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 Inclusive determinations of Vub and 
Vcb - a theoretical perspective
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Global fit, summer ‘04:

sin 2β = 0.726 ± 0.037

Vub = (3.90 ± 0.08 ± 0.68) × 10−3 (~20% uncertainty)
CKMfitter inputs:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

α

∆m
d

ε
K

ε
K

|V
ub

/V
cb

|

∆m
s
 & 

∆m
d

α

βγ

ρ

η

e
x
c
lu

d
e

d
 a

re
a

 h
a
s
 C

L
 < 0

.0
5

C KM
f i t t e r

ICHEP 2004



March 17, 2005 CKM 2005 - Workshop on the Unitarity Triangle 3

- need a better 
determination of Vub to 
check for consistency 
with sin 2β
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sin 2β = 0.726 ± 0.037

Vub = (3.90 ± 0.08 ± 0.68) × 10−3 (~20% uncertainty)

Global fit, summer ‘04:

CKMfitter inputs:
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b

4

“Most” of the time,  details of b quark wavefunction 
are unimportant - only averaged properties (i.e.       ) 
matter “Fermi motion”

Theorists love inclusive decays ...

dΓ

d(P.S.)
∼ parton model +

∑
n

Cn

(
ΛQCD

mb

)n

kµ ∼ ΛQCD

〈k2〉

Γ(B̄ → Xu!ν̄!) =
G2

F |Vub|2m5
b

192π3

(
1 − 2.41

αs

π
− 21.3

(
αs

π

)2

+
λ1 − 9λ2

2m2
b

+ O

(
α2

s,
Λ3

QCD

m3
b

))

Decay:  short distance (calculable)
Hadronization:  long distance 
(nonperturbative) - but at leading order, 
long and short distances are cleanly 
separated and probability to hadronize is 
unity

e

νe

X

B

pX

q

... the basic theoretical tools are more than a decade old 
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What progress has been made 
(a) in the past decade?

• Vcb:  PRECISION 

• moment fits to determine nonperturbative matrix elements
• extensive tests of consistency (limits possible duality violations)
• data have improved to the level that theory is required to (ΛQCD/

mb)3

• Vub:  MODEL INDEPENDENCE

• moved beyond lepton endpoint to theoretically cleaner cuts 
(hadronic invariant mass, lepton invariant mass, combined cuts, P+, ...)

• SCET et. al.:  unravels scales relevant for cut spectra, generalizes 
shape function analysis beyond leading order, sums Sudakov logs ... 
theoretical errors now much better understood

5
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• Vcb:  

• Moment fits are better, inconsistencies have gone away with new 
data, error in Vcb down slightly.

• Vub:  

• Further development of SCET/subleading theory

➡ Perturbative and nonperturbative corrections & uncertainties 
are better understood.  

• New (possibly large) subleading effects discovered 

• P+ cut on spectrum added to list - some useful features

6

What progress has been made 
(b) since CKM ‘03?
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Vcb

7
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Γ(B → Xc!ν̄) =
G2

F |Vcb|2
192π3

(0.534)

(
mΥ

2

)5

×
[
1

Inclusive semileptonic b→c decay:
e
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Vcb
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Γ(B → Xc!ν̄) =
G2

F |Vcb|2
192π3

(0.534)

(
mΥ

2

)5

×
[
1 −0.22

(
Λ1S

500 MeV

)

O(ΛQCD/mb) : ~20% correction

−0.011

(
Λ1S

500 MeV

)2

− 0.052

(
λ1

(500 MeV)2

)
− 0.071

(
λ2

(500 MeV)2

)

O(Λ2
QCD/m2

b) : ~5-10% correction

+0.011

(
T1

(500 MeV)3

)
+ 0.002

(
T2

(500 MeV)3

)
− 0.017

(
T3

(500 MeV)3

)
− 0.008

(
T4

(500 MeV)3

)
−0.006

(
λ1Λ

(500 MeV)3

)
+ 0.011

(
λ2Λ

(500 MeV)3

)
− 0.006

(
ρ1

(500 MeV)3

)
+ 0.008

(
ρ2

(500 MeV)3

)

O(Λ3
QCD/m3

b) : ~1-2% correction

−0.096 ε − 0.030 ε2
BLM + 0.015 ε

(
Λ1S

500 MeV

)
+ . . .

]

Perturbative:  ~ 10%

Inclusive semileptonic b→c decay:

→ This is now a PRECISION field!
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Moments of B Decay Spectra:

- like rate, moments of spectra can be calculated as a power series in                                     
	                          , and used to determine nonperturbative parameters 
... this is an old game by now. 
αs(mb), ΛQCD/mb

!
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fits c. 2004: (up to 1/m3)

lepton energy moments

(1) Bauer, Ligeti, ML, Manohar and Trott

- fit 92 data points (spectral moments with varying lepton energy cuts - many data points 
strongly correlated) with 7 free parameters

hadronic invariant mass moments
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fits c. 2004:

lepton energy moments

(2) BABAR (using results of Gambino & Uraltsev)

hadronic invariant mass moments
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Both fits have 7 free parameters, work to 
.. differences are in details:

•expand in ΛQCD/mc or not in kinematics (to get mc)

‣+: moves free parameter from O(1) to O(ΛQCD/mb)3

‣  - : introduces new expansion in ΛQCD/mc

‣Can do fit both ways; essentially no difference in fit results 

•mass definitions - kinetic vs. 1S.  Just scheme dependence; no significant 
difference in fit results

•slightly different handling of higher orders in ΛQCD/mb

• fractional hadronic invariant mass moments - results differ (BABAR fits 
data better; related to point above?)

‣ fractional hadronic invariant mass moments intrinsically involve 
expansion in                             - not as clean theoretically

O(ΛQCD/mb)
3

ΛQCDmb/m2
c
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CKM Workshop, IPPP DurhamApril 8, 2003 24

data

theory

- for most values of the lepton cut, measured sH is significantly higher than predicted

Hadronic invariant mass moments:  From CKM ‘03:
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2002
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2004 - new data
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2004 - fit based on 
new data



March 17, 2005 CKM 2005 - Workshop on the Unitarity Triangle 21

Vcb from exclusive, 

  mb from sum rules

(Bauer, Ligeti, ML, Manohar and Trott)

Hadron 

Moments

mb (GeV)

40

39

41

42

43

V
c
b

  
 (

1
0
-3

)

Lepton 

Moments

All 

Moments

4.5 4.7 4.9

(BABAR, using results of Gambino and Uraltsev)

Excellent agreement:

|Vcb| = (41.4 ± 0.6 ± 0.1τB
) × 10−3 |Vcb| = (41.4 ± 0.4exp ± 0.4HQE ± 0.6th) × 10−3

m
1S

b
= 4.68 ± 0.03GeV

⇔ mb(1 GeV) = (4.56 ± 0.04) GeV

m
kin
b

(1 GeV) = (4.61 ± 0.05exp ± 0.04HQE

±0.02th) GeV
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(some fractional moments of lepton spectrum are very insensitive 
to O(1/m3) effects, and so can be predicted very accurately)

Global fits also allow us to make precise predictions of 
other moments as a cross-check:

(Bauer and Trott)

D3 ≡

∫
1.6 GeV

E0.7
!

dΓ

dE!
dE!∫

1.5 GeV
E1.5

!

dΓ

dE!
dE!

=

{
0.5190 ± 0.0007 (theory)
0.5193 ± 0.0008 (experiment)

D4 ≡

∫
1.6 GeV

E2.3
!

dΓ

dE!
dE!∫

1.5 GeV
E2.9

!

dΓ

dE!
dE!

=

{
0.6034 ± 0.0008 (theory)
0.6036 ± 0.0006 (experiment)

Hadronic physics with < 1% uncertainty!

NB:  these were REAL PREdictions (not postdictions)

(BABAR)
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1995 PDG (inclusives): 

Progress...

|Vcb| = (42 ± 2) × 10−3
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1995 PDG (inclusives): 

2002 (global fits):

Progress...

|Vcb| = (42 ± 2) × 10−3

|Vcb| = (40.8 ± 0.9) × 10−3
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1995 PDG (inclusives): 

2002 (global fits):

Progress...

|Vcb| = (42 ± 2) × 10−3

|Vcb| = (40.8 ± 0.9) × 10−3

|Vcb| = (41.4 ± 0.6) × 10−32004 (global fits):
(0 .8)
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- complete         ,                           corrections 
can still usefully be done ... hard to imagine going 
to  

1995 PDG (inclusives): 

2002 (global fits):

Progress...

|Vcb| = (42 ± 2) × 10−3

|Vcb| = (40.8 ± 0.9) × 10−3

|Vcb| = (41.4 ± 0.6) × 10−32004 (global fits):

- looks like we’re hitting a wall at 1-2% error
- but theory is passing consistency tests with flying 
colours - we should believe the error more now!

O(αs(ΛQCD/mb)
2)O(α2

s
)

(0 .8)

(ΛQCD/mb)
4
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Vub

27
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In principle, Vub is as easy as Vcb:

... but this requires cutting out ~100 times larger background from charm 

50 MeV uncertainty 
on mb(1S)

perturbative
uncertainty

(Hoang, Ligeti, Manohar; Uraltsev)

combine to a ~5% error

︸ ︷︷ ︸
- very clean theoretically:  greatest uncertainty is b quark mass ... 
nonperturbative effects are small

|Vub| = (3.06 ± 0.08 ± 0.08) × 10−3

(
B(B → Xu!ν̄)

0.001

1.6 ps

τB

)1/2
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The Classic Method:  cut on the endpoint of the 
charged lepton spectrum

0.5 1 1.5 2
0.2
0.4
0.6
0.8

2.5El (GeV)

Γ dΓdEl_1 __(GeV-1)

Disadvantages: " • only ~10% of rate

parton model

kinematic limit of b c
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30

The Classic Method:  cut on the endpoint of the 
charged lepton spectrum

Disadvantages: " • only ~10% of rate 
"  " " " " • sensitivity to fermi motion - local OPE breaks down

0.5 1 1.5 2
0.2
0.4
0.6
0.8

2.5El (GeV)

Γ dΓdEl_1 __(GeV-1)

parton model

kinematic limit of b c

including fermi motion 

(model)
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dmXΓ
_1 dΓ__

1 2 3 4 5 6

0.2

0.4
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mX (GeV  )22

2

(GeV-2)

parton model

including fermi motion (model)

kinematic limit of b→c

Cutting on the hadronic invariant mass spectrum gives 
more rate, but has the same problem with fermi motion:

1 2 3 4 5
0
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(GeV
2
)

2    mX (GeV
2
)

(Falk, Ligeti, Wise; Dikeman, Uraltsev)
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parton model

including fermi motion (model)

kinematic limit of b→c
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But this doesn’t always happen (depends on proximity 
of cut to perturbative singularities)  ... the local OPE 
holds for the leptonic q2 spectrum:

(Bauer, Ligeti, ML)
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cut % of rate good bad
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q2 > (mB − mD)2 ~20% insensitive to f(k+)
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“Optimized 
cut”

~45%

- insensitive to f(k+)
- lots of rate

- can move cuts away from 
kinematic limits and still get 

small uncertainties
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2
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P+ > m2
D

/mB ~70%

- lots of rate
- theoretically 

simplest relation to 
b→sγNEW

!
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• fermi motion - at leading and subleading order

• Weak Annihilation (WA)

•        - rate is proportional to       - 100 MeV error is a ~5% 
error in Vub.  But restricting phase space increases this 
sensitivity - with q2 cut, scale as ~ 

• perturbative corrections - known (in most cases) to               
- generally under control.  When fermi motion is important, 
leading and subleading Sudakov logarithms have been 
resummed.

Theoretical Issues are much the same as in 2003:

O(α2
sβ0)

m5
b

mb

m10
b (q2

, optimized q
2

− sH cuts)

(E!, sH , P+ cuts)

(all)

(all)
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• fermi motion - at leading and subleading order

• Weak Annihilation (WA)

•        - rate is proportional to       - 100 MeV error is a ~5% 
error in Vub.  But restricting phase space increases this 
sensitivity - with q2 cut, scale as ~ 

• perturbative corrections - known (in most cases) to               
- generally under control.  When Fermi motion is important, 
leading and subleading Sudakov logarithms have been 
resummed.

Theoretical Issues are much the same as in 2003:

O(α2
sβ0)

m5
b

mb

m10
b (q2

, optimized q
2

− sH cuts)

(E!, sH , P+ cuts)

(all)

(all)

uncertainty in mb is now at 50 MeV level

new insights into all of these
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• f(k+)  “shape function”

f(ω) ∼ 〈B|b̄ δ(ω − iD̂ · n)b|B〉︸ ︷︷ ︸
universal distribution function 
(applicable to all decays)

Options:  

(i) model

Ex:  
 

f(k+) = N(1 − x)ae(1+a)x

(de Fazio and Neubert.)

O(ΛQCD)

- 1 - 0.5 0 0.5 1

0

0.25

0.5

0.75

1

1.25

1.5

f(k+)

k+ (GeV)

(model)

a, N determined by           (gets 
first two moments right .. but the uncertainty in f(k+) 
is not simply given by the uncertainties in           )

Λ̄, λ1

Λ̄, λ1

Theoretical Issues:

It is very difficult to determine theoretical uncertainties 
with this approach!

b
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and so can be measured 
from the photon spectrum 
in                :B̄ → Xsγ

(NB must subtract off contributions 
of operators other than O7)

E
γ

 [GeV]

E
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15000
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25000
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*

(ii) Better: determine from experiment:  the SAME function determines the 
photon spectrum in                 (at leading order in 1/m) B → Xsγ

of the b quark in the meson [12, 13],

f(ω) ≡ 〈B̄|b̄ δ(ω + in · D̂) b|B̄〉
2mB

(3)

where nµ is a light-like vector, and hatted variables are normalized to mb: D̂µ ≡ Dµ/mb.1

f(ω) is often referred to as the shape function, and corresponds to resumming an infinite se-

ries of local operators in the usual OPE. The physical spectra are determined by convoluting

the shape function with the appropriate kinematic functions:

1

Γ0

dΓ

dÊ!

(B̄ → Xu#ν̄!) = 4
∫

θ(1 − 2Ê! − ω)f(ω) dω + . . . (4)

1

Γ0

dΓ

dŝH
(B̄ → Xu#ν̄!) =

∫ 2ŝ2
H(3ω − 2ŝH)

ω4
θ(ω − ŝH)f(ω − ∆̂) dω + . . . (5)

where 1 − 2Ê!
<∼ ΛQCD/mb, ŝH

<∼ ΛQCD/mb and ∆ ≡ mB − mb.

Since f(ω) also determines the shape of the photon spectrum in B̄ → Xsγ at leading

order,
1

Γs
0

dΓ

dÊγ

(B̄ → Xsγ) = 2f(1 − 2Êγ) + . . . (6)

there has been much interest in extracting f(ω) from radiative B decay and applying it

to semileptonic decay. However, the relations (4–6) hold only at tree level and at leading

order in ΛQCD/mb, so a precision determination of |Vub| requires an understanding of the

size of the corrections. Radiative corrections were considered in [12–15], while O(ΛQCD/mb)

corrections have been studied more recently in [16–19]. In [16], the nonlocal distribution

functions arising at subleading order were enumerated, and their contribution to B̄ → Xsγ

decay was studied. In [17], the corresponding corrections to the lepton endpoint spectrum

in B̄ → Xu#ν̄! decay were studied, and it was shown that these effects were potentially

large. Similar results were obtained in [19], where the sub-subleading contribution from

annihilation graphs was also shown to be large. In this paper, we study the subleading

corrections to the hadronic invariant mass spectrum in semileptonic b → u decay, and

estimate the theoretical uncertainties introduced by these terms. In addition, we present

results for the doubly differential spectrum dΓ/dsHdq2 at leading and subleading order.

1 Because in our definition of f(ω) its argument is dimensionless, f(ω) differs by a factor of mb from the

usual definitions in the literature.

3

of the b quark in the meson [12, 13],

f(ω) ≡ 〈B̄|b̄ δ(ω + in · D̂) b|B̄〉
2mB

(3)

where nµ is a light-like vector, and hatted variables are normalized to mb: D̂µ ≡ Dµ/mb.1

f(ω) is often referred to as the shape function, and corresponds to resumming an infinite se-
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there has been much interest in extracting f(ω) from radiative B decay and applying it

to semileptonic decay. However, the relations (4–6) hold only at tree level and at leading

order in ΛQCD/mb, so a precision determination of |Vub| requires an understanding of the

size of the corrections. Radiative corrections were considered in [12–15], while O(ΛQCD/mb)

corrections have been studied more recently in [16–19]. In [16], the nonlocal distribution

functions arising at subleading order were enumerated, and their contribution to B̄ → Xsγ

decay was studied. In [17], the corresponding corrections to the lepton endpoint spectrum

in B̄ → Xu#ν̄! decay were studied, and it was shown that these effects were potentially

large. Similar results were obtained in [19], where the sub-subleading contribution from

annihilation graphs was also shown to be large. In this paper, we study the subleading

corrections to the hadronic invariant mass spectrum in semileptonic b → u decay, and

estimate the theoretical uncertainties introduced by these terms. In addition, we present

results for the doubly differential spectrum dΓ/dsHdq2 at leading and subleading order.

1 Because in our definition of f(ω) its argument is dimensionless, f(ω) differs by a factor of mb from the

usual definitions in the literature.

3

(BELLE)
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NB - the “smearing” approach

dΓ =

∫
dΓparton

∣∣
mb→mb+ω

f(ω)dω
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NB - the “smearing” approach is not valid beyond tree level ...

• some of the radiative corrections which are smeared should 
properly be included in the renormalization of the shape function

• this will cancel out in the relations between spectra, but can 
introduce large spurious radiative corrections in intermediate 
results

dΓ =

∫
dΓparton

∣∣
mb→mb+ω

f(ω)dω
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(iii) Best - avoid the shape function altogether, and just relate physical 
quantities! (leading order shape function cancels out between spectra)

- (theoretical) systematic errors accumulate when you include intermediate 
unphysical quantities like the shape function (i.e. large perturbative 
corrections cancel out between spectra)
- shape function can’t fit true spectra, which have resonances - only makes 
sense when smeared over resonance region

+O(αs) + O(ΛQCD/mB)

W has an expansion in powers of                         , with 
leading term known 

ex:

αs, ΛQCD/mB

Pγ ≡ mB − 2Eγ

∫ mB ∆M

0

dsH

dΓu

dsH

∝
|Vub|2

|VtbV
∗

ts|
2

∫
∞

0

dPγWsH
(∆M , Pγ)

dΓs

dPγ

WsH
(∆M , Pγ) = θ(∆M − Pγ) + θ(Pγ − ∆M)

∆3

M(2Pγ − ∆M)

P 3
γ
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(iii) Best - avoid the shape function altogether, and just relate physical 
quantities! (leading order shape function cancels out)

ex:
∫ mB ∆M

0

dsH

dΓu

dsH

∝
|Vub|2

|VtbV
∗

ts|
2

∫
∞

0

dPγWsH
(∆M , Pγ)

dΓs

dPγ

Pγ ≡ mB − 2Eγ

similarly,
∫ ∆P

0

dP+

dΓu

dP+

∝
|Vub|2

|VtbV
∗

ts|
2

∫ ∆P

0

dPγWP+
(∆P , Pγ)

dΓs

dPγ

P+ ≡ mX − |EX |(Bosch, Neubert, Lange, Paz)
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(iii) Best - avoid the shape function altogether, and just relate physical 
quantities! (leading order shape function cancels out)

ex:
∫ mB ∆M

0

dsH

dΓu

dsH

∝
|Vub|2

|VtbV
∗

ts|
2

∫
∞

0

dPγWsH
(∆M , Pγ)

dΓs

dPγ

Pγ ≡ mB − 2Eγ

similarly,
∫ ∆P

0

dP+

dΓu

dP+

∝
|Vub|2

|VtbV
∗

ts|
2

∫ ∆P

0

dPγWP+
(∆P , Pγ)

dΓs

dPγ

P+ ≡ mX − |EX |

- P+ cut requires B→Xsγ photon spectrum over a smaller region than sH 
cut 
- not a big difference in practical terms (W, f(k+) both suppress large Pγ 
region) but theoretically cleaner

WsH
(∆M , Pγ) = θ(∆M − Pγ) + θ(Pγ − ∆M)

∆3

M(2Pγ − ∆M)

P 3
γ

outside region of shape 
function validity

(Bosch, Neubert, Lange, Paz)
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Leading logs - to sum, or not?

at 2 loops: leading log next-to-leading log NNLL

a

︷ ︸︸ ︷

(Hoang, Ligeti and ML)

- large Sudakov double logs 
cancel from W
-                                is not large enough to justify leading log expansion - 
more justified to stick to fixed order perturbation theory (cf summing 
logs of mc/mb in exclusive                      )

αn

s
logm(mb/µ), m = n + 1, . . . , 2n

B → D
∗
!ν̄!

log mb/µ ∼ log 3

SCET allows very elegant RGE resummation:

(Bauer, Fleming, ML; Bauer, Fleming, Pirjol, Stewart; Bauer, Manohar; 
Bosch, Neubert, Lange, Paz, ... also earlier work by Korchemsky and 
Sterman, Akhoury and Rothstein, Leibovich, Low and Rothstein)

W NLL

P+
(∆, Pγ) = T (a)

{
1 +

CF αs(mb)

4π
H(a) +

CF αs(µi)

4π

[
4f2(a) ln

mb(∆ − Pγ)

µ2
i

− 3f2(a) + 2f3(a)

]}

W
(α2

s
)

P+
=

CF α2
s(mb)

(4π)2

[
(0.83β0+3.41) ln2 mb

∆ − Pγ

+(4.67β0−19.1) ln
mb

∆ − Pγ

−(5.19β0+c0)

]

O(log2) : O(log) : O(log0) = 1 : 0.87 : (−0.86 − 0.02c0)
not a good expansion!



March 17, 2005 CKM 2005 - Workshop on the Unitarity Triangle 44

W:  Nonperturbative corrections

•they are there, and we ~understand them (not obvious 5 years ago!)

(Bauer, ML and Mannel; Leibovich, Ligeti and Wise; Burrell, ML and Williamson; Stewart and Lee; Mannel and Tackmann; 
Bosch, Neubert, Lange, Paz; Beneke, Campanario and Mannel, ...)
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W:  Nonperturbative corrections

•they are there, and we ~understand them (not obvious 5 years ago!)

• they arise at O(ΛQCD/mb), and require several new subleading shape 
functions (not just local operators) - so harder to constrain than for 
Vcb

(Bauer, ML and Mannel; Leibovich, Ligeti and Wise; Burrell, ML and Williamson; Stewart and Lee; Mannel and Tackmann; 
Bosch, Neubert, Lange, Paz; Beneke, Campanario and Mannel, ...)
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W:  Nonperturbative corrections

•they are there, and we ~understand them (not obvious 5 years ago!)

• they arise at O(ΛQCD/mb), and require several new subleading shape 
functions (not just local operators) - so harder to constrain than for 
Vcb

•we cannot easily extract subleading shape functions from experiment - 
forced to model them.  

•Models give expected magnitude of corrections (naively, O(ΛQCD/m) 
could be 5% or 50%!)

•Comparison of different cuts indicates which are most sensitive to 
corrections.

(Bauer, ML and Mannel; Leibovich, Ligeti and Wise; Burrell, ML and Williamson; Stewart and Lee; Mannel and Tackmann; 
Bosch, Neubert, Lange, Paz; Beneke, Campanario and Mannel, ...)
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W:  Nonperturbative corrections

•they are there, and we ~understand them (not obvious 5 years ago!)

• they arise at O(ΛQCD/mb), and require several new subleading shape 
functions (not just local operators) - so harder to constrain than for 
Vcb

•we cannot easily extract subleading shape functions from experiment - 
forced to model them.  

•Models give expected magnitude of corrections (naively, O(ΛQCD/m) 
could be 5% or 50%!)

•Comparison of different cuts indicates which are most sensitive to 
corrections.

•Corrections are largest for the El endpoint spectrum (but improve as 
cuts are loosened), better for sH and P+

(Bauer, ML and Mannel; Leibovich, Ligeti and Wise; Burrell, ML and Williamson; Stewart and Lee; Mannel and Tackmann; 
Bosch, Neubert, Lange, Paz; Beneke, Campanario and Mannel, ...)
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W:  Nonperturbative corrections

•they are there, and we ~understand them (not obvious 5 years ago!)

• they arise at O(ΛQCD/mb), and require several new subleading shape 
functions (not just local operators) - so harder to constrain than for 
Vcb

•we cannot easily extract subleading shape functions from experiment - 
forced to model them.  

•Models give expected magnitude of corrections (naively, O(ΛQCD/m) 
could be 5% or 50%!)

•Comparison of different cuts indicates which are most sensitive to 
corrections.

•Corrections are largest for the El endpoint spectrum (but improve as 
cuts are loosened), better for sH and P+

•Weak annihilation effects can be large - wide variation in estimates of 
size

(Bauer, ML and Mannel; Leibovich, Ligeti and Wise; Burrell, ML and Williamson; Stewart and Lee; Mannel and Tackmann; 
Bosch, Neubert, Lange, Paz; Beneke, Campanario and Mannel, ...)
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(Bosch, Neubert, Lange, Paz)

Leading order
(model)

Subleading order 
(2 models) charm limit

(a) spectra

(b) integrated spectra

Subleading effects (with small WA):
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b

u

soft

B

• Weak annihilation ... in local OPE

~3% (?? guess!) contribution to rate at q2=mb2

- an issue for all inclusive determinations
- relative size of effect gets worse the more severe the cut
- no reliable estimate of size - can test by comparing charged and neutral 
B’s, comparing D and Ds semileptonic widths

(Bigi & Uraltsev, Voloshin, Leibovich , Ligeti, and Wise) 

Theoretical Issues:

O

(
16π2 × Λ3

QCD

m3
b

×
)

∼ 0.03

(
fB

0.2 GeV

) (
B2 − B1

0.1

)
factorization 
violation

(q2
, optimized q

2
− sH cuts)
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• Weak annihilation ... in nonlocal OPE

Theoretical Issues:

- enhanced in shape function region to O(ΛQCD/mb)2 
- concentrated in large q2 region
- can easily be >20% shift to integrated rate for El>2.3 GeV (smaller effect 
for other spectra since more rate included)

(E!, sH , P+ cuts)

bb qq

O

(
16π

2
×

Λ2
QCD

m2
B

× ∆B

)

sub-subleading shape function

phase space enhancement factorization violation
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• Weak annihilation ... in nonlocal OPE

Theoretical Issues:

(E!, sH , P+ cuts)

bb
qq

O

(
4παs(µi) ×

ΛQCD

mb

× ε

)

Bosch, et. al.; Neubert; Beneke et. al.:  colour suppression ⇒ ε<<1 + no 

factor of 4 ⇒ negligible effect (smaller than other 1/m effects)

controversial

only subleading! colour suppression

Lee and Stewart:  up to 180% of LEADING term for lepton endpoint!  
(smaller for sH and P+)  - would completely mess up shape function 
expansion

 - hard to power count ... estimates of size vary by almost 2 orders of 
magnitude!
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cut % of rate good bad

0.5 1 1.5 2

5

10

15

20

25

    Ee (GeV)

    q2 
(GeV2)

E! >
m2

B − m2
D

2mB

~10% don’t need neutrino

- depends on f(k+) (and subleading 
corrections)

- WA effects largest
- reduced phase space - duality 

issues?

1 2 3 4 5
0

5

10

15

20

25

    q2 
(GeV2)

2    mX (GeV2)

sH < m2
D

~80% lots of rate

- depends on f(k+) (and 
subleading corrections)

- need shape function over 
large region

1 2 3 4 5
0

5

10

15

20

25

    q2 
(GeV2)

2    mX (GeV2)

q2 > (mB − mD)2 ~20% insensitive to f(k+)

- very sensitive to mb
- WA corrections may be 

substantial
- effective expansion parameter is 

1/mc

1 2 3 4 5
0

5

10

15

20

25

    q2 
(GeV2)

2    mX (GeV2)

“Optimized 
cut”

~45%

- insensitive to f(k+)
- lots of rate

- can move cuts away from 
kinematic limits and still get 

small uncertainties

- sensitive to mb (need +/- 
60 MeV for 5% error in 

best case)

1 2 3 4 5
0

5

10

15

20

25

    q2 

(GeV
2
)

2    mX (GeV
2
)

P+ > m2
D

/mB ~70%

- lots of rate
- theoretically 

simplest relation to 
b→sγ

depends on f(k+) (and 
subleading corrections)NEW

!
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Experimental situation:

]-3 10×|  [ub|V
2 4 6

]-3 10×|  [ub|V
2 4 6

ALEPH 
 0.71± 0.67 ±4.12 

L3
 1.40± 1.00 ±5.70 

DELPHI 
 0.61± 0.65 ±4.07 

OPAL 
 0.71± 0.71 ±4.00 

CLEO (endpoint) 
 0.63± 0.23 ±4.69 

) 2, QXBELLE  sim. ann. (m
 0.46± 0.46 ±4.75 

BELLE (endpoint) 
 0.61± 0.23 ±4.46 

BABAR (endpoint) 
 0.44± 0.15 ±4.40 
 XBABAR m
 0.43± 0.30 ±5.22 

) 2, QXBABAR (m
 0.42± 0.52 ±5.18 

) 2, QlBABAR (E
 0.51± 0.34 ±4.99 

) 2, QX (mrecoBELLE  B
 0.54± 0.65 ±5.54 

Average  
 0.44±4.70 

HFAG
2004

/dof = 6.7/ 7 (CL = 46.5%)2χ

quoted uncertainties in 
any given measurement 
are approaching the 10% 

level; theoretical and 
experimental uncertainties 
are generally comparable
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• there is no “best method” - each has its own sources of uncertainty

• local OPE:  b→c experience gives us confidence in framework, but we are pushing things to 
lower momentum scales for Vub - perturbative, nonperturbative effects are more significant

• nonlocal OPE:  reasonable model estimates suggest things are OK, but no experimental 
test of framework

• we only believe Vcb because of all the checks.   Our confidence in Vub 
will grow if different methods give compatible results.

• experiments can help beat down theoretical uncertainties

• improved measurement of B→Xsγ photon spectrum  - lowering cut reduces effects of 
subleading corrections, as well as sensitivity to details of f(k+)

• test size of WA (weak annihilation) effects - compare D0 & DS S.L. widths, extract |Vub| from 
B± and B0 separately 

• Vub wall is likely to be at the ~5% level via these methods, assuming no 
inconsistencies

Bottom line(s):
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Summary:
• Theory for Vcb from inclusive decays is very mature - many cross-checks, 

corrections well understood

• spectral moments are allowing us to test theory, fix nonperturbative corrections at the (ΛQCD/
mb)3 level

• uncertainties are ~2% for Vcb, ~50 MeV for mb - values are in excellent agreement with other 
methods

• probably hitting the limits of this technique

• Model-independent determinations of |Vub| are possible, but require 
probing restricted regions of phase space - some (but not all!) regions 
are sensitive to nonperturbative shape function(s)

• theory of q2, combined q2-mX cut is on the same footing as for b→c decays, but at lower 
momentum transfer

• much recent progress in theory of “shape function region”, but not well tested experimentally

• theoretical uncertainties of ~5% appear feasible


