Dispersion in acoustic waveguides—A teaching laboratory experiment
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A laboratory experiment for undergraduate students in mathematics and physics is introduced. The
experiment concentrates on dispersion in acoustic waveguides. The dispersion relation is measured
for different propagation modes and its effect on the transmission of signals is examined, looking at
it from several points of view, with the main focus on Fourier aspects. The distortion caused by
single mode dispersion is explained in terms of the convolution relation between the input signals
and the impulse response of the waveguides.1985 American Association of Physics Teachers.

I. THEORY The complex amplitude of the wave is

When a harmonic acoustic pressure wave, with amplitude ~ P(X:¥:2)=Po Cogkyy)codk z)exi(—kx+ #)]. ©)
po and wave vectok, propagates through a rectangular From this complex amplitude can be seen that the wave
waveguide, as shown in Fig. 1, the wave can be writtén asnumberk, must be real valued, as otherwise the wave decays
_ _ exponentially withx. From Eq.(5) it then follows that the
p(x,y,z,t)=po COS(kyy)COS(kzZ)COS(wt KX+ o), 0 wave can only propagate in a particular moge,n if its

) _ frequency exceeds a cutoff value,, ,, given by
where ¢ is the phase constant of the harmonic pressure os- s 21112

cillation atx=0. I
Although the wave vectdt in Fig. 1 does not point in the
x direction, the wave represented by E#), in fact, travels

m

D W

in the x directi In the t directi th s of The main emphasis of the experiment described below lies
In the x-direction. In the transverse directions, the walls ot ,q investigation of the dispersion and its effect on the

the waveguide form a resonator cavity, and this s e, smission of signals through the waveguide. In order to
transverse wave components into standing waves, as ex

d by th litud - Xamine the effect of dispersion, we consider an arbitrary
pressed by the amplitudg, cos_(gyy)coskzz_), IN Wave €X-  input signalf,,(t). Its Fourier transform is given by
pression(1). The resonant conditions restrict the wave num-

n

@)

®m =TV

bersk, andk, to the discrete values Fin(w):f f(Dexpl —iwt)dt. ®)
T T -
ky=mg and k=ng (mneh), @ Now, F..(w) e C, so it can be written as
whereD is the height andV the width of the waveguide. Fin(@)=|Fin(®)|exfi ¢in(»)], 9

For a given combinatiom,nin the above expressions for where ¢, (w) is the phase constant of the harmonic compo-

. nents which make up the input signal. The harmonic compo-

hents can alternatively be written in the form of the complex

. amplitude(6). The phase constam;,(w) then corresponds

ke_ep this pha}se constant, one must trayel at velaolty,. to —k,x+ ¢, evaluated at the entrance positios x;, of the

This velocity is known as thghase velocity, waveguide. In what follows, the entrance position will be
vp= wlky. ©) taken asqn:.o. .

If absorption can be neglected, the amplitude spectrum
|Fin(w)| remains unchanged with propagation. The phase
factor in expression(9), however, is not conserved but

k>2<+ k§+ kgz k2. (4) changes withx according to exp(— Ky (w)x+ ¢i,(w))]. The

] ) ) ) Fourier transform of the output signal, measured at any po-
Solving the above equation fdg, and replacingk by its  sijtion x down the waveguide, is thus given by
value w/v, with v the speed of sound in free space, we

The instantaneous phase of the wavewts-k,x+ ¢. To

The wave numberk,, k,, andk, must satisfy the mutu-
ally orthogonality equation

obtain Fou[(w,X) = Fin(w)eXF[ - ikx(w)X]. (10)

ke=T(w/v)2— /D)2— IW)212 5 In thg nondispersive case of mode,0), k, is linearly
=Lelv) (r.mT )"~ (n ). ] © proportional tow, according to Eq(5)

where the expression®) have been inserted fdt, andk, . K= owlv. (11)

From this equation can be seen that, unlessn=0, the
phase velocity(3) is nonlinearly frequency dependent. This With k, linearly proportional taw, the phase shift in Eq10)
means that only th€0,0) mode is nondispersive, while all causes a distortion-free translation in the time domain, ac-
the other modes show nonlinear dispersion. cording to the Fourier transform propefty
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Fig. 1. Three-dimensional waveguide with coordinate system and dimen
sions.

Flfin(t=to) |=FL Fin(t) Jlexp( —i wto), (12
where F stands for Fourier transform and whetg corre-

sponds tox/v, according to the combined equatidid®) and
(17).

In mode(0,0) the impulse response can easily be calculated

and is equal to

h(t,x)=6(t—x/v). (16)

A convolution with a &function causes no distortion on

fin(1). 1t simply shifts the input signal in time, in accordance

with the above-mentioned Fourier transform property.

Now, we would like to see what the impulse respo(iss
looks like in mode(1,0). In this case, the wave numblef is
not linearly proportional taw, but, according to formulés),

ke=[(w/v)?=(m/D)?]*2 17

Inserting this expression into E(L5), an approximatél,0)
impulse response can be calculated. Figure 2 shows a nu-
merically calculated1,0) impulse response fox=3 m and
D=0.142 m. For comparison, the numerically calculated
(0,0 impulse response is also shown.

Where the(0,0) approximation in Fig. 2 approaches a
Dirac &-function fairly well, the(1,0) impulse response looks
more like as-function from which the low frequencies have
escaped into &eversed chirplike trailing edge.

We will look more closely into the distorting effect of the

In general, the output signal is given by the inverse Fou{1,0) impulse response presently.

rier transform of formula(10). In the time domain this

corresponds to the convolution of the input signal with the

inverse transform, 7 !, of the phase delay function

exp(—iky(@)X),
foult,¥)=TFin(t) ® F~ {exp(—iky(@)X)],

where® stands for convolution product.

13

IIl. EXPERIMENTAL SETUP

The experimental setup, used in the students laboratory, is
shown schematically in Fig. 3. The waveguide of the setup is
a commercially available6 m long aluminum pipe with a

Considering the waveguide to be a linear time-invariantrectangular cross section of sizB=0.142m and W

transmission system, the output signal can be writtéritas
convolution product of the input signal with the impulse re-
sponse of the transmission system

foult,X)=fin() @ (1), (14

whereh(t) stands for the impulse response. Comparing this, 3400 rad 5t

transmission relation with Eq13), one finds that the im-
pulse response of the waveguide is given by

=0.05 m.

The lowest cutoff frequencies corresponding
these cross-sectional dimensions are, in order of
creasing frequency[cf. Eq. (7)]: woe=0rads?, o,
=27Xx1200rad §%, w,o=2mx2400rads!, wq,=2m7
w30=2mx3600rad s%,... . Throughout
the experiment the wave frequency will be kept well below
the wq; cutoff, thus restricting the allowed propagation

to
in-

h(t,x)=F Y exp(—iky(w)x)]. (15  modes to M,0) modes only, wittm=0,1,2.
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Fig. 2. Unit input impulsestE0) and the numerically calculated impulse

(b)

responses=a® m in a rectangular acoustic waveguide with cross-sectional

dimensionsD =0.142 m andN=0.05 m(cf. Fig. 1). (a) Propagation mod€0,0). (b) Propagation modé€l,0).
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Fig. 4. Acoustic pressure profiles corresponding to the indicated frequencies
and settings of the speakel3he setting[ + +,+,0] stands for{2+,+,0].)

The profiles are measured xat 3 m down the laboratory waveguide. The
vertical axis on the figures corresponds to thposition across the wave-
guide. The pressure amplitudes are displayed in horizontal direction, left or

At the entrance of the waveguide three loudspeakers angght from the middle according to the relative phase of the pressure oscil-
mounted side by side along tiexis. They are driven by the lations.
same function generator. Its output amplitude can be modu-
lated by means of an external modulation source. For that
purpose an auxiliary function generator is provided. Bothtinuous sine waves are applied to the waveguide. For each
function generators are programmalilEhurlby, Thandar, setting of the speakers, the amplitude pattern of the wave is
TTi TG1304 and can be linked up to a computer. The leadsmeasured at a distanse=3 m down the waveguide. Figure
between the main function generator and each of the speak-shows some of the patterns recorded by the students.
ers can be interchanged separately, thereby introducing a The amplitude pattern corresponding to a particular setting
phase shift of 180 deg. The notatienor — will be used to  of the speakers is measured at different wave frequencies,
indicate the relative phases of the speakers, e.g., the indic&ither above and below the different cutoffs. Each setting can
tion (+,0,—) means that the two outer speakers move inthus be checked to determine whether it generates single- or
phase opposition with each other, while the symbol 0 meangwltimodes. From Fig. 4, it can be seen that the settings
that the middle speaker is disconnected. The relative ampli+,+,+), (+,0,—), and (+,—,+) generate single modes
tudes of the speakers can also be adjusted. They will benly. The setting(2+,+,0), however, generates the double
indicated by numbers in front of the phase symb@lse mode (0,0} (1,0), provided the wave frequency is above
number 1 will be omittey e.g., (2+,0,—) means the same the w ( cutoff.
phase relation ag+,0,—) but with the amplitude of ther It is interesting to note that th@+,+,0) amplitude pattern
speaker twice the amplitude of the speaker. does not look like a straightforward superposition of the pat-

The relative phases and amplitudes of the speakers tailaerns(0,0) and(1,0), although it was tailored that way by the
the acoustic wave front along tlyeaxis at the entrance of the speakers at the entrance of the waveguide. The initial tailor-
waveguide. Different modesr(,0) can thus be generated, as ing, however, is not conserved with propagation, because of
will be examined in the first part of the experiment. the different phase velocities of the mod@0) and (1,0).

The acoustic pressure field inside the waveguide can b&he difference in phase velocity makes the phase relation
gauged by means of a small microphone. The microphone isetween the two modesdependent, and this, in turn, makes
mounted on arx,y-translation stage and its position is de- the superposition amplitude pattern change with propagation.
tected electronically by means of two potentiometers.

The microphone signal is applied to a digital storage os
cilloscope(HP 54600 where it can be visualized and pre-
conditioned before being transferred to a compurwer The dispersion relatiom = w(k,) can be obtained from
Macintosh. Eq. (5). A graphical presentation of this relation is shown in

The oscilloscope and the function generators are linked upig. 5a), for the modes f,0) with m=0, 1, 2 respectively.
to the computer by means of a General Purpose Interface Bus Figure 6 shows a number of experimentally obtained
(GPIB IEEE 488. o (w,k,)-points. The data points were obtained by moving the

A number of LabVIEW™ application programs have beenmicrophone, at each of the selected frequencies, inside the
custom developed. They are designed to read the signalg, equide over a distancex while watching the phase shift
from the oscilloscope into the computer and to carry out théy ,, of the microphone signal on the oscilloscope screen.
analysis of these signals according to the requirements of thﬁleasuring bothAe andAx, k, could be obtained using the

experiment. : ’
'?'he reader who wants to know more about theserelat|on|A<p|=kX|Ax|, according to the phase factor of the

LabVIEW™ applications may contact the authors for full complex amplituQe in expressicﬁﬁ). In Fig. %b), the experi-.
information and free copies of the programs. mental @,KX)—p0|nts are superimposed on the theoretical
curves of Fig. 8.

Fig. 3. Experimental setup. An acoust®,0) pressure front is represented
inside the wave guide.

B. Dispersion relation o= w(ky)

[ll. EXPERIMENTAL RESULTS
A. Propagation modes C. Signal transmission

In order to investigate the propagation modes generated by In order to investigate the transmission of signals through
different phase and amplitude settings of the speakers, cothe waveguide, the continuous sine waves, used up to this
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Fig. 5. Dispersion curves for the laboratory acoustic wavegyalelheoretical plots according to E¢). (b) Superposition of the experimental data points
of Fig. 6 on the theoretical plots.

point in the experiment, are now amplitude modulated intatime division (5 mg of the oscilloscope screen decreases
discrete short wave trains. To start with, 5 ms long 1500 HZrom about 8 in the time intervdl0.0, 15.0 ms to 7 in the
wave trains with a triangular amplitude envelope, as showinterval[15.0, 20.Q ms and further down to 6.5 in the inter-
in the top trace of Fig. 7, are applied to the waveguide. Aval [20.0, 25.0 ms. The corresponding frequencies range
triangular, rather than a rectangular amplitude envelope ifrom 1600 Hz, through 1400 Hz, down to 1300 Hz, while the
chosen to assure an envelope maximum which is well deearrier frequency was set on 1500 Hz. This spectrum of fre-
fined in time. This makes it easier to follow the propagationquencies manifests the line broadening caused by the ampli-
of the signals, as will be explained in Sec. Il C@he tude modulation. The fact that these different frequencies are
mathematically simpler Gaussian profile could not be ob-<discernible in thg1,0) signal but neither in the input signal
tained from the function generators. nor in the(0,0) output signal has to do with the dispersion in
Later in the experiment the students may change any ahe (1,0) propagation mode, as will be explained in Sec.
the parameterglength, carrier frequency, envelgpef the 111 C 3.
wave trains to examine the effect on the transmission char- The line broadening caused by the amplitude modulation
acteristics. of the 1500 Hz sine wave can, however, always be visualized
Figure 7 shows, besides the initial input signal, the correby taking the Fourier transform of the signals. Figure 8
sponding output signals at=3m in the single mode$0,0 shows the FFT-amplitude spectra of the input signal and of
and(1,0) and in the double mode (0,8)(1,0) respectively. the(1,0) output signal of Fig. 7, respectively. The main dif-

These signals will be discussed in the next sections. ference between these two spectra is the missing left side
lobes in the(1,0) spectrum. This is due to the fact that these
1. Frequency analysis side lobes lie below the, o cutoff frequency.

. . o - Fourier spectra, such as those in Fig. 8, do not reveal any
From Fig. 7, it can be seen that the periodicity within theyme |ocalization of the frequencies within a signal. To ob-

(1,0 output signal is not constant. The number of periods pefain 3 joint time-frequency analysis, one can subdivide the
signal into pieces of lengtiAt and then take the Fourier

f= /2% (Hz) transform of the successive pieces. This method is known as
3500 slit Fourier transform(FFT slit) or short-time Fourier trans-
form (STFT).
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Fig. 7. Input signalTrace 1 and the corresponding output signals in mode
Fig. 6. Experimentally recorded, k,-data points. These data points are to (0,0) (Trace 3, (1,0 (Trace 3, and (0,0)+(1,0) (Trace 4, respectively,
be compared with the theoretical dispersion plots of Fig).5 measured at=3 m in the laboratory waveguide.
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Fig. 10. Group velocity versus frequency for the propagation moa@s,
Fig. 8. Fourier amplitude spectra of the input sigfight) and(1,0) output (1,0, and(2,0), respectively, in the laboratory waveguide.
signal (dark) shown in Fig. 7.

. . . where the derivative must be evaluated at the center fre-
The details of STFT fall outside the scope of this labora- ency of the Fourier spectrum of the signal.

; u
tory experiment and the students are referred to more ad! In Refs. 1, 6, and 7, excellent explanations are given of the

yafnced tpoursgs Itn' S.'gtnta.l anfaly$e;g., Rtef. 4ffor furtht?]r 4s Physical meaning of the group velocity in waveguides. In
information about joint ime-frequency transiorm metnoas. ;o paper, however, we do not look into these explanations

ngeve_r, t_hey should realize that, accord_lng to the UNCETH 1t restrict ourselves to the frequency dependence of the
tainty principleA v=1/At, sharpness of the time analysis has roup velocity as it may be derived from the dispersion re-
to be traded off for sharpness in frequencies, and vice versgyion (5).

_Figure 9 shows a STFT amplitude spectrum of (i) Two graphical interpretations of formuld8) are helpful
signal of Fig. 7. It gives a good estimate of the time of , see how the group velocity changes with frequency. First,
arrival, atx=3 m, of the different frequencies which make the sjope of the tangent line on the dispersion curves in Fig.
up the (1,0 signal. From this spectrum, the group velocity 54 s a direct indicator of the frequency dependency gf
can be determined, as will be discussed in the next sectiony 4 need no further comment. Second, calculatingdk,
from the dispersion relatiofb) shows that the group velocity
can be written a®y=v cos#, with ¢ the angle the wave

When dispersion occurs, the appearance of a signal mawector k in Fig. 1 makes to thec axis. Now, for a given
change drastically with propagation. It may then be difficultmode, they,zcomponents of the wave vector are fixed. The
to define any significant single velocity for this signal. If, total length of the wave vector, however, changes with fre-
however, there is only a small amount of dispersion over thguency, according t&=w/v. Thus, in any of the propaga-
frequency band of interest, the overall shape of the signdion modes but(0,0), the angled must change with fre-
may stay recognizable over a long distance. The signal veguency, from almost 90° near cutoff to 0° in the limit of
locity can then be taken as the speed of propagation of thimfinitely high frequencies. The corresponding group velocity
signal envelope maximum. This velocity is called ireup  changes from almost zero to the speed of sound in free space.
velocityv 4 and can be obtained from the dispersion relation Figure 10 gives a quantitative picture of the group velocity

2. Group velocity

(5) by using the relationship versus frequency for some of the modes in the waveguide
used in the students laboratory.
v :d_w (18) The triangular shape of the input signal in Fig. 7 is suffi-
9 dk,’ ciently recognizable in th€l,0) signal to allow the use of

formula (18) to determine the propagation velocity of the
(1,0 signal. From Fig. 7 can be seen that the time of arrival,

[LabVIEW : STFT| atx=3 m, of the(1,0 er_lvelope maximl_Jm.is approximately
iz 16 ms. The corresponding group velocity is 190 fasvhere

B the theoretical group velocity ab= 27X 1500 rad §! is
T e 200 ms'%, according to Fig. 10.
T1em Instead of the single time of arrival of the signal as a
1A whole, as obtained above from the envelope maximum, a
s more detailed picture of the time of arrival of the signal is
1300 given by the joint time-frequency plot of Fig. 9. There, the

il - 1.200 time of arrival is shown as a function of frequency within the

frequency band of the signal.

Estimating the time of arrival at a given frequency from
the time that frequency reaches its intensity maximum on the
oo : : : : | STFT spectogram of Fig. 9, the time of arrival at 1500 Hz
ooo0 0010 0020 0.030 ogd0 0050 can be seen to be about 16 ms. This is in accordance with the

time of arrival of the envelope maximum of tli&,0) output
Fig. 9. Joint time-frequency spectrutSTFT) of the (1,0) output signal ~ Signal in Fig. 7. Frequencies near th&0 cutoff have a
shown in Fig. 7. much delayed time of arrival, e.g., 1300 Hz can be seen to be

S5.0E-1]
0.0E+0-|
-5.0E-1-
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Fig. 11. Convolution of a triangular sine burst with a chirp-function. The convolution shows a maximum at the points in time where the frequencies within
the spectrum of the burst coincide with the frequencies of the chirp-fun¢abBine frequency near the start frequency of the chispSine frequency near
the end of the chirp.

localized in time at approximately 27 ms. This latter corre- A convolution may be compar@db a correlation function
sponds to a group velocity,=110 ms !, where, according and, just as a cross correlation measures the similarity be-

to Fig. 10, the theoretical value at 1300 Hz is 130 s tween two functions, so does the convolutid®), as a func-
tion of time, show a maximum when the frequencies of the
3. Distortion input signal recognize themselves in the response function.

This is demonstrated in Fig. 11. The signals in Fig. 11 are
computer simulations of triangular wave trains convolved
with a chirp function. The triangular wave trains are centered
aroundt=0. The convolutions show a maximum when the
chirp function reaches the wave train frequencies or, in other

ditional distortion from the intermodal dispersion between : ; : )
the propagation modé®,0) and(1,0). In this section we will \évl?erﬂi’yWhen the wave train frequencies match the chirp fre

look into the distortion caused by single-mode dispersion The distortion can now be explained by positioning the

only. signal frequencies on the chirplike impulse response in Fig.

As mentioned at the beginning of Sec. III.C, the studentsz(b)_ High frequencies of the input signal will find them-
may change any of the parametéength, carrier frequency, selves back in thes-function-like leading edge. So, when

envelopeg of the input signal to examine the effect on the . ; . ) ) :
transmission characteristics. Their main findings @yehe only high frequenmes are involved in the input _S|gnal, the
distortion of the(1,0) output signal decreases when the car-I0W-frequency tail of the impulse response has little effect.
rier frequency is moved away from the cut-off edge), the The §-I|ke I_eadmg edge of the |mpu'lse response mtrodyces
distortion decreases when the input signals are made Iongé?["Y little distortion. (An exact_é—functlon introduces no dis-
and (jii) the distortion becomes worse when the input signafortion at all) Lower frequencies, however, tend to move the
envelope is changed from a triangular into a rectangulafenter of gravity of the convolution towards the low-
shape. frequency tail of the response function, thus smearing the
It is interesting to explain the distortion and the above-output signal in time and giving its envelope maximum an
mentioned findings in terms of the convolution relati@d), extra delay.
according to which the output signal is the convolution of the Now, the above-mentioned findings of the students can
input signal with the impulse response of the waveguide. easily be explained. An increase of the carrier frequency
The (1,0 impulse response of the waveguide is shown inshifts the position of the signal frequencies on the impulse
Fig. 2(b). As mentioned in the context of Fig(l®, this im-  response towards th#like leading edge, thus decreasing the
pulse response looks like a reversed chirplike function, withoverall distortion of the output signal. Shortening the output
the high frequencies compressed into a Difdie leading  signals or changing their amplitude envelope from triangular
edge. to rectangular both widen the Fourier spectrum of the sig-

The distortion of the output signal§l,00 and (0,0)
+(1,0), relative to the input signal in Fig. 7, is caused
mainly by dispersion. Thél,0) signal is distorted by single-
mode dispersion only, while the (0,8)1,0) suffers an ad-
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nals. Lower frequencies are thus introduced and this, in turrthe LabVIEW™ applications used in the experiment. Most
enhances the distorting effect of the tail of the impulse re-of the computer programming and the computerization of the

sponse. measuring equipment was done by them. The authors also
thank J. Soogen, who constructed the waveguide of the ex-
IV. CONCLUSION perimental setup. B. Van Rompaey acknowledges financial
Although the intuitive approach to the Fourier aspects in-S;rf)tport from FWO, Flander&elgium), as a research assis-
volved in the above-described laboratory experiment isI )

highly. apprgciated by the stqdenfcs_,, .We E-lre -aware th-at th%Electronic mail: kristien.meykens@Iuc.ac.be
experiment |tself may look a p|t artificial, with little practical 1"}, Ingard, Fundamentals of Waves and Oscillatiogsd ed.(Cam-
relevance. As is made clear in, e.g., Refs. 8 and 9, however yigge U.p., Cambridge, England, 1990
the concepts encountered in the above experiment are of aGrwei P. Hsu,Fourier Analysis Simon and Schuster Tech Outlinimon
tual interest in modern technology. and Schuster, New York, 1970
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THE VALUE OF MATHEMATICAL LIFE

I have never done anything ‘useful’. No discovery of mine has made, or is likely to make,
directly or indirectly, for good or ill, the least difference to the amenity of the world. | have helped
to train other mathematicians, but mathematicians of the same kind as myself, and their wark has
been, so far at any rate as | have helped them to it, as useless as my own. Judged by all practical
standards, the value of my mathematical life is nil; and outside mathematics it is trivial anyhow.
| have just one chance or escaping a verdict of complete triviality, that | may be judged to|have
created something worth creating. And that | have created something is undeniable: the guiestion
is about its value.
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