...

BUT this is known not to work for JADE! there are leading log
effects that are not captured by O(as) calculation (“non-global logs”).
Failure of factorization? (presumably) - need to understand further!

HI.’L HM )“Jh

AOF,
Hyx ddwﬁ‘"ﬂlw :#
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Other jet definitions (SW, k1) are similar, but each introduces a new
twist:

SW: phase space for zero bin is different from soft phase

space
ky ki ki
) ) L4 )
FE, = — - _
q ﬁQ 9(79 - 5 <_Eg — BQ
—E, = BQ 26Q
Eg = 6@
r
Oag =0 Ogg =0
b \
?qg =0 -> /.>
- »py >y ks
26Q (1-268)Q Q 26Q 26Q
(a) (b) (c)
n-collinear soft zero-bin
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Other jet definitions (SW, k1) are similar, but each introduces a new
twist:

SW: phase space for zero bin is different from soft phase
space _ T ¢

B
2. m g M 37?2 13)
—+ —+—-In— 4+3In— +2In" — — — + —
€2+2e+en5Q+ n5Q+ n5Q 4+2

1 sCr (4 2
s > F(—ln6—4ln25—|—81n61nu—ﬂ-—)
€ 2Q 3

v

SC 2 5
2SW: 1+a dl (—41n2,81n5—31n5—7;—|—2>

NB: RGE won’t let us sum logs of delta in soft function! need a new EFT in soft sector?
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Other jet definitions (SW, k1) are similar, but each introduces a new
twist:

kt: soft and jet functions are separately IR divergent

ke ky
A é 4 A é
~— Ygg = Ye
Yqqg = Yec — Yag = Ye
Y/
~—Yq9 = Ye
/ng = Ye
—
\/ N
> > kg
Vi@ Q2 (1-5)Q Q VieQ :
(a) (c)
n-collinear zero-bin
February 16, 2010 Johns Hopkins 62
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ks integral diverges in all dimensions! how is rate finite in EFT?

Vi@

February 16, 2010

Johns Hopkins
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—~ — k-~ integral diverges in all dimensions! how is rate finite in EFT?
dkg ekg 3
k3
L4
«~— Ygg = Ye
N
>
Vi@ ' N >ky
soft zero-bin has same asymptotic behaviour -
divergence cancels between soft and (zero-bin)
collinear - sum is FINITE
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—~ — k-~ integral diverges in all dimensions! how is rate finite in EFT?
dk; ek 3
k3
T4
«~— Ygg = Ye
->
Vi@ ' N > kg

soft zero-bin has same asymptotic behaviour -

divergence cancels between soft and (zero-bin)
collinear - sum is FINITE

2 m?
— In yc—3lnyc—6ln2—|—€—1
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jet and soft functions can’t be separately defined for kr ... failure of
factorization”?

not necessarily ... the cancellation occurs between unphysical (arbitrarily high
momentum) degrees of freedom in soft and collinear - is this an artifact of the UV
regulator? (dim. reg.)

Introduce UV cutoff in +/- directions

+
k3| < Ay

VyeQ

oLy
— 4+ —In— — 4+ 1In‘"— — —
€2+6 A% A? A?c 3

1, oCr (2 2 2 LuQ L, wP
In 1

o
oo 27

so the form of factorization is UV-regulator dependent
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The story thus far ...

- we have demonstrated consistent power counting for phase
space integrals in SCET - nontrivial zero bins, cancellations of
UV divergences between soft and collinear sectors

- soft logs don’t resum at this stage - failure of factorization?
presence of additional soft scales? - “non-global” logs
(Dasgupta & Salam): can we get a handle on these in EFT?

- kT may factorize, but appears dependent on UV regulator

To go further, we need to understand factorization theorems for jet
rates (in progress ...)

February 16, 2010 Johns Hopkins

65

Monday, February 22, 2010



(Lee, Sterman; Lee, Hornig, Ovanesyan;
Ellis, Vermilion, Walsh, Hornig, Lee)

Event Shapes in Jet production:

- probing structure of jets provides a powerful tool to distinguish light parton
jets to those produced by heavy particle decays

- define event shape parameters which can probe structure of jets, calculable

in QCD R
a = 0: “Thrust” 1 Q
1 T\ —|nil(1—a) a = 1: “jet broadening”
Ta<X) — @ Z ’pz |€
1€ X
& =
& 3 Ta "Q
& f A
g f
o B\
%,/QQ Q’/b‘ ,/'\QOQ"/
Q &
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Event Shapes in Jet production: (Lee, Sterman; Lee, Hornig, Ovanesyan;

Ellis, Vermilion, Walsh, Hornig, Lee)

i 1 a — :“ »
Ta Z |p ‘6 i ) . = 2 “LTrkL)JrSc;[adenin ?
’LEX =211 d

0.00 0.05 0.10 0.15 0.20 0.25
Ta

Figure 1: Angularity distributions for —2 < a < % at Q = 100 GeV, with & () hard, jet, and soft functions,
NLL resummation, and gapped model soft function.
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(Lee, Sterman; Lee, Hornig, Ovanesyan;

Event ShapeS in Jet pl’OdUCtiOﬂ: Ellis, Vermilion, Walsh, Hornig, Lee)

1 T _ (] — _ T ”
To(X) = = Z Pl e nil(1=a)  a = 0: Thrust”
Q iex a = 1: “jet broadening

Ellis, Vermilion, Walsh, Hornig, Lee (arXiv:1001.0014) have
recently generalized this analysis to multijet final states:
defined distributions for shapes of individual jets in various
schemes, proved factorization (nontrivial!) for jet shape
distributions and demonstrated renormalization group
running - still have an issue with “non-global” logs

scales: jet energies, cut on angular size of each jet,
measured values of jet shapes, other parameters introduced
by jet algorithm - difficult to do in traditional QCD approach

February 16, 2010 Johns Hopkins
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LHC and hadron colliders: life is complicated by nontrivial
initial state - incoming collinear fields in SCET

The parton model is only strictly applicable for fully inclusive final
states ... less inclusive states introduce anything from large logs
(resummation required) to new NP information. SCET is being

used to study these more complex factorization theorems.
(Stewart, Tackman, Wallewijn, arXiv:0910:0467)
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LHC and hadron colliders: life is complicated by nontrivial
initial state - incoming collinear fields in SCET

The parton model is only strictly applicable for fully inclusive final
states ... less inclusive states introduce anything from large logs
(resummation required) to new NP information. SCET is being

used to study these more complex factorization theorems.
(Stewart, Tackman, Wallewijn, arXiv:0910:0467)

ex: Drell-Yan X et

a) fully inclusive: parton 7
model holds Fa Py

£~ X

. d€, d£b pyincl Ta Tp
(o 4y} deq Z/ a €b "'J (5@ Sb’q ’H>fz(€aau)f3(€bau)
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LHC and hadron colliders: life is complicated by nontrivial
initial state - incoming collinear fields in SCET

The parton model is only strictly applicable for fully inclusive final
states ... less inclusive states introduce anything from large logs
(resummation required) to new NP information. SCET is being

used to study these more complex factorization theorems.
(Stewart, Tackman, Wallewijn, arXiv:0910:0467)

ex: Drell-Yan o+

b) threshold: new soft
function required Fa P

-

1 do déa o T
T = H; 3 —_— - — : i(€a, . :
oo dqg? =Q Z J(q N)/ £, & Sth [Q <1 £a€b> u] X fi (& /,L)f‘7 (Epy 1)
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LHC and hadron colliders: life is complicated by nontrivial
initial state - incoming collinear fields in SCET

The parton model is only strictly applicable for fully inclusive final
states ... less inclusive states introduce anything from large logs
(resummation required) to new NP information. SCET is being

used to study these more complex factorization theorems.
(Stewart, Tackman, Wallewijn, arXiv:0910:0467)

ex: Drell-Yan o+

Jeta
C) veto on hard central

H ‘“ <
jets: new “beam Fa Py
function” required

-
1 d
agpaprapy = 2 (0w [ dklde
TETAERER G @By [wa (B — ki B; |wo(Bf — kit
Xq z[wa( a aawav,u} J wb( b b s Lby U
XSihemi(kja klj_a H)
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LHC and hadron colliders: life is complicated by nontrivial
initial state - incoming collinear fields in SCET

The parton model is only strictly applicable for fully inclusive final
states ... less inclusive states introduce anything from large logs
(resummation required) to new NP information. SCET is being
used to study these more complex factorization theorems.

(Stewart, Tackman, Wallewijn, arXiv:0910:0467)

ex: dijet production - a similar story is conjectured

Jet 1

Jet 2
d) as (b), with leptons
replaced by jets

February 16, 2010 Johns Hopkins

Jet 1

Jet a

Jet 2

e) as (c), with leptons
replaced by jets
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There have been many other recent applications of SCET to collider
physics ... for example:

e electroweak processes & gauge boson production anohar, Keley, Chiu,
Fuhrer, Hoang)

e hard photon production in hadronic colliSioNs Becher, Schwartz)

e Higgs transverse momentum distribution wantry, Petrielio)

e Drell-Yan (Neubert, Becher)

e t-t production - soft radiation and precision extraction of the top
quark MAass (Fleming, Hoang, Mantry, Stewart)

and lots more ...
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Summary:

Effective Field Theory provides a powerful new tool to study
traditional pQCD problems, with distinct advantages over
traditional pQCD methods.

We are working on understanding factorization and jet
algorithms in this framework.

Lots of interesting work being done!
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