Advanced Physics Laboratory PHY 326/327 and PHY 426/427/428/429

Lectures on Error Analysis in Scientific Measurement: Part 1: The meaning and calculation of uncertainty Part 2: The least-squares method of fitting data

J. H. Thywissen September 12, 2006.

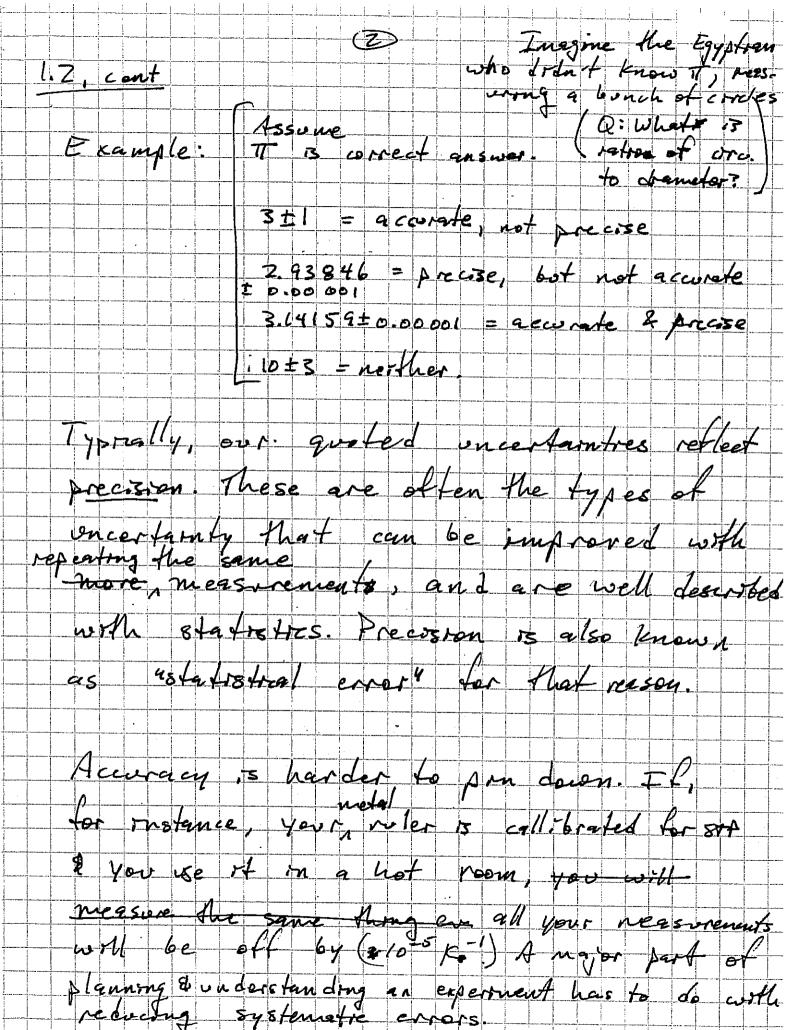
Outline:

- 1.1 Illegitimate Errors
- 1.2 Accuracy versus Precision
- 1.3 Recording Error
- 1.4 What is meant by statistical uncertainty?
- 1.5 Error propagation
- 1.6 Examples of error propagation
- 1.7 The Normal distribution
- 1.8 Weighted average & standard deviation of the mean
- 2.1 Fitting a function to data
- 2.2 Definition of χ^2
- 2.3 Finding the best fit
- 2.4 Uncertainty in fit parameters
- 2.5 Linear and polynomial fit solutions
- 2.6 Including x uncertainty
- 2.7 Goodness of fit
- 2.8 Summary

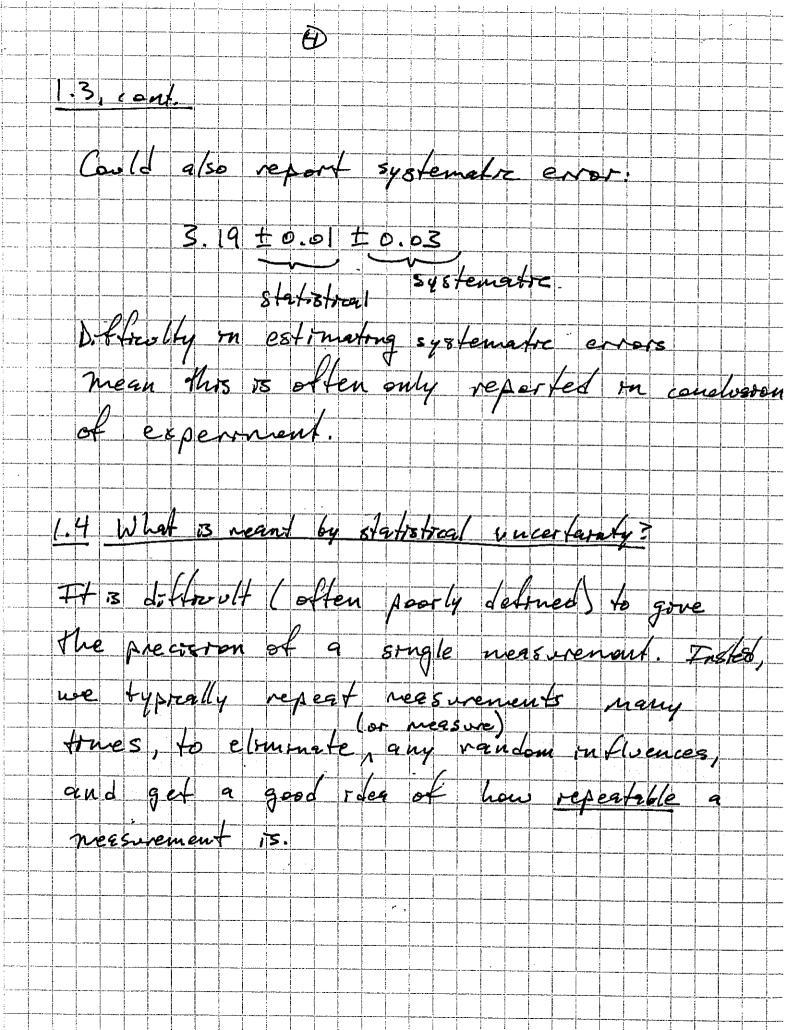
References:

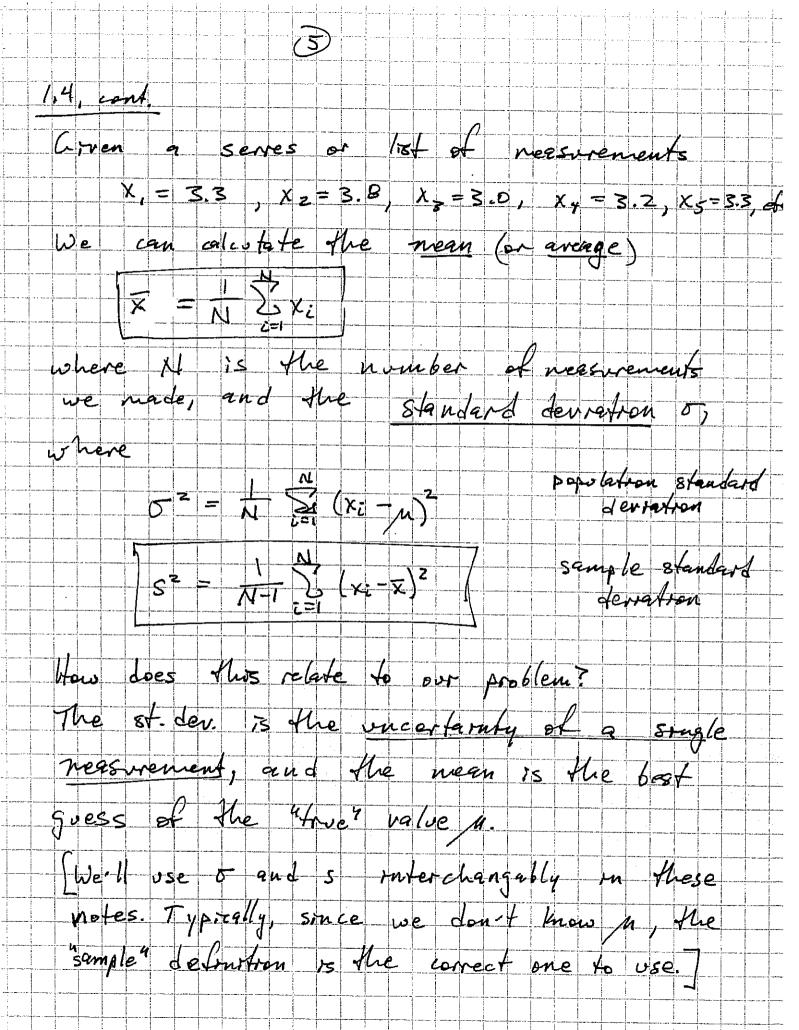
J. R. Taylor, An Introduction to Error Analysis (University Science Books, 1982)

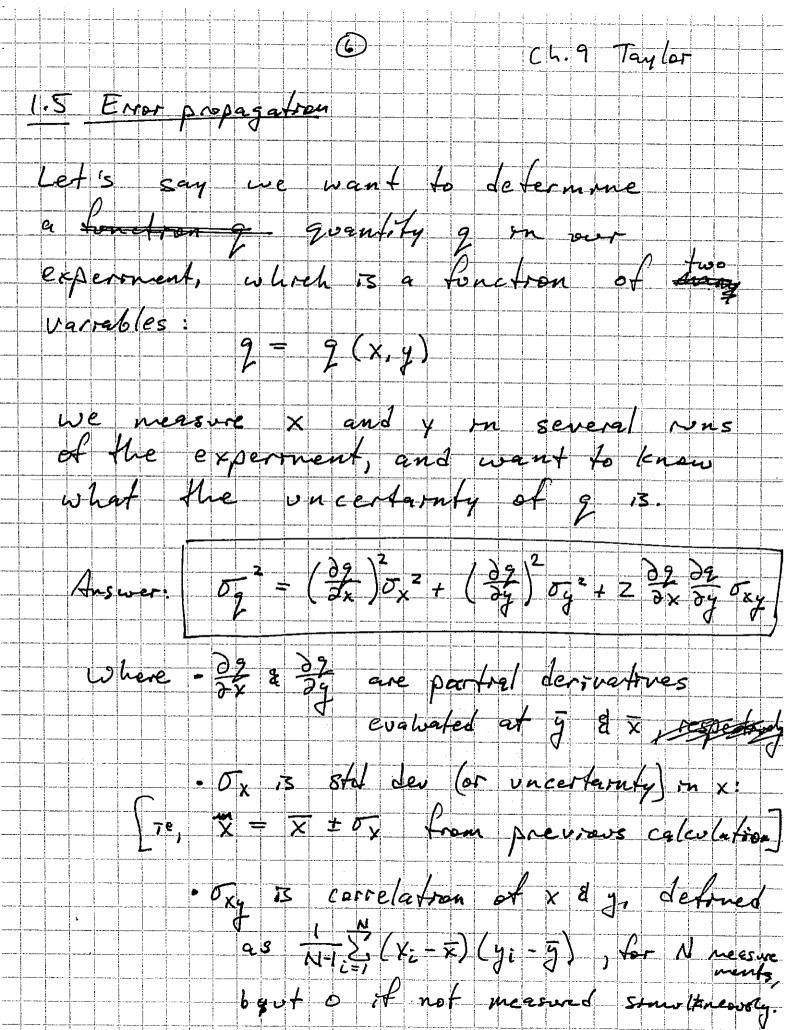
P. R. Bevington & D. K. Robinson, *Data Reduction and Error Analysis for the Physical Sciences* (McGraw-Hill)


J. Orear, *Notes on Statistics for Physicists, revised* (unpublished, 1982) online: http://nedwww.ipac.caltech.edu/level5/Sept01/Orear/Orear.html

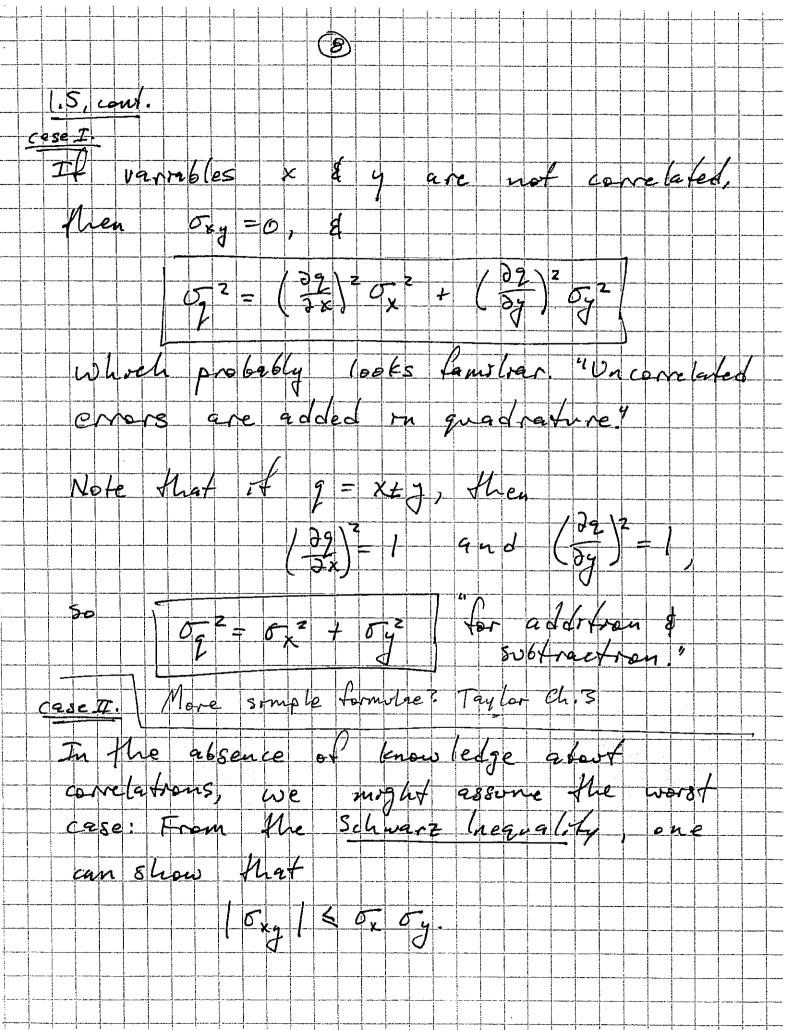
Part 1: The meaning and calculation of uncertainty

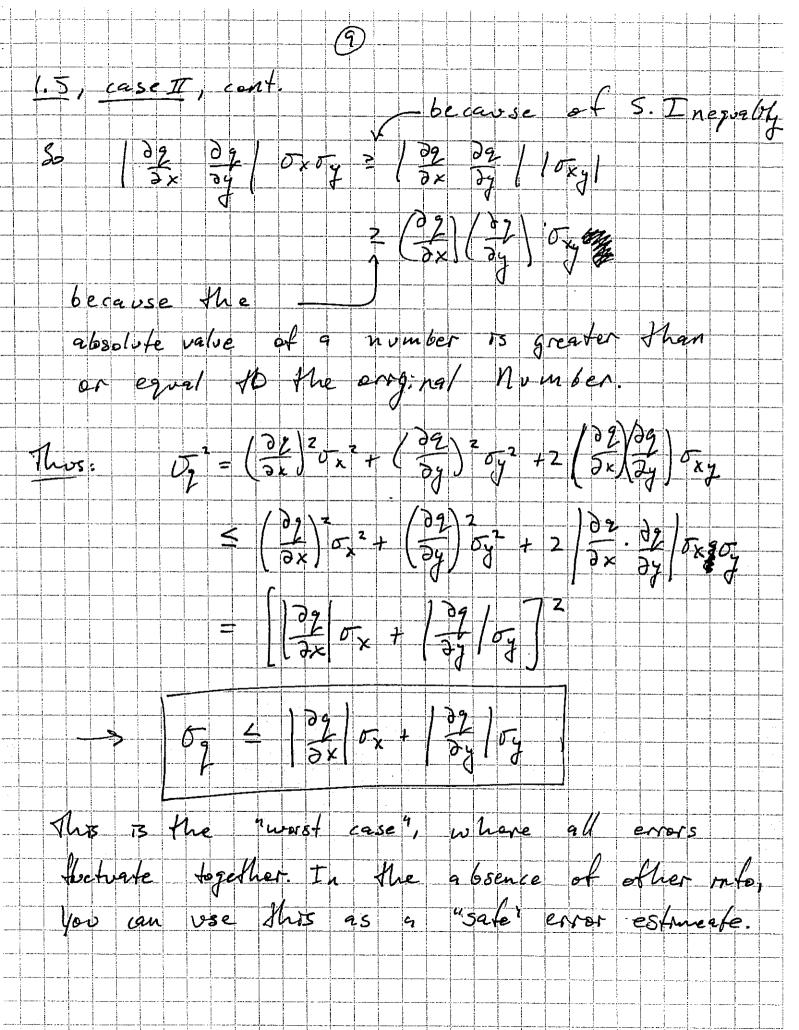

Outline:

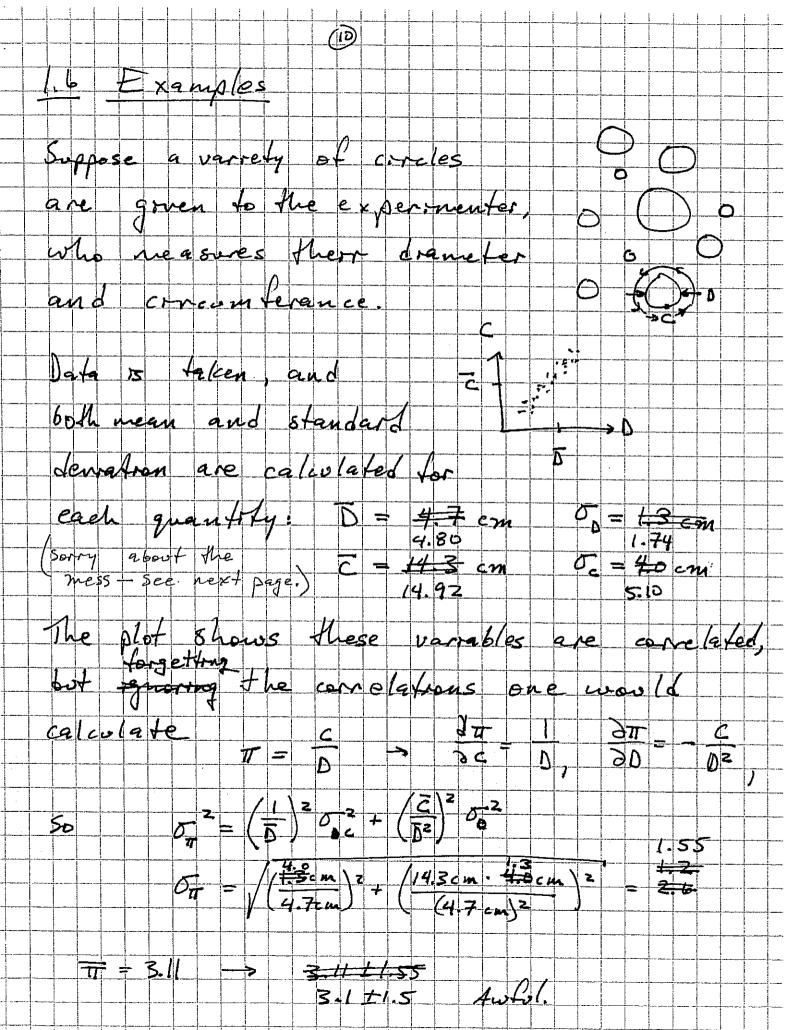

- 1.1 Illegitimate Errors
- 1.2 Accuracy versus Precision
- 1.3 Recording Error
- 1.4 What is meant by statistical uncertainty?
- 1.5 Error propagation
- 1.6 Examples of error propagation
- 1.7 The Normal distribution
- 1.8 Weighted average & standard deviation of the mean

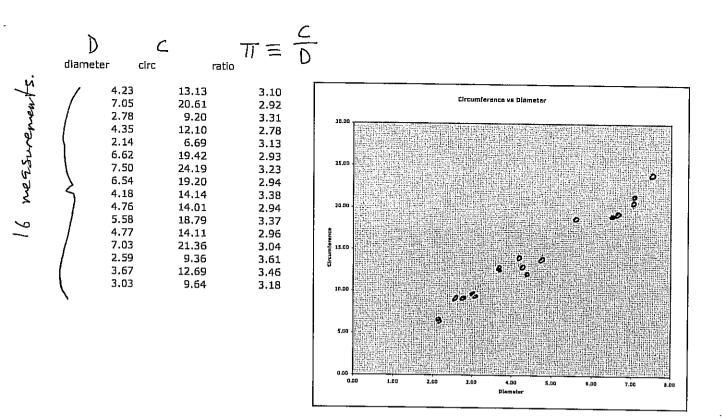

Lecture 1. Uncertainty & Error in Scientific Messivement Whit is enror? [Taylor, Ch.1] "Error" does not carry the vsvel connotation be mistake of blunder, but the inevitable uncertainty that attends is associated with all neasurements. Illegitimate errors 1.1 Errors that originate from urstakes or blunders in news remaint or composition, arc not considered in scientific uncestanty. These can be eliminated by carefully repeating observations, procedures, or calculation Scientitic errors are not mostales. 1.2 Accuracy versus Preersion Berington Chil] Accuracy: how close experimental result is to the true value. Precision: how well a volve has been determined without reference to five value.



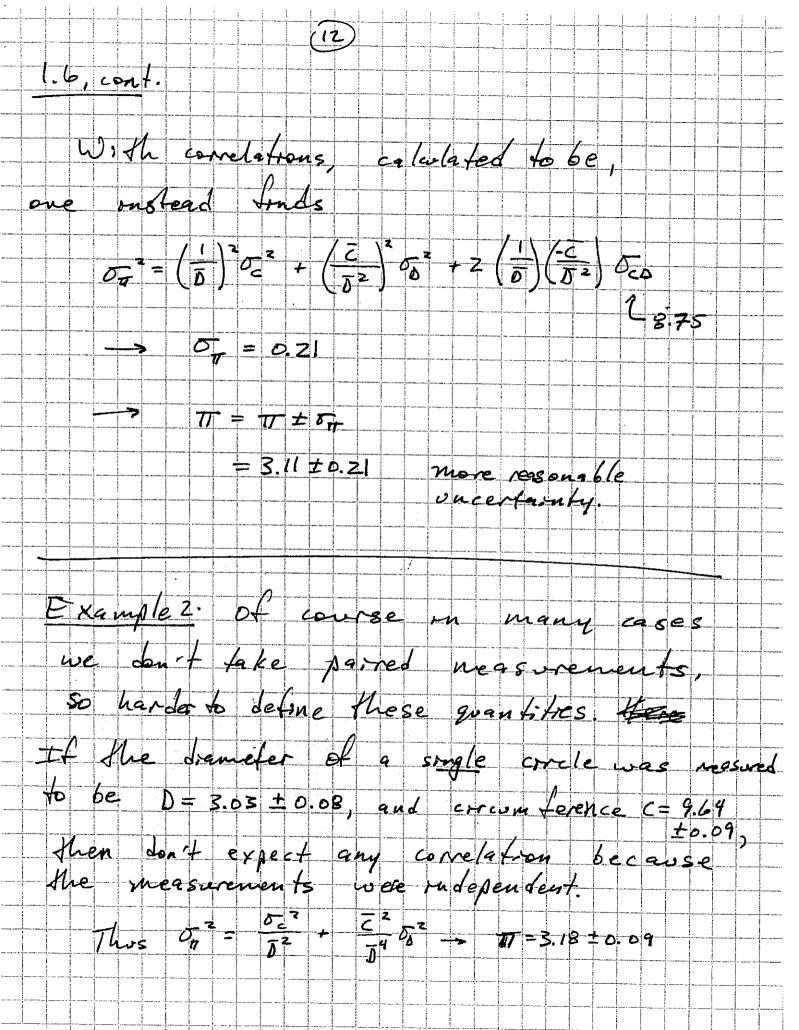

3 1.3 Recording Bron [Taylor, Ch.Z] Typically, we write 3.14±0.02 value I Costatistical uncertainty or precision How many dogots? As many as meaningful, due to uncertainty. 3.14<u>394</u> ±0.02 too nany dog: to You may worke uncertainty with two dogots, especially when a single dry it would be 1/4: 3.1416 ± 0.0034 Rulen: Write uncertamby with one or two digits write value to same to digits significant digits. Because of this vole, 3.1416 (34) unambiguous [Alternate no tation]







mean	diameter circ 4.80	correlation	
stdev	1.74	5.10 8.75	ratio
	,	•	3.11
		uncertainty (naive)	1.55
. <u> </u>		uncertainty (correct)	0.21


If use st dev mean:

-0.02 -0.2 sigma off

see (section 1.8

ł							
Ś		diameter	circ	n	atio	unc	
1	mean	4.801		14.915	3.106		0.053
J	stdev	0.436		1.276			

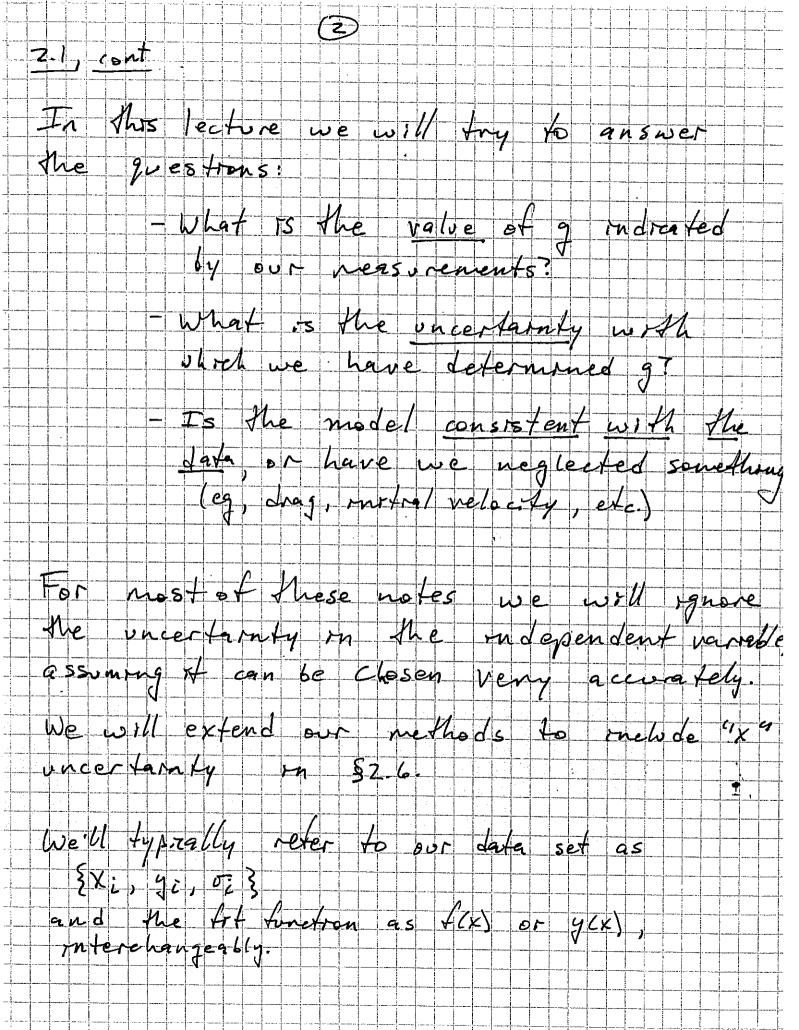
-0.7 sigma off

Ch. 5 Vaylet 1.7 Normal distribution Ch. 1,2 Baring for D. Herent types of news remember have different distributions characterizing the spread in results. A "limiting distribution" or "parent distribution" is the probability distribution approached in the limit of an infinite nember of megsurements. This is to be can tracted with the "Sample distribution" which is your Lata. The Central Limit Theorem states that in the presence of namy small sources of random error, the probability of measuring value X between X and Xtdx 15 9 $P(x) = \frac{1}{\sqrt{2\pi}} e_{x} \left(\frac{1}{2} \left(\frac{x-h}{2} \right)^2 \right)$ where h= "fre" mean, J= 4rue 4 deviation FWHM This curve is also called 2.3545 a Caussian," $\rightarrow x$

1.7. cont. So, what does o mean? -----Pis defined such that PLX)dx = 1 So the som of all measurements probability of naking a measurement at any volve 75 10020. (Logora /!) The probability of making a neasurement within of of h is MA x anto avoid a statistic statistic statistic over Statistic statistic statistic meaning 68% of all neasurements are within of h. Dont about Mis is an important meaning of statistical and there is nothing two age with a error: There is nothing "wrong" with a strigle messure ment outside The error In fact, there would be something wrong of none at your negsiere ments were autorda the quoted of: About 1/3 ought to be. example from \$1.6

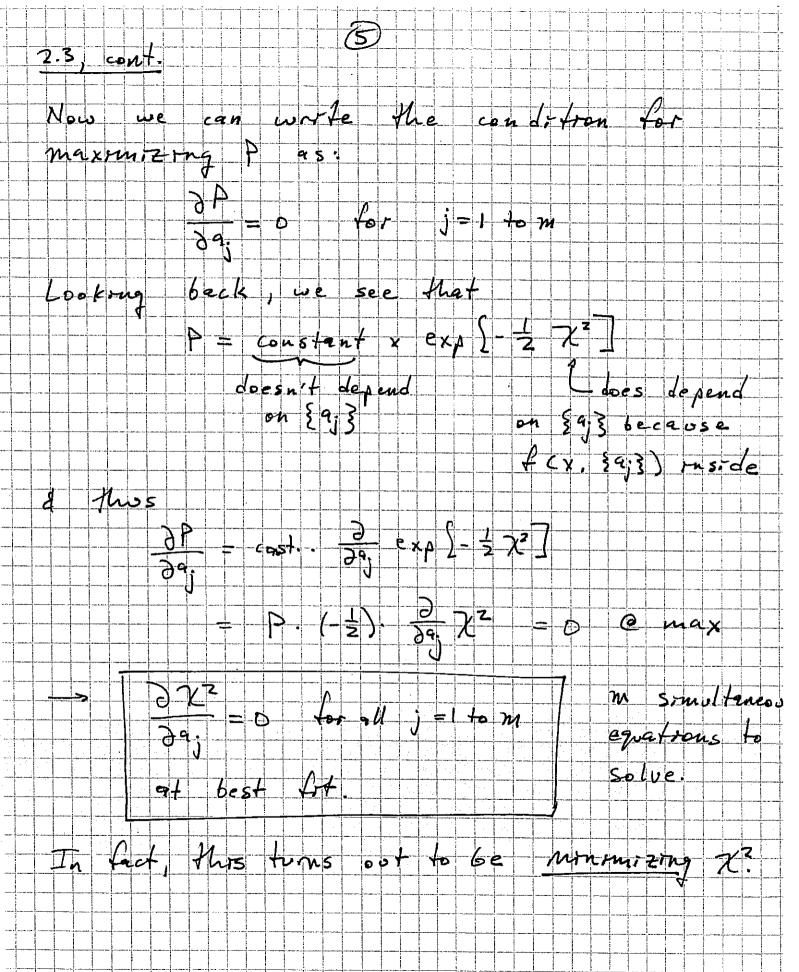
(13)1.8 Weighted Average and Standard Dervation of the Mean. Ch.7 Taylor Let's say you've made several measurements of the same quantity, with varying amounts of data and precision: $\frac{1}{1} \frac{1}{X_1 \pm 0}$ $\frac{1}{1} \frac{1}{X_2 \pm 0}$ etc., for Altries How do you combine these, to choose the best value (n), and what is the uncertainty with which you have determined the best value? Approach: Maximize the probability of the observations having occurred. Say each reasurement descrubes a Gaussran distribution. Then $P = P_1(x_1) P_2(x_2) \cdots P(x_N)$ where P(x) = 0, 1211 exp { -2 (x, -4) 2 etc.

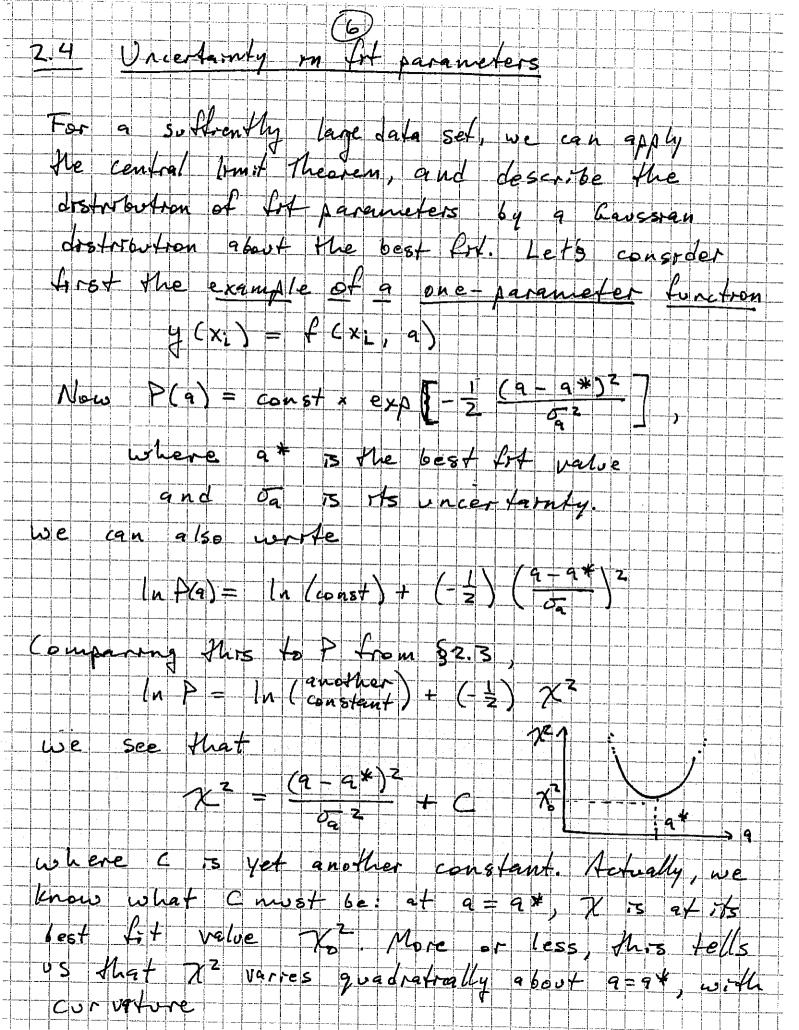
1.8, cont. (16) thus, To maxmite P, we set its dervative to Zero, so dr = d d (x:-4) 2 = 0 dh = d du (x:-4) 2 = 0 $\frac{N}{2} - \frac{1}{2} = \frac{1}{2} \frac{1}{2}$ Can drop -2 & split terms: $\sum \sigma_{i}^{2} \cdot X_{i}$ $\frac{1}{2} \frac{X_i}{\sigma_i^2} = \mu \frac{1}{2} \frac{\sigma_i^2}{\sigma_i^2} = \frac{1}{2} \frac{1}{\sigma_i^2} \frac{1}$ In other words, the best guess for X is a weighted som, where each neasurement is weighted by 02 what is the uncertainty? $\frac{1}{2} = \frac{1}{2} \left(\frac{39}{3} \right)^2 \frac{1}{2} \frac{1}{2} \frac{1}{1} \frac$ <u>d Moest</u> <u>d Xi</u> <u>Z 107</u>2 0 M best 15 10-2

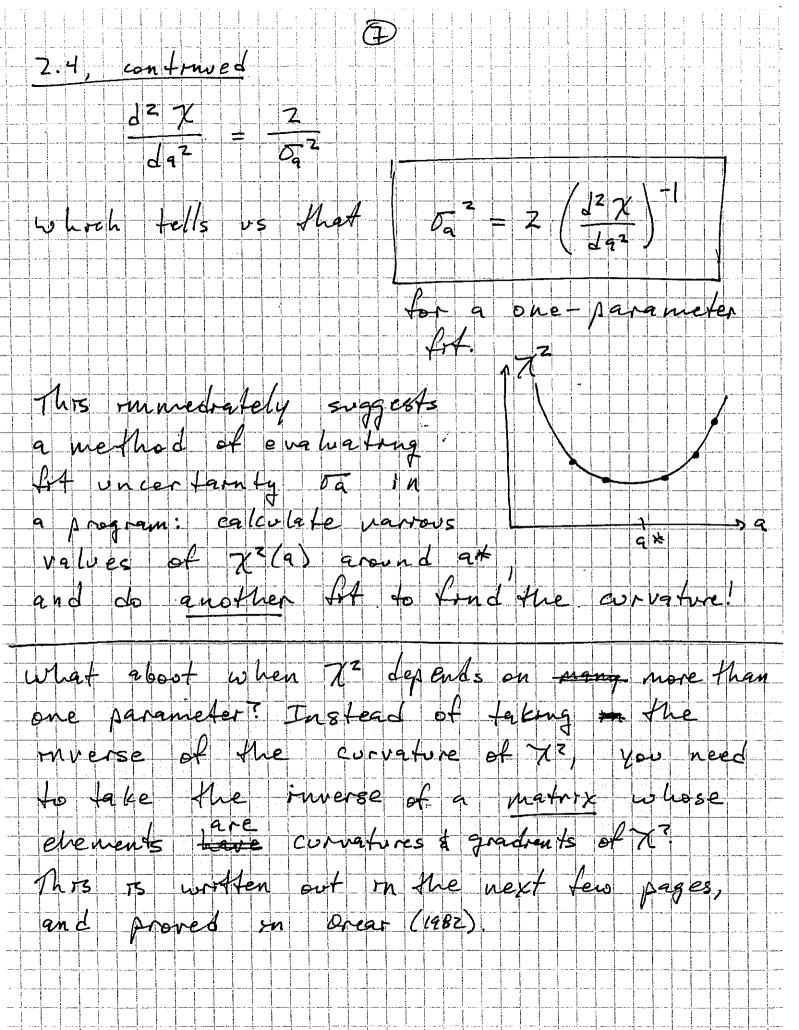


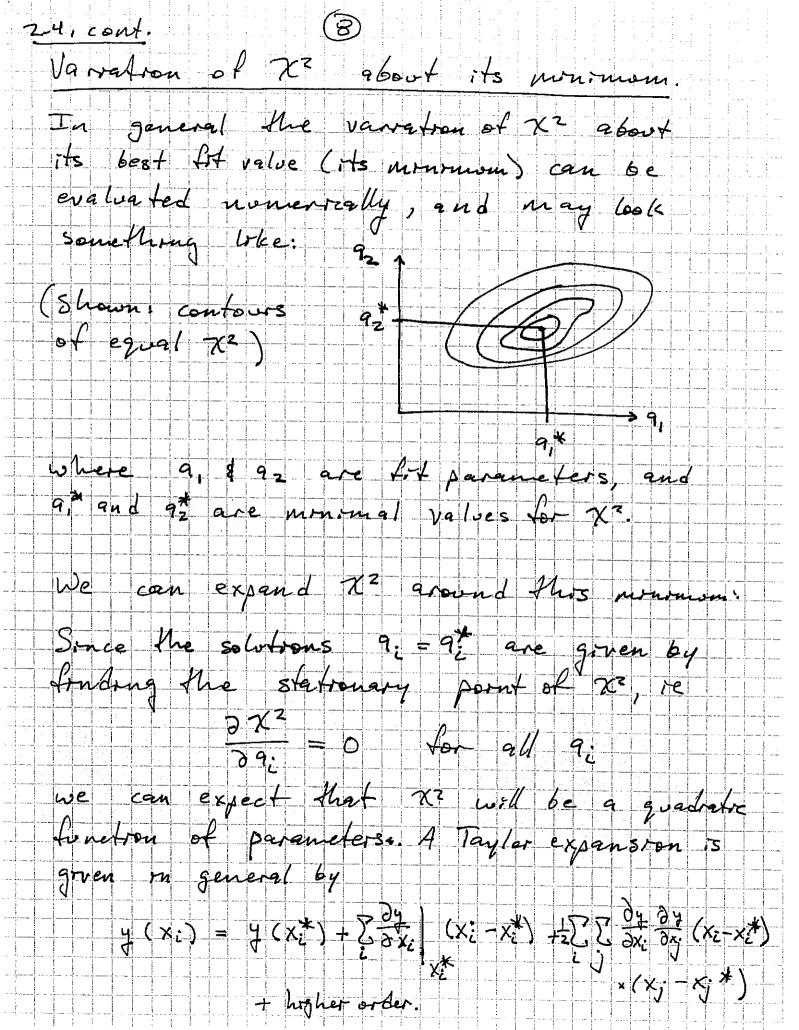
Part 2: The least-squares method of fitting data

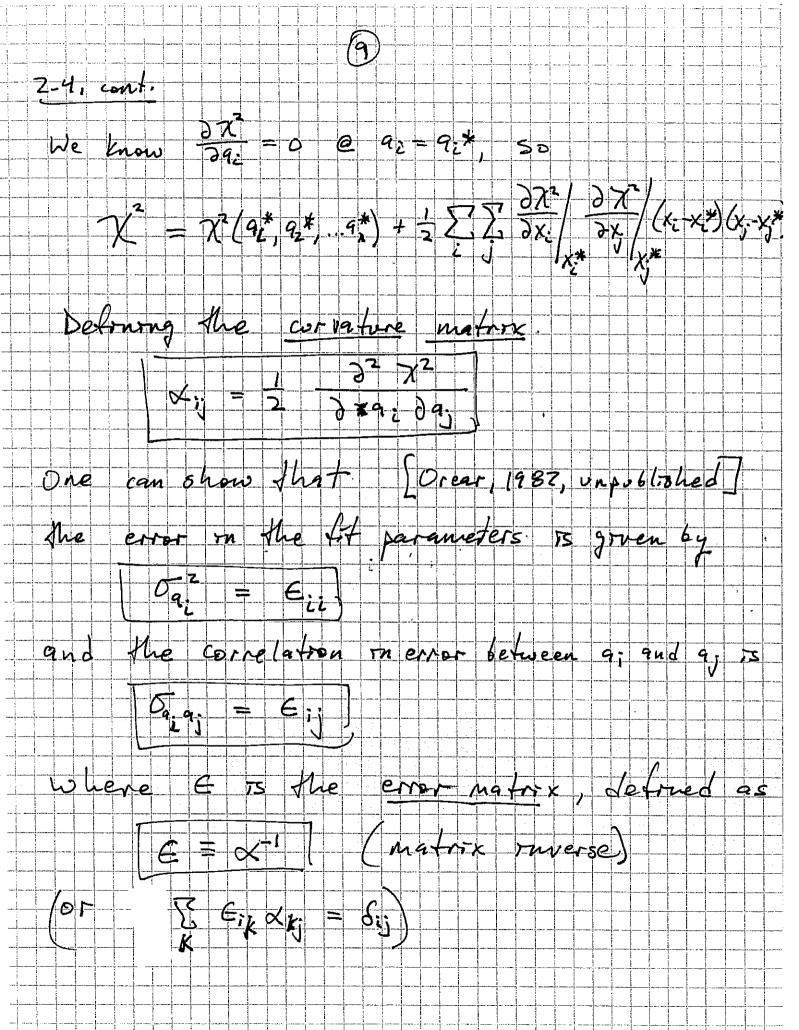
Outline:

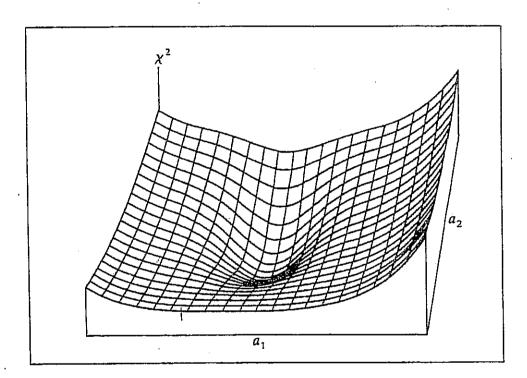

- 2.1 Fitting a function to data
- 2.2 Definition of χ^2
- 2.3 Finding the best fit
- 2.4 Uncertainty in fit parameters
- 2.5 Linear and polynomial fit solutions
- 2.6 Including x uncertainty
- 2.7 Goodness of fit
- 2.8 Summary


Fitting or function to data 2.1 As other as possible we try to make direct reasurements of the quantities we are interested m. For moton ce, measuring The length of an object, we use a roler, and no fifting or analysis may be required. Unfortunately, not all quantities can be measured drectly. Instead, we may have to use a model to infer the value we are interested m. For instance, to togure out gravitational acceleration, we might neasure the height of a falling object tata at various times, after release we expect that $Z = -\frac{1}{2}g + \frac{1}{2}f$ have neasured many and pornts [2, 2, 02, Jara E2 E2 52




(3) 2.2 Definition of X2 arren a set of data and a GF, how do we quantity how "close" or "far" they are trem one another? At each Xi, we neesed yit ti, and calculate that we expect fixed. Some Oi tells us about the expected (average) derration, the distance $\Delta y = y_i - f(x_i)$ can be goven in terms of or somming over all points, we get a single number $\chi^{z} = \sum_{i=1}^{N} \left(\frac{y_{i}}{4i} - f(x_{i}) \right)^{2}$ 1 Chi Squared " I pronounced Note that 22 3 domensionless. There are N data points in our sum. (We won't globays worke alle start & end index, but it will typically be from 1 to N)


2.3 Finding the best fit Using the maximum likely, hood method, we choose the "best fit" parameters to maximize the probability that our particular set of observations occurred. It you believe that y(xi) is the true ralue of the dependent variable at Xi, then the probability of measuring 7: w95 $P_{i} = \frac{1}{\sigma_{i} \sqrt{2\pi}} e_{x,p} \left[-\frac{1}{2} \frac{(y_{i} - y_{i} x_{i})^{2}}{\sigma_{i}^{2}} \right]$ The joint probability of all neasurements having been made is then $P = P P = \prod_{i=1}^{N} P_{i}$ $= \left(\frac{1}{1} - \frac{1}{0}\right) e_{XP} \left(-\frac{1}{2} - \frac{1}{2}\right) \left(\frac{1}{0} - \frac{1}{2}\right) e_{XP} \left(-\frac{1}{2} - \frac{1}{2}\right) \left(\frac{1}{0} - \frac{1}{2}\right) e_{XP} \left(-\frac{1}{2} - \frac{1}{2$ Maximizing this probability meanes finding its stationary points with respect to the fit parameters. We've been writing yes for convenience, but in fact the function also depends on the parameters 9, 92, 93, 94, ...: y(x) = f(x, 9, 92, 93, 9m)where m is the number of the parameters.



Least-squares fit to an arbitrary function 145

FIGURE 8.2

Chi-square hypersurface as a function of two parameters.

Source: Berngton.

10)

2.5 Linear Fit Solution (1) For simple finitions, one can calculate the best fit directly from the data set, without the need of a nontruear minimization routine. The following excerpts from Berington Show the derivation of 655+ AFF parameters for a linear At to a data set including only y errors: $\frac{1}{2} \times \frac{1}{2} \cdot \frac{1}$ (6.12) -> best fit a= q*, b= b* $(6.21) \rightarrow 0_{4}^{2}$ (6.22) -> 06² Now you can write your own folling program.

6.3 MINIMIZING χ^{-}

evington, pp. 105-104

To find the values of the coefficients a and b that yield the minimum value for χ^2 , we set to zero the partial derivatives of χ^2 with respect to each of the parameters

12

$$\frac{\partial}{\partial a} \chi^{2} = \frac{\partial}{\partial a} \sum \left[\frac{1}{\sigma_{i}^{2}} (y_{i} - a - bx)^{2} \right]$$
$$= -2 \sum \left[\frac{1}{\sigma_{i}^{2}} (y_{i} - a - bx_{i}) \right] = 0$$
$$\frac{\partial}{\partial b} \chi^{2} = \frac{\partial}{\partial b} \sum \left[\frac{1}{\sigma_{i}^{2}} (y_{i} - a - bx)^{2} \right]$$
$$= -2 \sum \left[\frac{x_{i}}{\sigma_{i}^{2}} (y_{i} - a - bx_{i}) \right] = 0$$
(6.10)

These equations can be rearranged as a pair of linear simultaneous equations in the unknown parameters a and b:

$$\sum \frac{y_i}{\sigma_i^2} = a \sum \frac{1}{\sigma_i^2} + b \sum \frac{x_i}{\sigma_i^2}$$

$$\sum \frac{x_i y_i}{\sigma_i^2} = a \sum \frac{x_i}{\sigma_i^2} + b \sum \frac{x_i^2}{\sigma_i^2}$$
(6.11)

The solutions can be found in any one of a number of different ways, but, for generality we shall use the method of determinants. (See Appendix B.) The solutions are

$$a = \frac{1}{\Delta} \begin{vmatrix} \sum \frac{y_i}{\sigma_i^2} & \sum \frac{x_i}{\sigma_i^2} \\ \sum \frac{x_i y_i}{\sigma_i^2} & \sum \frac{x_i^2}{\sigma_i^2} \end{vmatrix} = \frac{1}{\Delta} \left(\sum \frac{x_i^2}{\sigma_i^2} \sum \frac{y_i}{\sigma_i^2} - \sum \frac{x_i y_i}{\sigma_i^2} \sum \frac{x_i y_i}{\sigma_i^2} \right) \\ b = \frac{1}{\Delta} \begin{vmatrix} \sum \frac{1}{\sigma_i^2} & \sum \frac{y_i}{\sigma_i^2} \\ \sum \frac{x_i}{\sigma_i^2} & \sum \frac{x_i y_i}{\sigma_i^2} \end{vmatrix} = \frac{1}{\Delta} \left(\sum \frac{1}{\sigma_i^2} \sum \frac{x_i y_i}{\sigma_i^2} - \sum \frac{x_i}{\sigma_i^2} \sum \frac{y_i}{\sigma_i^2} \right) \quad (6.12) \\ \Delta = \begin{vmatrix} \sum \frac{1}{\sigma_i^2} & \sum \frac{x_i}{\sigma_i^2} \\ \sum \frac{x_i}{\sigma_i^2} & \sum \frac{x_i^2}{\sigma_i^2} \end{vmatrix} = \sum \frac{1}{\sigma_i^2} \sum \frac{x_i^2}{\sigma_i^2} - \left(\sum \frac{x_i}{\sigma_i^2} \right)^2 \end{aligned}$$

For the special case in which all the uncertainties are equal ($\sigma = \sigma_i$), they cancel and the solutions may be written

$$a = \frac{1}{\Delta'} \begin{vmatrix} \Sigma y_i & \Sigma x_i \\ \Sigma x_i y_i & \Sigma x_i^2 \end{vmatrix} = \frac{1}{\Delta'} (\Sigma x_i^2 \Sigma y_i - \Sigma x_i \Sigma x_i y_i) \\ b = \frac{1}{\Delta'} \begin{vmatrix} N & \Sigma y_i \\ \Sigma x_i & \Sigma x_i y_i \end{vmatrix} = \frac{1}{\Delta'} (N \Sigma x_i y_i - \Sigma x_i \Sigma y_i)$$

$$\Delta' = \begin{vmatrix} N & \Sigma x_i \\ \Sigma x_i & \Sigma x_i^2 \end{vmatrix} = N \Sigma x_i^2 - (\Sigma x_i)^2$$
(6.13)

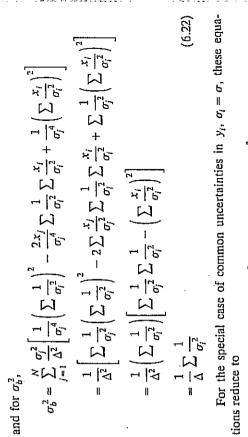
Uncertainties in the Parameters

parameters and each has contributed some fraction of its own uncertainty to the In order to find the uncertainty in the estimation of the coefficients a and b in Chapter 3. Each of our data points y_i has been used in the determination of the uncertainty in our final determination. Ignoring systematic errors, which would introduce correlations between uncertainties, the variance σ^2 of the parameter z is given by Equation (3.10) as the sum of the squares of the products of the standard deviations σ_i of the data points with the effects that the data points our fitting procedure, we use the error propagation method discussed in have on the determination of z:

$$\sigma_z^2 = \sum \left[\sigma_i^2 \left(\frac{\partial z}{\partial y_i} \right)^2 \right]$$
(6.19)

Thus, to determine the uncertainties in the parameters a and b, we take

the partial derivatives of Equation (6.12):


$$\frac{\partial a}{\partial y_{j}} = \frac{1}{\Delta} \left(\frac{1}{\sigma_{j}^{2}} \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} - \frac{x_{j}}{\sigma_{j}^{2}} \sum \frac{x_{i}}{\sigma_{i}^{2}} \right)$$

$$\frac{\partial b}{\partial y_{j}} = \frac{1}{\Delta} \left(\frac{x_{j}}{\sigma_{i}^{2}} \sum \frac{1}{\sigma_{i}^{2}} - \frac{1}{\sigma_{j}^{2}} \sum \frac{x_{i}}{\sigma_{i}^{2}} \right)$$
(6.20)

We note that the derivatives are functions only of the variances and of the independent variables x_i . Combining these equations with the general expression of Equation (6.19) and squaring, we obtain for σ^2 ,

$$\begin{split} \sigma_a^2 &= \sum_{j=1}^N \frac{\sigma_j^2}{\Delta^2} \left[\frac{1}{\sigma_j^4} \left(\sum \frac{x_i^2}{\sigma_i^2} \right)^2 - \frac{2x_j}{\sigma_j^4} \sum \frac{x_i^2}{\sigma_i^2} \sum \frac{x_i}{\sigma_j^2} + \frac{x_j^2}{\sigma_j^4} \left(\sum \frac{x_i}{\sigma_i^2} \right)^2 \right] \\ &= \frac{1}{\Delta} \left[\sum \frac{1}{\sigma_j^2} \left(\sum \frac{x_i^2}{\sigma_j^2} \right)^2 - 2\sum \frac{x_j}{\sigma_j^2} \sum \frac{x_i^2}{\sigma_i^2} \sum \frac{x_i}{\sigma_i^2} + \sum \frac{x_j^2}{\sigma_j^2} \left(\sum \frac{x_i}{\sigma_i^2} \right)^2 \right] \\ &= \frac{1}{\Delta^2} \left(\sum \frac{x_i^2}{\sigma_j^2} \right) \left[\sum \frac{1}{\sigma_j^2} \sum \frac{x_j^2}{\sigma_j^2} - \left(\sum \frac{x_i}{\sigma_j^2} \right)^2 \right] \end{split}$$

Beumpton, pp. 108-109

$$\sigma_a^2 = \frac{\sigma^2}{\Delta'} \Sigma x_i^2 \text{ and } \sigma_b^2 = N \frac{\sigma^2}{\Delta'}$$
(6.23)

with σ given by Equation (6.15) and Δ' given by Equation (6.13).

The uncertainties in the parameters σ_a and σ_b , calculated from the original error estimates, are listed in Tables 6.1 and 6.2. For Example 6.1, revised uncertainties σ'_a and σ'_b , based on the revised common data uncertainty calculated from Equation (6.18), are also listed.

(10)2.5 Polynomial Art solution It turns out than any function which 15 linear mits paramèters { 29;3 can be fot analytrally even when nonlinear Th the measured values EXis. For instance, the following pages 121-123 from Beving ton fit to March (x) y(x) = 2,9 k fx(x) where files most not depend on any of the \$9;3. Basically this is polynomial fitting: $e.g., y(x) = a_1 + a_2 + a_3 x^2$ (7.19) -> best fit values (7.25) -> Uncertainty on fit values Note that the error matrix Er; is shown to gre the parameter uncertainty here, which we stated without proof previously. In the example goven, note than strupty Using the muerse curvature 1 as the croot on 9, underestimates 02 by about a factor of 3. (cf Eu, the correct of 2) Also note how (7.27) uses the covarrances grven by the error matrix E: !!!

7.1, we obtain for an estimate of the variance,

$$\sigma'^2 = \sigma^2 \times \chi^2 / (N - n) = 0.05 \times 26.6 / 18 = 0.06^{\circ}C$$

suggesting, perhaps, that the student slightly underestimated the uncertainty in her measuréments of V.

7.2 MATRIX SOLUTION

The techniques of least-squares fitting fall under the general name of regression analysis. Because we have been considering only problems in which the fitting function

Ξ

$$(x_i) = \sum_{k=1}^{n} a_k f_k(x_i)$$
 (7.12)

broblems with fitting functions that is linear in the *parameters* a_k , we are considering only linear regression or multiple linear regression, usually shortened to multiple regression. In Chapter $f_{\mathbf{k}}(\mathbf{x}) = \mathbf{x}^{\mathbf{k}}, f_{\mathbf{a}\mathbf{r}}$ 8 we shall deal with techniques for handling | are not linear in the parameters.

Matrix Equations

Tastance

We could fit the uncertainties by extending the method used for the linear fits of often important for filted parameters. Rather than pursue the determinant method for solving the multiple regression problem. Some of the properties of We have not yet determined the uncertainties in the three coefficients we Examples 6.1 and 6.2. However, the algebra becomes even more tedious as the number of terms in the fitted equation increases, and in fact, our method only yielded estimates of the variances σ_k^2 and not of the covariances σ_{kl}^2 , which are method, we shall discuss immediately the more elegant and general matrix obtained when we fitted the second-order equation to the data of Example 7.1. matrices are discussed in Appendix B.

Equations (7.7) can be expressed in matrix form as the equivalence between a row matrix B and the product of a row matrix a with a symmetric matrix α , all of order *m*:

$$\beta = a\alpha \tag{7.13}$$

The elements of the row matrix **B** are defined by

$$\sum \left[\frac{1}{\sigma_l^2} y_l f_k(x_l) \right] \tag{7.14}$$

β

those of the symmetric matrix α by

$$\alpha_{lk} \equiv \sum \left[\frac{1}{\sigma_l^2} f_l(x_l) f_k(x_l) \right]$$
(7.15)

ന് and the elements of the row matrix a are the parameters of the fit. For m =

DATA REDUCTION AND ERROR ANALYSIS 122

2

Æ

છ

the matrices may be written as

$$\beta = \begin{bmatrix} \beta_1 & \beta_2 & \beta_3 \end{bmatrix} \quad a = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}$$
(7.16)

$$\alpha = \begin{bmatrix} \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \end{bmatrix}$$
(7.17)

and

(7.13) on the right by the inverse ϵ of the matrix α , defined such that To solve for the parameter matrix a we multiply both sides of Equation $\alpha\varepsilon=\alpha\alpha^{-1}=1,$ the unity matrix. We obtain

$$\beta \epsilon = a\alpha \epsilon = a \tag{7.18}$$

which gives

$$=\beta\epsilon=\beta\alpha^{-1}$$

đ

(91.7)

Equation (7.19) can also be expressed as

$$a_{i} = \sum_{k=1}^{m} \left(\beta_{k} \epsilon_{kl} \right) = \sum_{k=1}^{m} \left\{ \epsilon_{kl} \sum \left[\frac{1}{\sigma_{i}^{2}} y_{i} f_{k}(x_{i}) \right] \right\}$$
(7.20)

ź

where the β_k 's are given by Equation (7.16).

This generally is not a simple procedure, except for matrices of very low order, but computer routines are readily available. The inversion of a matrix is The solution of Equation (7.19) requires that the matrix α be inverted.

The symmetric matrix α is called the curvature matrix because of its relationship to the curvature of the χ^2 function in parameter space. The relationship becomes apparent when we take the second derivatives of χ^2 with respect to the parameters. From Equation (7.6), we have for the partial derivative of χ^2 with respect to any arbitrary parameter a_i , discussed in Appendix B.

$$\frac{\eta\chi^2}{\partial a_l} = -2\sum\left\{\frac{f_l(x_l)}{\sigma_l^2}\left[y_l - \sum_{k=1}^m a_k f_k(x_l)\right]\right\}$$
(7.21)

and the second cross-partial derivative with respect to two such parameters is

Estimation of Errors

The variance of $\sigma_{a_l}^2$ for the uncertainty in the determination of any parameter a_l is the sum of the variances of each of the data points σ_l multiplied by the square of the effect that each data point has on the determination of the parameter a_i [see Equation (6.19)]. Similarly, the covariance of two parameters

 a_j and a_i is given by

$$\sigma_{a_{j}a_{i}}^{2} = \sum \left[\sigma_{i}^{2} \frac{\partial a_{j}}{\partial y_{i}} \frac{\partial a_{i}}{\partial y_{i}} \right]$$
(7.23)

(which also gives the variance for j = l), where we have assumed that there are no correlations between uncertainties in the measured variables y_i . Taking the derivatives in Equation (7.23) of a_i with respect to y_i we obtain

$$\frac{\partial a_i}{\partial y_i} = \sum_{k=1}^m \left[\epsilon_{ik} \frac{1}{\sigma_i^2} f_k(x_i) \right] \tag{7.24}$$

and, substituting into Equation (7.23), we obtain for the weighted sum of the squares of the derivatives,

$$\begin{aligned}
\sigma_{a_{j}a_{l}}^{2} &= \sum \left\{ \sigma_{l}^{2} \sum_{k=1}^{m} \left[\varepsilon_{jk} \frac{1}{\sigma_{l}} f_{k}(x_{l}) \right] \sum_{p=1}^{m} \left[\varepsilon_{lp} \frac{1}{\sigma_{l}} f_{p}(x_{l}) \right] \right\} \\
&= \sum_{k=1}^{m} \left\{ \varepsilon_{jk} \sum_{p=1}^{m} \left[\varepsilon_{lp} \sum \left(\frac{1}{\sigma_{l}^{2}} f_{p}(x_{l}) f_{k}(x_{l}) \right) \right] \right\} \\
&= \sum_{k=1}^{m} \left\{ \varepsilon_{jk} \sum_{p=1}^{m} \left[\varepsilon_{lp} \cdot \alpha_{pk} \right] \right\} \\
&= \sum_{k=1}^{m} \left[\varepsilon_{kl} \cdot \mathbf{1}_{lk} \right] = \varepsilon_{jl}
\end{aligned}$$
(7.25)

١

where we have switched the order of the sums over the dummy indices *i*, *k*, and *l* and have used the fact that because the curvature matrix α is symmetric, its inverse ϵ must also be symmetric, so that $\epsilon_{kj} = \epsilon_{jk}$. The elements of the unity matrix, which result from the summed products of the elements of α with its inverse ϵ , are represented by $\mathbf{1}_{lk}$.

inverse ϵ , are represented by 1_{ik} . The inverse matrix $\epsilon \equiv \alpha^{-1}$ is called the error matrix or the covariance matrix because its elements are the variances and covariances of the fitted parameters $\sigma_{a_{jn}i} = \epsilon_{ji}$. Example 7.2. The matrix method is illustrated by a straight-line fit $V = a_1 + a_2 T$ to a selection of data from Example 7.1. To show clearly each step of the calculation, we have selected just six points spaced at 25° intervals between 0 and 100° and have assumed a common uncertainty in the dependent variable $\sigma_V = 0.05 \text{ mV}$. The data are listed in the columns 2 and 3 of Table 7.2*a*.

We begin by calculating each of the fitting functions $f_1 = 1$ and $f_2 = x$ at each value of the independent variable T. These are listed in columns 4 and 5 of Table 7.2*a*. For each measured value of x, the values of β_k , the elements of the column matrix β , and of α_{lk} , the elements of the symmetric matrix α , are calculated according to Equations (7.14) and (7.15). The individual terms in the

124 DATA REDUCITON AND ERRUR MINES

R N TABLE 7.2 Matrix solution for linear fit to data of Example 2† (*a*) Data and components of matrix elements

	Uata	a) nata ana veriputa								
		٨	r ₁ (x ₁)	[₂ (x ₁)	в'1	Β' <u>1</u>	α'1	α' <u>1</u>	ŭ,22	K
	0 8 9 9 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 0.849 - 0.196 0.734 1.541 2.456 3.318		0 60 80 80 100	- 339.6 - 78.4 293.6 616.4 982.4 1327.6 2802.0	0 - 1,458 11,744 36,984 78,592 <u>1332,720</u> 258,472	2400 2400 2400 2400 2400 2400 2400 2400	0 8,000 16,000 24,000 32,000 120,000 120,000	0 160,000 640,000 1,440,000 2,560,000 8,00,000 8,00,000	- 0.947 - 0.101 0.745 1.590 2.436 3.281
		·			N (9)	(b) Matrices			-	
1		« = [120	2,400 120,000 {	120,000 8,800,000	li W	$\begin{bmatrix} 1.310 \times 10^{-03} \\ -1.786 \times 10^{-05} \end{bmatrix}$	× 10 ⁻⁰³	- 1.786 3.571	-1.786×10^{-05} 3.571×10^{-07}	

TThe uniform uncertainty in *V* was assumed to be 0.05 mV as in Example 1. The columns labelled β_i and α'_{11} , etc., correspond to the individual contributions by each measured coordinate pair to the summed values of β and α . The value of χ^2 for the fit was 9.1 for 4 degrees of freedom corresponding to a probability of 5.5%.

a = [-0.947 0.0423]

B = [2,802 258,472]

calculation of β_1 and β_2 are listed in columns 6 and 7 of Table 7.2*a* and the individual terms in the calculation of α_{ik} are listed in columns 8 through 10. (We assume symmetry in α .) The resulting matrices are displayed in Table 7.2*b*.

The symmetric matrix α is inverted to obtain the variance matrix ϵ with elements ϵ_{kl} , shown in Table 7.2b, and the product matrix of the fitted parameters $\alpha = \beta \epsilon$ is calculated and displayed in Table 7.2b. The calculated values of the fitted variable V for each value of the independent variable T are listed in the last column of Table 7.2a.

Program 7.1. Mult Regr Multiple regression problems are usually solved with the heip of computer programs. The program Mult Regr calls a set of routines for fitting any function that is linear in the parameters a_1, a_2, \ldots, a_m to a set of N data points. Branches in the program on the global character variable PAE permit data points. Branches in the program on the global character variable referentition the program of the fitting function for each example in this chapter, with $PAE = {}^{P}$, selection of the fitting function for each example in this chapter, with $PAE = {}^{P}$ is distributed to prover series in x of Example 7.1. The program uses several program units for the power series in x of Example 7.1. The program uses several program units addition to some that were referred to in Chapter 6. All routines are listed in Appendix E.

MakeAB7 Routines to set up the arrays alpha and beta, corresponding to the matrices α and β . These routines call the function Funct to calculate the individual terms in the fitting function.

Matrix The routines MatInv, to invert a matrix, and LinearBySquare, to find the product of a linear and a square matrix. Matrix manipulation is discussed in Appendix B.

2

Berryton 125

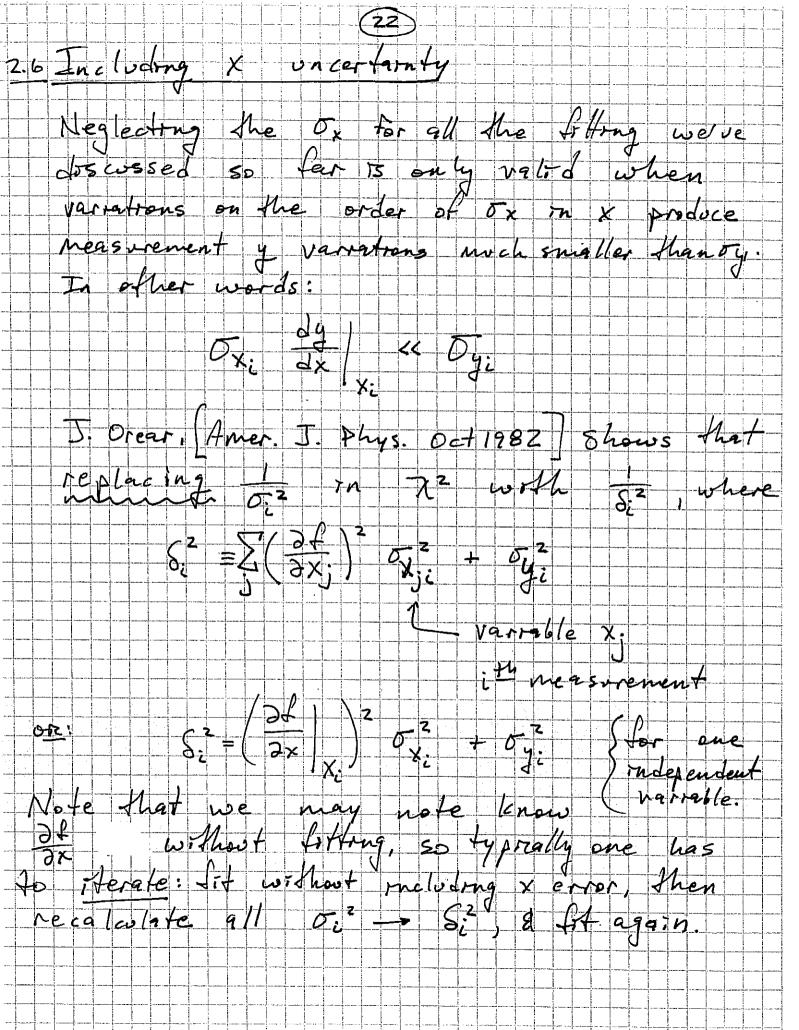
TABLE 7.3	
Error matrix from a fit b	y the matrix method to the data of Table 7.1 \dagger

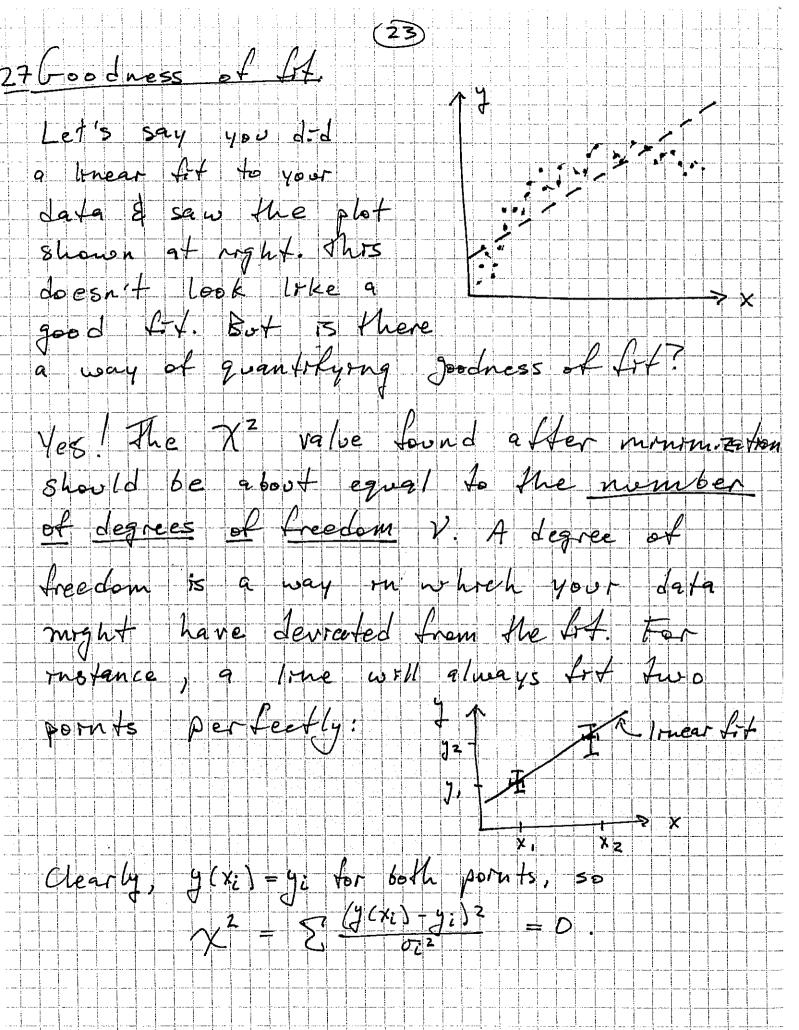
$\left[8.907 \times 10^{-04} \right]$	-3.473×10^{-05}	2.823×10^{-07}
-3.473×10^{-05}	1.913×10^{-06}	-1.783×10^{-08}
2.823×10^{-07}	-1.783×10^{-08}	1.783×10^{-10}

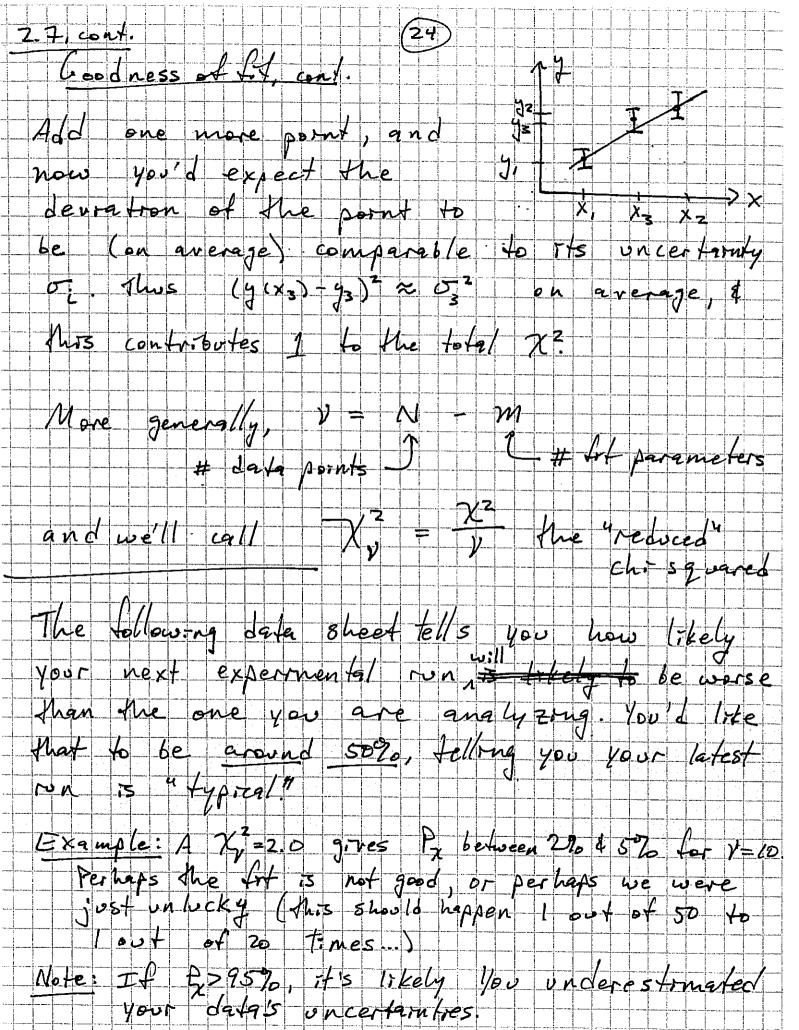
†The table gives the variances and covariances of the fitted parameters. The values of the parameters and of χ^2 are listed in Table 7.1.

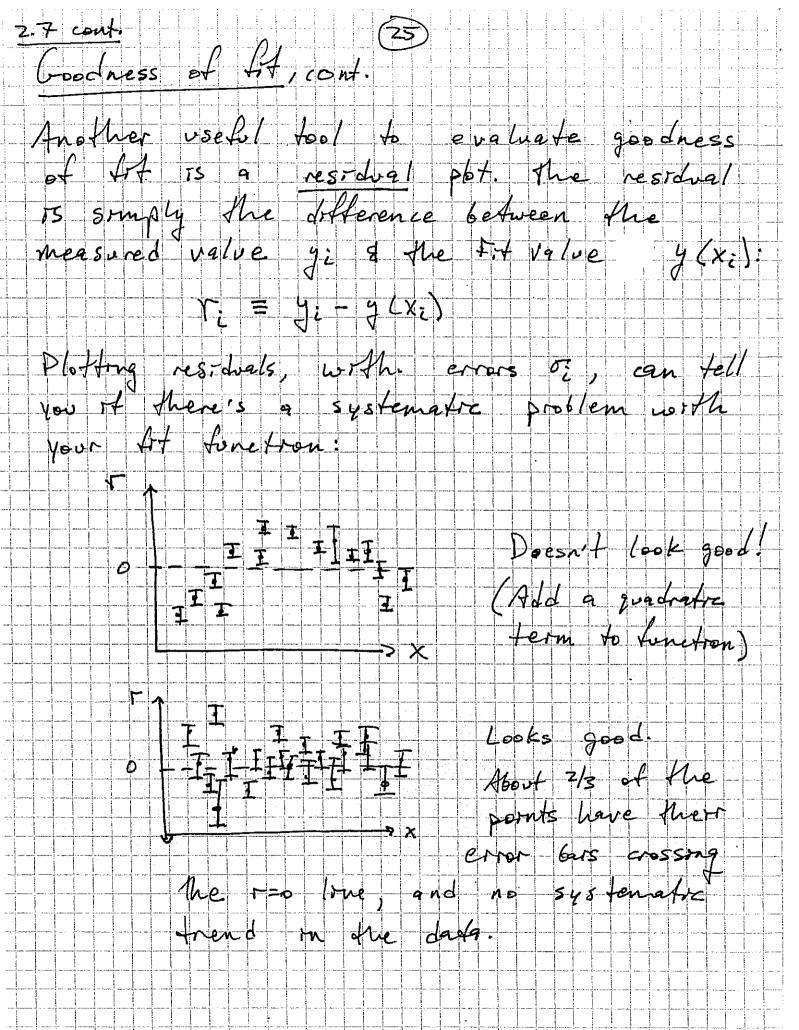
FitFunc7 Fitting function and χ^2 calculation. In general, every problem requires its own "FitFuncs" routine. For Example 7.1, the individual terms of the power series in x, which are required for the matrix fitting method, are calculated by the function PowerFunc selected through a branch on the variable PAE in the function Funct.

 \sim When we use the matrix method to fit a polynomial function to a data sample, the resulting parameters must be identical to those calculated by the determinant method, but we also obtain the full error matrix. The error matrix obtained by fitting of a second-degree polynomial to the complete data sample of Example 7.1 is listed in Table 7.3.

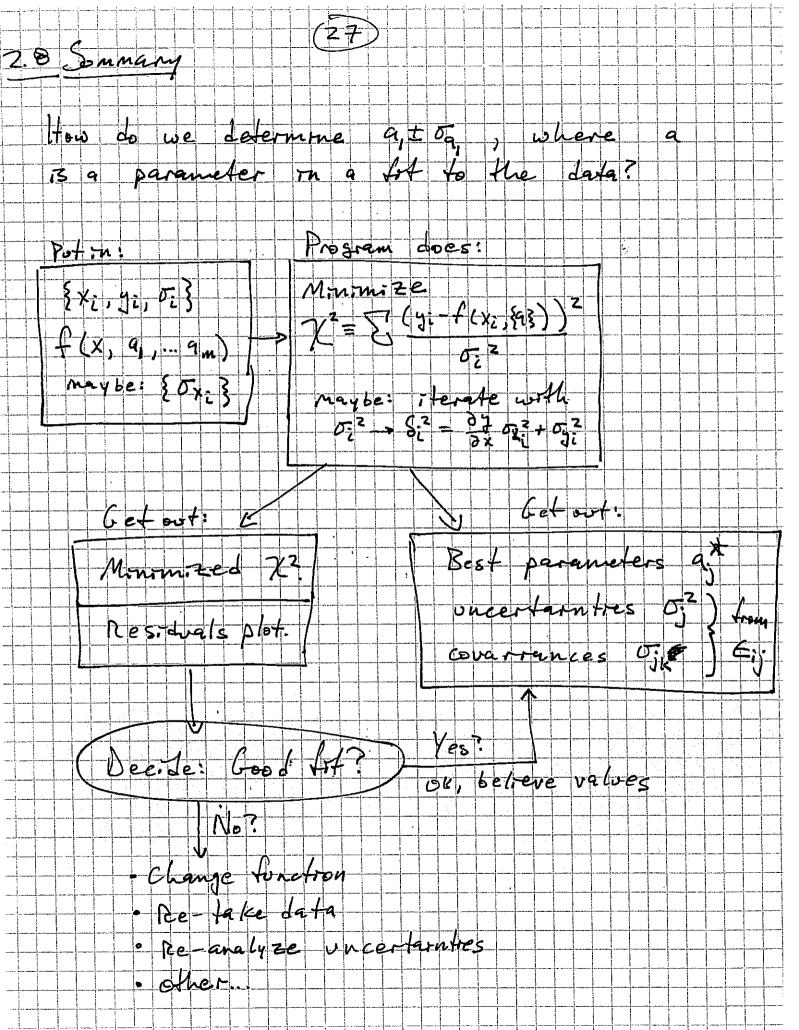

The error matrix can be used to estimate the uncertainty in a calculated result, including the effects of the correlations of the errors. As an example, let us suppose that we wish to find the predicted value of the voltage V and its uncertainty for a temperature of exactly 80°C. We should calculate


$$V = a_1 + a_2 T + a_3 T^2 \tag{7.26}$$


using the parameters determined by the fit to the data. The uncertainty in the calculated value of V, which results from the uncertainty in the parameters, is given by Equation (3.13),


$${}^{2} = \left(\frac{\partial \mathcal{V}}{\partial a_{1}}\right)^{2} \sigma_{1}^{2} + \left(\frac{\partial \mathcal{V}}{\partial a_{2}}\right)^{2} \sigma_{2}^{2} + \left(\frac{\partial \mathcal{V}}{\partial a_{3}}\right)^{2} \sigma_{3}^{2}$$
$$+ 2\left(\frac{\partial \mathcal{V}}{\partial a_{1}}\frac{\partial \mathcal{V}}{\partial a_{2}}\right)^{2} \sigma_{12}^{2} + 2\left(\frac{\partial \mathcal{V}}{\partial a_{1}}\frac{\partial \mathcal{V}}{\partial a_{3}}\right)^{2} \sigma_{13}^{2} + 2\left(\frac{\partial \mathcal{V}}{\partial a_{2}}\frac{\partial \mathcal{V}}{\partial a_{3}}\right)^{2} \sigma_{23}^{2}$$
$$= 1 \cdot \epsilon_{11} + T^{2} \cdot \epsilon_{22} + T^{4} \cdot \epsilon_{33} + 2\left(T \cdot \epsilon_{12} + T^{2} \cdot \epsilon_{13} + T^{3} \cdot \epsilon_{23}\right) \quad (7.27)$$

where ϵ_{12} and so on are the covariant terms in the symmetric error matrix. If we used only the diagonal terms in the error matrix, our result would be $V = (2.45 \pm 0.14)$ V. However, the off-diagonal terms are mainly negative, and including them reduces the uncertainty by almost a factor of 10 to 0.015, so that we should quote $V = (2.45 \pm 0.02)$ V.



		(26		
200 180 200	100 80 70 80 70 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	42844228555	<u> </u>	TABLE C.4 χ^2 distrib to the pro- freedom γ
0.724 0.743 0.758 0.771 0.782	0.563 0.572 0.580 0.587 0.587 0.584 0.594 0.649 0.669 0.669 0.669 0.669	0.363 0.377 0.390 0.402 0.412 0.412 0.433 0.442 0.452 0.452 0.452 0.452 0.452 0.452 0.452 0.452 0.5520	0.00016 0.0100 0.0183 0.0742 0.111 0.145 0.145 0.145 0.236 0.236 0.238 0.238 0.238 0.2316 0.2316 0.2349	이 이 이 이 이 이 집에 집에 집에 집에 집에 가지 않는 것이 아니 이 것 않았다.
0.753 0.770 0.784 0.796 0.806	0.604 0.612 0.620 0.633 0.653 0.662 0.662 0.684 0.684 0.703 0.718	0.413 0.427 0.439 0.442 0.445 0.445 0.445 0.445 0.445 0.540 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556	0.00063 0.0202 0.0202 0.107 0.107 0.110 0.110 0.110 0.110 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.258	$\frac{1}{12}$
0.798 0.812 0.823 0.833 0.841	0.670 0.687 0.683 0.699 0.695 0.720 0.720 0.725 0.755 0.755 0.768	0.498 0.510 0.522 0.522 0.522 0.522 0.522 0.527 0.527 0.605 0.605 0.605 0.655	0.00393 0.117 0.178 0.229 0.229 0.229 0.229 0.229 0.229 0.230 0.310 0.321 0.341 0.354 0.354 0.354 0.453 0.453 0.453	$P_{x}(\hat{x}^{2},y)$ $p_{y}(\hat{x}^{2},y)$ p_{y
0.839 0.850 0.860 0.868 0.874	0.733 0.738 0.744 0.754 0.754 0.754 0.754 0.754 0.754 0.754 0.790 0.819 0.819	0.582 0.593 0.604 0.621 0.621 0.622 0.622 0.625 0.655 0.656 0.656 0.656 0.656 0.656 0.656 0.656 0.657 0.656 0.657 0.657 0.657 0.657	0.0158 0.105 0.195 0.266 0.322 0.367 0.405 0.405 0.405 0.405 0.405 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.525 0.555	eding x ² , so
0.890 0.910 0.915	0.813 0.818 0.822 0.825 0.829 0.829 0.829 0.829 0.855 0.855 0.855 0.873	0.697 0.706 0.706 0.714 0.729 0.752 0.752 0.752 0.762 0.779 0.779 0.779 0.779 0.779 0.779 0.779 0.798 0.804	0.223 0.223 0.335 0.412 0.412 0.412 0.412 0.412 0.412 0.514 0.514 0.514 0.514 0.514 0.514 0.514 0.514 0.514 0.514 0.515	$\frac{1}{10000000000000000000000000000000000$
0.928 0.934 0.938 0.942 0.945	0.875 0.878 0.881 0.884 0.884 0.887 0.897 0.897 0.905 0.911 0.911 0.911 0.911	0,789 0,726 0,802 0,802 0,802 0,802 0,802 0,803 0,803 0,833 0,833 0,835 0,835 0,855	0.143 0.357 0.475 0.600 0.608 0.608 0.609 0.609 0.609 0.609 0.609 0.727 0.721 0.724 0.724	우리가 사람으로 다 가지도 같은 것 같아요.
0.962 0.965 0.970 0.972	0.930 0.932 0.932 0.934 0.937 0.937 0.937 0.949 0.949 0.955 0.955	0.874 0.874 0.879 0.889 0.889 0.897 0.902 0.902 0.911 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.924 0.924 0.924	0.275 0.511 0.623 0.623 0.751 0.751 0.751 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.755 0.755 0.755 0.751 0.755 0.751 0.7550 0.7550 0.7550 0.7550 0.7550 0.7550 0.7550 0.7550 0.75	v corresponding
0.994 0.995 0.996 0.996 0.997	0,984 0,985 0,986 0,986 0,987 0,989 0,989 0,989 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,999 1,999 1,999 1,998 1,984 1,984 1,985 1,995	0.959 0.963 0.965 0.965 0.965 0.977 0.977 0.977 0.977 0.978 0.978 0.978 0.983 0.983	0.455 0.689 0.689 0.899 0.899 0.890 0.890 0.911 0.907 0.941 0.944 0.944 0.945 0.945 0.945	o.so

	0.40	0.30	0.20	0.10	20.0	0.02	10.0	0.001
	0.708	1.074	1,642	2,706	3. 841	5,412	6.635	10.827
ы	0.916	1.204	1.609	2.303	2.996	19.5 7	4.605	6.908
	28610	1.222	1,547	2.084	2.605	3,279	3,780	5,423
4,	1.011	1,220	1,497	1,94S	2372	2.917	- 13 915 915	4,617
م	0701	1.413	1.42B		- 414 1177	2,010		4,1U2
J D	1.032		1 400	1.717	2,010	2375	2.639	3 475
20 -	1.044	1.191	1.379	1.670	1.938	2.271	2.511	3.266
\$	195	12	1.360	1,632	1,880	2.187	2,407	3.097
6	1.047	1.178	1.344	1.599	1.831	2116	2,321	2,959
E	1.048	E11	1,330	1570	1.789	2.056	2.248	2.842
2	1,049	1.168	1,318	1545	1.752	2.004	2,185	2.742
ш	1.049	1.163	1:307	1.524	1.720	1,959	2.130	2.656
14	1.049	1.159	1,296	1505	1.692	6161	2.082	2.580
5	1,049	1.155	1,287	1 487	1.000	1.884	460'Z	5157 51
5 6	1.049	1,1,1	1771	1.9.1			1 065	2 200
8 ;	1.048	1.145	1.264	1444	1.604	1.797	1,934	2,351
19	1.048	1.142	1.258	1,432	1,586	1.773	1.905	2.307
28	J,048	651:1	7571	1761			1.010	00 2 -2
ជ	1.047	1134	1.241	1.401	1.542	1.712	1.53	2 194
1 : 1	1.046	174	31	1.768	1-496	1,0.0	1.755	2.079
8.5	1.045	1121	1215	1.354	1.476	1,622	1.724	2,032
8	1.044	1.118	1:208	1,342	1,459	1.599	1,696	0661
រី	1.043	1.115	1.202	1.331	1,444	1.578	1.671	1,953
4	1.042	1.112	961 L	1,321	1,429	1.539	1.049	6 16°1 6 16°1
5 5	1.042	 	- 13 19	1303	1405	52	1.610	1,861
\$	1.041	1,19	1.182	1,295	1_394	1.511	1.592	1.835
សិ	1.040	1102	1.178	1.288	1.384	1.497	1576	1.812
4	9501	1:100	1.174	1821	1,375	1,485	1562	1.790
- 2	1.039	1.098	1.1.70	172	355.1 GUPT	1,472	1535	1.751
83	1.038	1:094	1.163	1.263	1.350	1.452	1523	1.733
3	1.036	1.087	1.150	1.240	1,318	1.410	1.473	1.660
2	1,034	1.081	1.139	1.222	1.293	1377	1.435	1,605
8	1,032	1.076	1.130	1.207	1.273	1.351	1,404	1.560
8	1.031	1,072	1.123	1.195	1.257	1.329	1379	
18	1,029	1,069	1,117	1.185	1.243	1.311	BCF	1
6	1.027	1.063	1.107	1.169	1:221	1,283	1,325	1,446
140	1.026	1.059	1.099	1.156	1.204	1,261	1,299	1,410
3	1.024	1.055	1.093	1.146	1.191 191	1,243	1.2/8	1.358
	1.U.1	1.026	1.44		1170	717	1 747	855.1

ABLE C.4 distribution (*continued*)

