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A laboratory experiment for undergraduate students in mathematics and physics is introduced. The
experiment concentrates on dispersion in acoustic waveguides. The dispersion relation is measured
for different propagation modes and its effect on the transmission of signals is examined, looking at
it from several points of view, with the main focus on Fourier aspects. The distortion caused by
single mode dispersion is explained in terms of the convolution relation between the input signals
and the impulse response of the waveguides. ©1999 American Association of Physics Teachers.
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I. THEORY

When a harmonic acoustic pressure wave, with amplit
p0 and wave vectork, propagates through a rectangul
waveguide, as shown in Fig. 1, the wave can be written1

p~x,y,z,t !5p0 cos~kyy!cos~kzz!cos~vt2kxx1f!,
~1!

wheref is the phase constant of the harmonic pressure
cillation at x50.

Although the wave vectork in Fig. 1 does not point in the
x direction, the wave represented by Eq.~1!, in fact, travels
in the x direction. In the transverse directions, the walls
the waveguide form a resonator cavity, and this turns
transverse wave components into standing waves, as
pressed by the amplitude,p0 cos(kyy)cos(kzz), in wave ex-
pression~1!. The resonant conditions restrict the wave nu
bersky andkz to the discrete values

ky5m
p

D
and kz5n

p

W
~m,nPN!, ~2!

whereD is the height andW the width of the waveguide.
For a given combinationm,n in the above expressions fo

ky andkz , the wave is said to propagate in the mode~m,n!.
A wave may propagate in different modes at the same ti

The instantaneous phase of the wave isvt2kxx1f. To
keep this phase constant, one must travel at velocityv/kx .
This velocity is known as thephase velocityvp

vp5v/kx . ~3!

The wave numberskx , ky , andkz must satisfy the mutu-
ally orthogonality equation

kx
21ky

21kz
25k2. ~4!

Solving the above equation forkx , and replacingk by its
value v/v, with v the speed of sound in free space, w
obtain

kx5@~v/v !22~mp/D !22~np/W!2#1/2, ~5!

where the expressions~2! have been inserted forky andkz .
From this equation can be seen that, unlessm5n50, the
phase velocity~3! is nonlinearly frequency dependent. Th
means that only the~0,0! mode is nondispersive, while a
the other modes show nonlinear dispersion.
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The complex amplitude of the wave is

p~x,y,z!5p0 cos~kyy!cos~kzz!exp@ i ~2kxx1f!#. ~6!

From this complex amplitude can be seen that the wa
numberkx must be real valued, as otherwise the wave dec
exponentially withx. From Eq.~5! it then follows that the
wave can only propagate in a particular mode~m,n! if its
frequency exceeds a cutoff value,vm,n , given by

vm,n5pvF S m

D D 2

1S n

WD 2G1/2

. ~7!

The main emphasis of the experiment described below
on the investigation of the dispersion and its effect on t
transmission of signals through the waveguide. In order
examine the effect of dispersion, we consider an arbitra
input signalf in(t). Its Fourier transform is given by

F in~v!5E
2`

`

f in~ t !exp~2 ivt !dt. ~8!

Now, F in(v)PC, so it can be written as

F in~v!5uF in~v!uexp@ if in~v!#, ~9!

wheref in(v) is the phase constant of the harmonic comp
nents which make up the input signal. The harmonic comp
nents can alternatively be written in the form of the compl
amplitude~6!. The phase constantf in(v) then corresponds
to 2kxx1f, evaluated at the entrance positionx5xin of the
waveguide. In what follows, the entrance position will b
taken asxin50.

If absorption can be neglected, the amplitude spectr
uF in(v)u remains unchanged with propagation. The pha
factor in expression~9!, however, is not conserved bu
changes withx according to exp@i„2kx(v)x1f in(v)…#. The
Fourier transform of the output signal, measured at any
sition x down the waveguide, is thus given by

Fout~v,x!5F in~v!exp@2 ikx~v!x#. ~10!

In the nondispersive case of mode~0,0!, kx is linearly
proportional tov, according to Eq.~5!

kx5v/v. ~11!

With kx linearly proportional tov, the phase shift in Eq.~10!
causes a distortion-free translation in the time domain,
cording to the Fourier transform property2
400© 1999 American Association of Physics Teachers
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F@ f in~ t2t0!#5F@ f in~ t !#exp~2 ivt0!, ~12!

whereF stands for Fourier transform and wheret0 corre-
sponds tox/v, according to the combined equations~10! and
~11!.

In general, the output signal is given by the inverse F
rier transform of formula~10!. In the time domain this
corresponds to the convolution of the input signal with
inverse transform,F21, of the phase delay functio
exp„2 ikx(v)x…,

f out~ t,x!5 f in~ t ! ^F21@exp„2 ikx~v!x…#, ~13!

where^ stands for convolution product.
Considering the waveguide to be a linear time-invari

transmission system, the output signal can be written as3 the
convolution product of the input signal with the impulse
sponse of the transmission system

f out~ t,x!5 f in~ t ! ^ h~ t !, ~14!

whereh(t) stands for the impulse response. Comparing
transmission relation with Eq.~13!, one finds that the im
pulse response of the waveguide is given by

h~ t,x!5F21@exp„2 ikx~v!x…#. ~15!

Fig. 1. Three-dimensional waveguide with coordinate system and dim
sions.
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In mode~0,0! the impulse response can easily be calcula
and is equal to

h~ t,x!5d~ t2x/v !. ~16!

A convolution with a d-function causes no distortion o
f in(t). It simply shifts the input signal in time, in accordan
with the above-mentioned Fourier transform property.

Now, we would like to see what the impulse response~15!
looks like in mode~1,0!. In this case, the wave numberkx is
not linearly proportional tov, but, according to formula~5!,

kx5@~v/v !22~p/D !2#1/2. ~17!

Inserting this expression into Eq.~15!, an approximate~1,0!
impulse response can be calculated. Figure 2 shows a
merically calculated~1,0! impulse response forx53 m and
D50.142 m. For comparison, the numerically calcula
~0,0! impulse response is also shown.

Where the~0,0! approximation in Fig. 2 approaches
Dirac d-function fairly well, the~1,0! impulse response look
more like ad-function from which the low frequencies hav
escaped into a~reversed! chirplike trailing edge.

We will look more closely into the distorting effect of th
~1,0! impulse response presently.

II. EXPERIMENTAL SETUP

The experimental setup, used in the students laborator
shown schematically in Fig. 3. The waveguide of the setu
a commercially available, 6 m long aluminum pipe with a
rectangular cross section of sizeD50.142 m and W
50.05 m.

The lowest cutoff frequencies corresponding
these cross-sectional dimensions are, in order of
creasing frequency@cf. Eq. ~7!#: v0,050 rad s21, v1,0

52p31200 rad s21, v2,052p32400 rad s21, v0,152p
33400 rad s21, v3,052p33600 rad s21,... . Throughout
the experiment the wave frequency will be kept well bel
the v0,1 cutoff, thus restricting the allowed propagatio
modes to (m,0) modes only, withm50,1,2.

n-
nal
Fig. 2. Unit input impulses (t50) and the numerically calculated impulse responses atx53 m in a rectangular acoustic waveguide with cross-sectio
dimensionsD50.142 m andW50.05 m~cf. Fig. 1!. ~a! Propagation mode~0,0!. ~b! Propagation mode~1,0!.
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At the entrance of the waveguide three loudspeakers

mounted side by side along they axis. They are driven by th
same function generator. Its output amplitude can be m
lated by means of an external modulation source. For
purpose an auxiliary function generator is provided. B
function generators are programmable~Thurlby, Thandar
TTi TG1304! and can be linked up to a computer. The le
between the main function generator and each of the sp
ers can be interchanged separately, thereby introduci
phase shift of 180 deg. The notation1 or 2 will be used to
indicate the relative phases of the speakers, e.g., the in
tion ~1,0,2! means that the two outer speakers move
phase opposition with each other, while the symbol 0 me
that the middle speaker is disconnected. The relative am
tudes of the speakers can also be adjusted. They wi
indicated by numbers in front of the phase symbols~the
number 1 will be omitted!, e.g., (21,0,2) means the sam
phase relation as~1,0,2! but with the amplitude of the1
speaker twice the amplitude of the2 speaker.

The relative phases and amplitudes of the speakers
the acoustic wave front along they axis at the entrance of th
waveguide. Different modes (m,0) can thus be generated,
will be examined in the first part of the experiment.

The acoustic pressure field inside the waveguide ca
gauged by means of a small microphone. The micropho
mounted on anx,y-translation stage and its position is d
tected electronically by means of two potentiometers.

The microphone signal is applied to a digital storage
cilloscope~HP 54600! where it can be visualized and pr
conditioned before being transferred to a computer~Power
Macintosh!.

The oscilloscope and the function generators are linke
to the computer by means of a General Purpose Interface
~GPIB IEEE 488!.

A number of LabVIEW™ application programs have be
custom developed. They are designed to read the si
from the oscilloscope into the computer and to carry out
analysis of these signals according to the requirements o
experiment.

The reader who wants to know more about th
LabVIEW™ applications may contact the authors for
information and free copies of the programs.

III. EXPERIMENTAL RESULTS

A. Propagation modes

In order to investigate the propagation modes generate
different phase and amplitude settings of the speakers,

Fig. 3. Experimental setup. An acoustic~2,0! pressure front is represent
inside the wave guide.
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tinuous sine waves are applied to the waveguide. For e
setting of the speakers, the amplitude pattern of the wav
measured at a distancex53 m down the waveguide. Figur
4 shows some of the patterns recorded by the students.

The amplitude pattern corresponding to a particular set
of the speakers is measured at different wave frequenc
either above and below the different cutoffs. Each setting
thus be checked to determine whether it generates single
multimodes. From Fig. 4, it can be seen that the setti
~1,1,1!, ~1,0,2!, and ~1,2,1! generate single mode
only. The setting~21,1,0!, however, generates the doub
mode (0,0)1(1,0), provided the wave frequency is abo
the v1,0 cutoff.

It is interesting to note that the~21,1,0! amplitude pattern
does not look like a straightforward superposition of the p
terns~0,0! and~1,0!, although it was tailored that way by th
speakers at the entrance of the waveguide. The initial tai
ing, however, is not conserved with propagation, becaus
the different phase velocities of the modes~0,0! and ~1,0!.
The difference in phase velocity makes the phase rela
between the two modesx dependent, and this, in turn, make
the superposition amplitude pattern change with propagat

B. Dispersion relation v5v„kx…

The dispersion relationv5v(kx) can be obtained from
Eq. ~5!. A graphical presentation of this relation is shown
Fig. 5~a!, for the modes (m,0) with m50, 1, 2 respectively.

Figure 6 shows a number of experimentally obtain
(v,kx)-points. The data points were obtained by moving t
microphone, at each of the selected frequencies, inside
waveguide over a distanceDx while watching the phase shif
Dw of the microphone signal on the oscilloscope scre
Measuring bothDw andDx, kx could be obtained using th
relation uDwu5kxuDxu, according to the phase factor of th
complex amplitude in expression~6!. In Fig. 5~b!, the experi-
mental (v,kx)-points are superimposed on the theoreti
curves of Fig. 5~a!.

C. Signal transmission

In order to investigate the transmission of signals throu
the waveguide, the continuous sine waves, used up to

Fig. 4. Acoustic pressure profiles corresponding to the indicated frequen
and settings of the speakers.~The setting@11,1,0# stands for@21,1,0#.!
The profiles are measured atx53 m down the laboratory waveguide. Th
vertical axis on the figures corresponds to they position across the wave
guide. The pressure amplitudes are displayed in horizontal direction, le
right from the middle according to the relative phase of the pressure o
lations.
402Meykens, Van Rompaey, and Janssen



nts
Fig. 5. Dispersion curves for the laboratory acoustic waveguide.~a! Theoretical plots according to Eq.~5!. ~b! Superposition of the experimental data poi
of Fig. 6 on the theoretical plots.
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point in the experiment, are now amplitude modulated i
discrete short wave trains. To start with, 5 ms long 1500
wave trains with a triangular amplitude envelope, as sho
in the top trace of Fig. 7, are applied to the waveguide
triangular, rather than a rectangular amplitude envelop
chosen to assure an envelope maximum which is well
fined in time. This makes it easier to follow the propagati
of the signals, as will be explained in Sec. III C 2.~The
mathematically simpler Gaussian profile could not be
tained from the function generators.!

Later in the experiment the students may change an
the parameters~length, carrier frequency, envelope! of the
wave trains to examine the effect on the transmission c
acteristics.

Figure 7 shows, besides the initial input signal, the cor
sponding output signals atx53m in the single modes~0,0!
and ~1,0! and in the double mode (0,0)1(1,0) respectively.
These signals will be discussed in the next sections.

1. Frequency analysis

From Fig. 7, it can be seen that the periodicity within t
~1,0! output signal is not constant. The number of periods

Fig. 6. Experimentally recordedv, kx-data points. These data points are
be compared with the theoretical dispersion plots of Fig. 5~a!.
403 Am. J. Phys., Vol. 67, No. 5, May 1999
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time division ~5 ms! of the oscilloscope screen decreas
from about 8 in the time interval@10.0, 15.0# ms to 7 in the
interval @15.0, 20.0# ms and further down to 6.5 in the inter
val @20.0, 25.0# ms. The corresponding frequencies ran
from 1600 Hz, through 1400 Hz, down to 1300 Hz, while t
carrier frequency was set on 1500 Hz. This spectrum of
quencies manifests the line broadening caused by the am
tude modulation. The fact that these different frequencies
discernible in the~1,0! signal but neither in the input signa
nor in the~0,0! output signal has to do with the dispersion
the ~1,0! propagation mode, as will be explained in Se
III C 3.

The line broadening caused by the amplitude modulat
of the 1500 Hz sine wave can, however, always be visuali
by taking the Fourier transform of the signals. Figure
shows the FFT-amplitude spectra of the input signal and
the ~1,0! output signal of Fig. 7, respectively. The main di
ference between these two spectra is the missing left
lobes in the~1,0! spectrum. This is due to the fact that the
side lobes lie below thev1,0 cutoff frequency.

Fourier spectra, such as those in Fig. 8, do not reveal
time localization of the frequencies within a signal. To o
tain a joint time-frequency analysis, one can subdivide
signal into pieces of lengthDt and then take the Fourie
transform of the successive pieces. This method is know
slit Fourier transform~FFT slit! or short-time Fourier trans
form ~STFT!.

Fig. 7. Input signal~Trace 1! and the corresponding output signals in mo
~0,0! ~Trace 2!, ~1,0! ~Trace 3!, and (0,0)1(1,0) ~Trace 4!, respectively,
measured atx53 m in the laboratory waveguide.
403Meykens, Van Rompaey, and Janssen
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The details of STFT fall outside the scope of this labo
tory experiment and the students are referred to more
vanced courses in signal analysis~e.g., Ref. 4! for further
information about joint time-frequency transform metho
However, they should realize that, according to the un
tainty principleDn51/Dt, sharpness of the time analysis h
to be traded off for sharpness in frequencies, and vice ve

Figure 9 shows a STFT amplitude spectrum of the~1,0!
signal of Fig. 7. It gives a good estimate of the time
arrival, atx53 m, of the different frequencies which mak
up the ~1,0! signal. From this spectrum, the group veloc
can be determined, as will be discussed in the next sect

2. Group velocity

When dispersion occurs, the appearance of a signal
change drastically with propagation. It may then be diffic
to define any significant single velocity for this signal.
however, there is only a small amount of dispersion over
frequency band of interest, the overall shape of the sig
may stay recognizable over a long distance. The signal
locity can then be taken as the speed of propagation of
signal envelope maximum. This velocity is called thegroup
velocityvg and can be obtained from the dispersion relat
~5! by using the relationship5

vg5
dv

dkx
, ~18!

Fig. 8. Fourier amplitude spectra of the input signal~light! and~1,0! output
signal ~dark! shown in Fig. 7.

Fig. 9. Joint time-frequency spectrum~STFT! of the ~1,0! output signal
shown in Fig. 7.
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where the derivative must be evaluated at the center
quency of the Fourier spectrum of the signal.

In Refs. 1, 6, and 7, excellent explanations are given of
physical meaning of the group velocity in waveguides.
this paper, however, we do not look into these explanati
but restrict ourselves to the frequency dependence of
group velocity as it may be derived from the dispersion
lation ~5!.

Two graphical interpretations of formula~18! are helpful
to see how the group velocity changes with frequency. Fi
the slope of the tangent line on the dispersion curves in F
5~a! is a direct indicator of the frequency dependency ofvg

and need no further comment. Second, calculatingdv/dkx
from the dispersion relation~5! shows that the group velocity
can be written asvg5v cosu, with u the angle the wave
vector k in Fig. 1 makes to thex axis. Now, for a given
mode, they,zcomponents of the wave vector are fixed. T
total length of the wave vector, however, changes with f
quency, according tok5v/v. Thus, in any of the propaga
tion modes but~0,0!, the angleu must change with fre-
quency, from almost 90° near cutoff to 0° in the limit o
infinitely high frequencies. The corresponding group veloc
changes from almost zero to the speed of sound in free sp

Figure 10 gives a quantitative picture of the group veloc
versus frequency for some of the modes in the wavegu
used in the students laboratory.

The triangular shape of the input signal in Fig. 7 is suf
ciently recognizable in the~1,0! signal to allow the use of
formula ~18! to determine the propagation velocity of th
~1,0! signal. From Fig. 7 can be seen that the time of arriv
at x53 m, of the~1,0! envelope maximum is approximatel
16 ms. The corresponding group velocity is 190 ms21, where
the theoretical group velocity atv52p31500 rad s21 is
200 ms21, according to Fig. 10.

Instead of the single time of arrival of the signal as
whole, as obtained above from the envelope maximum
more detailed picture of the time of arrival of the signal
given by the joint time-frequency plot of Fig. 9. There, th
time of arrival is shown as a function of frequency within th
frequency band of the signal.

Estimating the time of arrival at a given frequency fro
the time that frequency reaches its intensity maximum on
STFT spectogram of Fig. 9, the time of arrival at 1500 H
can be seen to be about 16 ms. This is in accordance with
time of arrival of the envelope maximum of the~1,0! output
signal in Fig. 7. Frequencies near the~1,0! cutoff have a
much delayed time of arrival, e.g., 1300 Hz can be seen to

Fig. 10. Group velocity versus frequency for the propagation modes~0,0!,
~1,0!, and~2,0!, respectively, in the laboratory waveguide.
404Meykens, Van Rompaey, and Janssen
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Fig. 11. Convolution of a triangular sine burst with a chirp-function. The convolution shows a maximum at the points in time where the frequenc
the spectrum of the burst coincide with the frequencies of the chirp-function.~a! Sine frequency near the start frequency of the chirp.~b! Sine frequency nea
the end of the chirp.
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localized in time at approximately 27 ms. This latter cor
sponds to a group velocityvg5110 ms21, where, according
to Fig. 10, the theoretical value at 1300 Hz is 130 ms21.

3. Distortion

The distortion of the output signals~1,0! and (0,0)
1(1,0), relative to the input signal in Fig. 7, is caus
mainly by dispersion. The~1,0! signal is distorted by single
mode dispersion only, while the (0,0)1(1,0) suffers an ad-
ditional distortion from the intermodal dispersion betwe
the propagation modes~0,0! and~1,0!. In this section we will
look into the distortion caused by single-mode dispers
only.

As mentioned at the beginning of Sec. III C, the stude
may change any of the parameters~length, carrier frequency
envelope! of the input signal to examine the effect on th
transmission characteristics. Their main findings are~i! the
distortion of the~1,0! output signal decreases when the c
rier frequency is moved away from the cut-off edge,~ii ! the
distortion decreases when the input signals are made lon
and~iii ! the distortion becomes worse when the input sig
envelope is changed from a triangular into a rectangu
shape.

It is interesting to explain the distortion and the abov
mentioned findings in terms of the convolution relation~14!,
according to which the output signal is the convolution of t
input signal with the impulse response of the waveguide

The ~1,0! impulse response of the waveguide is shown
Fig. 2~b!. As mentioned in the context of Fig. 2~b!, this im-
pulse response looks like a reversed chirplike function, w
the high frequencies compressed into a Diracd-like leading
edge.
405 Am. J. Phys., Vol. 67, No. 5, May 1999
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A convolution may be compared6 to a correlation function
and, just as a cross correlation measures the similarity
tween two functions, so does the convolution~16!, as a func-
tion of time, show a maximum when the frequencies of t
input signal recognize themselves in the response funct
This is demonstrated in Fig. 11. The signals in Fig. 11
computer simulations of triangular wave trains convolv
with a chirp function. The triangular wave trains are cente
aroundt50. The convolutions show a maximum when th
chirp function reaches the wave train frequencies or, in ot
words, when the wave train frequencies match the chirp
quency.

The distortion can now be explained by positioning t
signal frequencies on the chirplike impulse response in F
2~b!. High frequencies of the input signal will find them
selves back in thed-function-like leading edge. So, whe
only high frequencies are involved in the input signal, t
low-frequency tail of the impulse response has little effe
The d-like leading edge of the impulse response introdu
only little distortion.~An exactd-function introduces no dis-
tortion at all.! Lower frequencies, however, tend to move t
center of gravity of the convolution towards the low
frequency tail of the response function, thus smearing
output signal in time and giving its envelope maximum
extra delay.

Now, the above-mentioned findings of the students c
easily be explained. An increase of the carrier frequen
shifts the position of the signal frequencies on the impu
response towards thed-like leading edge, thus decreasing th
overall distortion of the output signal. Shortening the outp
signals or changing their amplitude envelope from triangu
to rectangular both widen the Fourier spectrum of the s
405Meykens, Van Rompaey, and Janssen



ur
re

in
i
t
l
ve
f a

p
. I
o
m
e
u

rz
ng

st
the
also
ex-

cial
-

ive,

ric

of
nals. Lower frequencies are thus introduced and this, in t
enhances the distorting effect of the tail of the impulse
sponse.

IV. CONCLUSION

Although the intuitive approach to the Fourier aspects
volved in the above-described laboratory experiment
highly appreciated by the students, we are aware that
experiment itself may look a bit artificial, with little practica
relevance. As is made clear in, e.g., Refs. 8 and 9, howe
the concepts encountered in the above experiment are o
tual interest in modern technology.

To enhance the relevance, the extrapolation route to o
cal fiber telecommunication is pointed out to the students
particular, the acoustic waveguide may be compared t
step-index fiber. The physics behind a number of proble
such as, e.g., the restriction of the transmission rate du
dispersion in fiber telecommunication, can adequately be
derstood from the acoustic waveguide.
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THE VALUE OF MATHEMATICAL LIFE

I have never done anything ‘useful’. No discovery of mine has made, or is likely to make,
directly or indirectly, for good or ill, the least difference to the amenity of the world. I have helped
to train other mathematicians, but mathematicians of the same kind as myself, and their work has
been, so far at any rate as I have helped them to it, as useless as my own. Judged by all practical
standards, the value of my mathematical life is nil; and outside mathematics it is trivial anyhow.
I have just one chance or escaping a verdict of complete triviality, that I may be judged to have
created something worth creating. And that I have created something is undeniable: the question
is about its value.

G. H. Hardy,A Mathematician’s Apology~Cambridge University Press, 1969; reprint of 1940 edition!, pp. 150–151.
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