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Advanced Lab Data Analysis References 

Introductory Lecture from David Bailey (Jan 2013)  

Introductory Lecture from Prof. J. Thywissen (Sep 2007) 

http://www.upscale.utoronto.ca/PVB/Harrison/ErrorAnalysis/ 

This last reference is a useful brief introduction to a number of 
the concepts to be discussed today, with nice examples and 
simulations. I encourage you all to take a couple of hours to 
look through this. 

Data Reduction and Error Analysis for the Physical 
Sciences. P.R.Bevington & D.K. Robinson (B&R).        
Available in the U of T Bookstore. 

http://www.physics.utoronto.ca/~phy326/links 
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What’s the Point? 

All of these things involve developing an understanding of the issues 
surrounding measurement uncertainties, probability and statistics, and    
fit methods. I will discuss mainly the first of these topics today, with only 
rather brief  discussions of the latter two. 

(including error estimates) 
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In general, how errors are propagated depends on the type of error 
(statistical or systematic) and also on whether any of the errors are 
correlated (as is often the case for systematic uncertainties). 

Start by discussing what we actually mean by the term “error”.  

Measurements & Uncertainties 

•  For the sum   

•  For the product ab,  

 
a ± δa( ) + b ± δb( )   

a + b( ) ± δa( )2
+ δb( )2

  

δ ab( )
ab

=
δa
a

⎛
⎝⎜

⎞
⎠⎟

2

+
δb
b

⎛
⎝⎜

⎞
⎠⎟

2

In the physical sciences, a measurement is not just a number. A measured 
value must also contain an estimate of how close that measured value is 
expected to be to the “true” value. 

If one or more measured values are used in the calculation of some 
quantity, the errors must be “propagated” to obtain the error on the final 
quantity (see B&R, chapter 3). For uncertain values of a and b we have 
(assuming that the errors are uncorrelated): 

What we don’t  mean is a mistake. 
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Uncertainty, Accuracy and Precision 
Any error (regardless of the source, other than a actual mistake) is actually 
better referred to as an uncertainty, though the term “error” is in common 
usage. 

Precision refers to the size of the uncertainty on a measurement. The absolute 
precision on a measurement of quantity x is simply the total uncertainty δx. 
The relative precision is δx/x. 

Accuracy refers to how close the result is to the “true” value. 

Example: ratio of circumference of a circle to its diameter. 

•  π = 3.141592653589793238462643… (theory)	


•  3±1 	

                                accurate, not precise	


•  2.93846±0.00001 	

precise, not accurate	


•  3.14159±0.00001                precise and accurate	


•  15±3 	

                                neither	
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Why Make Repeated Measurements? 

  
δ a + b( ) = δa( )2

+ δb( )2

We saw before that if we add two uncertain values a and b, the uncertainty 
on the sum (assuming uncorrelated δa and δb) is given by 

If we want to measure some quantity x, and can make n independent 
measurements each with (uncorrelated) error δx then the average is 
given by 

  
x ≡

1
n

xi
i=1

n

∑

So repeated measurements improve the precision we can achieve on a 
measurement of x (provided that the errors are random, e.g. uncorrelated). 
We will discuss which type of errors this applies to, and also how many 
repeated measurements are enough. 

  
δx ≡

1
n

δxi( )2

i=1

n

∑ =
δx

n
and the uncertainty is given by                                 . 
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Toronto news reports that we had an unusually wet August in 2009. 

First a brief aside on the weather…… 

Toronto, Summer 2009 
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~140 mm 
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Toronto Average Rainfall Statistics  
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Toronto Average Rainfall Statistics  

or, version 2 

There’s a lesson to be learned here. If you are calculating a result that relies on an 
input that you have not measured yourself you may want to check multiple sources. If 
they report different values try to understand why. If you can’t resolve the discrepancy, 
you can take the variation as a systematic uncertainty (more on systematics later on). 
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a)  somewhat unlikely 

b)  very unlikely 

c)  somewhat likely 

d)  very likely 

e)  impossible to say 

So, average August rainfall in Toronto is about 80mm. 

In August 2009 we had about 140mm. How unusual is this? 

Asked another way, if the average is 80mm, how likely is it 
that the rainfall in any given August will be ≥ 140mm? 

The answer is (e): it’s impossible to say. Any distribution (such as the 
distribution of rainfall in Toronto in August) is characterized not only by a 
mean (or average) but also by a quantity that is a measure of how broad    
the distribution is. To answer the above question you need to know both. 
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Distributions: Means and Widths 
A given distribution might be characterized by a number of parameters, but 
we will be mainly concerned with only two of these: the mean (or average) 
and the variance (which is a measure of the width). 

Consider a set of N measurements xi (for example, the height of thirty-year 
old men). The average height is given by: 

  
x ≡

1
N

xi
i=1

N

∑

and a measure of the width, the variance σ2, is given by the expression 

  
σ 2 ≡

1
N −1

(xi − x )2

i=1

N

∑

The smaller the variance, the more closely the measurements are 
clustered, and the more likely the probability that additional measurements 
will lie “close” to the mean. 

We often take σ as the uncertainty on a single measurement. If the mean August 
rainfall in Toronto is 80mm with a σ of 20mm, then we were really unlucky in 2009. 
If, however, σ = 60mm, then 140mm would not be so unusual. 
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Probability Distributions: Binomial Distribution 

The probability p of a single flip coming up heads is p=1/2, so you expect (if you 
repeat this experiment many times) that the mean value is 10, but what about the 
width of the distribution (e.g. how often will the answer be 20)? 

A: You can’t say. You can only quote a probability for each possible 
answer (within the physical bounds of 0-20).  

  
PB x;n, p( ) = n!

x!(n − x)!
px (1− p)n− x

The mean and variance of this 
distribution can be show to be 

  µ = np    and     σ 2 = np(1− p)

Q: If you flip a coin 20 times, how many times will it come up heads? 

Can also consider the case where p≠1/2 for each event, e.g. you can roll a dice 
20 times and ask how many time does a 6 appear: p=1/6. 

In each case the answer is governed by the binomial distribution. 
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Probability Distributions: Poisson Distribution 
The Poisson distribution is an approximation to the binomial distribution in 
the case where                          with np = λ held constant. In practice this 
means counting experiments with low statistics (for example the number of 
decays of some radioactive isotope in some time interval).  

  

lim
p→0
n→∞
np=λ , fixed

PB x;n, p( ) = PP x;λ( ) ≡ λ x

x!
e−λ

  

x = x λ
x

x!x=0

∞

∑ e−λ = λe−λ x λ x−1

(x −1)!
=

x=1

∞

∑ λe−λ λ y

y!
= λ

y=0

∞

∑

σ 2 = (x − λ)2 = (x − λ)2 λ x

x!
e−λ⎡

⎣
⎢

⎤

⎦
⎥ =

x=1

∞

∑ λ

This is the basis of the well known statistical uncertainty 
associated with counting experiments:              .   δN = N

Mean and variance 
are both = λ  

N →∞, p→ 0
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Normal (Gaussian) Distribution 

   Limit of Binomial/Poisson distributions                                                                            
for large N with mean not near zero. 

•  The Central Limit Theorem says (almost) everything averages to a Gaussian. 
•  Many resolution functions are at least approximately Gaussian - a blob with a 

mean and a width (variance). Uncertainties typically treated as Gaussian. 
Sometimes need to revert to Poisson or Binomial (for low statistics counting 
experiments). 

•  It is the only distribution many physicists know anything about. 

  
PG (x) =

1
σ 2π

exp
(x − µ)2

2σ 2

⎛

⎝⎜
⎞

⎠⎟
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Gaussian Errors 

For Gaussian distributed uncertainties, expect that a given measurement 
should fall within ±1σ of the “true” value 68.3% of the time, within ±2σ 95% 
of the time, within ±3σ 99.7% of the time…….usually quote 1σ errors. 

This is the “nineteen times out of twenty” that one hears quoted when poll 
results are reported in the news. 



Expected limit as N           and bin width  →∞                   → 0
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Bar chart of height of 30 year old men (23 measurements) 

Histogram of results from a)  (10cm bins) 

As in b) but with 100X number of measurements. 

As in c) but with 5X smaller bin size. 
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Real Population Height Distributions 
N=82 N=222 N=400 

N=1970 N=5812 N=9185 

These distributions can never be truly Gaussian, since there are upper and lower 
limits on adult human heights, while Gaussian distributions have tails out to very 
large values. From N=9185 distributions we have mean = 167cm, σ = 9cm. 
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272 cm 
236.2cm 

73 cm 

(+11.6σ) 
(+7.5σ) 

(-10.4σ) 
His father 
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Measurement Errors 

Where are these errors (uncertainties) from?  

There are different sources of uncertainty and different types, but at the 
heart of it, is the fact that an experiment always measures something, 
and nothing can be measured with infinite precision. There will always be 
some uncertainty on any measured quantity, though it may be very small. 

There are two types of error to deal with, those which are statistical in 
nature (and thus benefit from repeated measurement) and those which 
are “systematic”, e.g. mis-calibration of a measuring device, which cannot 
benefit do not improve with repeated measurements. 
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If I asked each student in the class to measure the width of one of the lab 
tables using a metre-stick I would inevitably get a variety of different results,   
if people make the measurement to the best of their abilities.  

Such reading errors are assumed to be random, if they are symmetrically 
distributed around the “true” value, then a given reading is equally likely to be 
higher or lower than the “true” value. This is why repeated measurements 
allow you to improve the precision of the result, since the average difference 
between the measured value and the true value must tend to 0. 

Measurement Errors 

You might all agree to the same number of mm, 
but your estimate of the next significant digit would 
likely vary, depending both on how you lay down 
the metre-stick and how you “eyeball” the 
reading.You should always record a measurement 
to the best precision you feel you can achieve. 
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Measurement Errors Cont’d 
If the metre-stick is perfectly calibrated (e.g. it is exactly one metre long and 
is divided perfectly into 1000 1mm divisions) and the table has exactly the 
same width at all points, then one expects that the average of the repeated 
measurement will provide a good estimate of the “true” value, since some 
people will measure a little too high and some a little too low. 

We expect that the width of the distribution of measurements will tell us 
something about how well we believe the mean (which is our estimate of the 
true values) to be determined. Furthermore, the measurement uncertainty 
due to such random (Gaussian distributed) errors can be decreased by 
repeating the measurement: the error on the mean of a set of (independent) 
measurements decreases as N-1/2 with N the number of measurements. 
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Systematic Errors 
If the metre-stick from the last example is mis-calibrated (for instance if it is 
actually only 0.996 metres in length) then one will get measurements that are 
always larger than the measurement one would get with an  unbiased (e.g. 
properly calibrated) metre-stick. This is an example of a systematic 
uncertainty.  

This type of uncertainty does NOT improve with repeated measurements, 
since each measurement is off by the same amount (rather than by a 
random amount that can be either positive or negative). 

Of course, the same applies to any measurement apparatus: voltmeters, 
ohmmeters, pressure gauges,…… 

This is simply an example of a correlated (rather than random) error. That is, 
the error is the same on each measurement. 

A measurement typically has both a statistical error and a systematic error.  



24 

Systematic Errors 
   Other sources of systematic uncertainty (for example): 

–  Uncertain inputs: for example, if I asked you to determine the volume of a set of irregularly 
shaped pieces of copper, one good method might be to measure their weights and then 
divide by the density of copper. Since the density is only know to some accuracy (say for 
example 0.1%) then you could not provide an estimate of the volume that was better than 
0.1%. (In this example the purity of the copper might also need to be accounted for). 

–  Model dependence: the parameters you extract from your measurements often depend on 
some model. Imagine dropping an object and timing how long it takes to fall to the floor, as 
a way to measure the acceleration due to gravity using d = at2/2.  

•  This is probably a pretty good model for a ball bearing, where drag is not an issue. 
•  It’s maybe not such a good  model for a ping-pong ball. 
•  It’s unquestionably a terrible model for a feather 

–  For some measurements one needs to consider things like detection efficiencies and 
physics or instrumental backgrounds. 
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Estimation of Systematic Errors 

Identifying sources of systematic uncertainty is mostly straightforward, 
but sometime not. 

Estimation of a systematic uncertainty is a kind of art form. After all, you 
are often estimating the 68% confidence level on some quantity “by eye”.  

There is usually no one “right way of doing this”. 

Saying that is not the same as saying there is no wrong way. Some 
judgement is required. There might be more than one sensible way to 
arrive at an estimate, but they should not disagree too much…..…..if     
they do you should think about things some more. 

However….. 
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Caveat: Correlated Uncertainties 

Systematic uncertainties are an example of errors which are correlated 
from one measurement to the next. 

In the trivial examples we have used, the correlation has been 100%. 

Correlations can of course exist with correlation coefficients that are less 
than 1. Treatment (propagation) of such errors is a little more complicated. 
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Reading Errors from Apparatus 

For analog equipment, you are in much the 
same boat as with a meter-stick. You have to 
assign a reading uncertainty based on your 
judgment of how well you can read the device.  

You also still need to know how well calibrated it is (or to test this with a 
more precise voltmeter, in this example). Usually a device will have a 
statement about it’s accuracy somewhere upon it, or at least in the manual. 

For this meter, can easily read to 0.1V                 
(half a division, and perhaps even to 0.05V) 

e.g. if you hook it up to 10.50V, 
does it actually read 10.50V ? 
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Digital Readout Apparatus 

For reading error, generally assume ± half of the 
last digit (meaning ±0.005 in this case), e.g.  

1.85 must be closer to 1.85 than to either                
1.84 or 1.86, so in the range 1.845-1.855. 

But you still need to know the calibration…. 

so  ±0.3V at 750V  AC 
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“There are known knowns. There are things we know that we know. There are 
known unknowns. That is to say, there are things that we now know we don’t 
know. But there are also unknown unknowns. There are things we do not know 
we don’t know.”	

  Donald Rumsfeld, US Secretary of Defense, 12 February 2002 

This is both amusing and instructive. For us, the unknown unknowns 
are worth thinking about. There will ALWAYS be systematics that you 
have not identified. However, as long as you have identified the 
dominant systematics this doesn’t matter. 

Note that uncorrelated systematic uncertainties will add in quadrature. 
So an addition systematic that is significantly smaller than the 
dominant one, will not add much to the total uncertainty. 
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How Many Repeated Measurements? 

In general, one likes to have enough measurements to ensure that the 
statistical error is smaller than the systematic error. However, there is not 
much value in making it a lot smaller:  

  

x = 1.25 ± 0.15(stat) ± 0.25(syst)

x = 1.25 ± 0.15( )2
+ 0.25( )2

⇒ x = 1.25 ± 0.29

No number of repeated measurements can reduce the total uncertainty 
below the systematic uncertainty. It is often more difficult to reduce 
systematic errors than statistical, but not always. 

The error on the mean goes down like N-1/2, (assuming that the N 
measurements are really independent) while systematic uncertainties are 
normally unaffected by repeated measurements. 
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Example Measurement 

Consider an experiment designed to measure the lifetime of some 
radioactive nucleus that decays via beta decay. We detect the occurrence 
of a decay via detection of the emitted electron. 

Radioactive decay law:    N t( ) = N0e
− t /τ

We measure the time of each decay, and then make a histogram of the 
number of decays in each time bin. One can fit the resulting distribution to 
the above exponential form to get an estimate of the lifetime τ (or do a 
linear fit to a log plot….). 

If the lifetime of the material is very long, you might detect only a small 
number of events, in which case the statistical uncertainty may dominate. 

What are the systematic uncertainties likely to be? 
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Lifetime measurement systematics 
N0 doesn’t matter, except for the statistics. 

However, the purity of the sample is relevant if there are impurities that also 
decay via beta decay (presumably with a different lifetime), since electrons 
from the decay of these impurities would affect your measurement. For 
instance, even a low contamination with a state having a much shorter 
lifetime would be a problem. Other background counts may be constant per 
time interval….. 

You have to detect the emitted electron, which you can do only with some 
efficiency εe which has some uncertainty, from detector efficiency and/or 
geometrical acceptance. This also might depend on the electron energy, 
which varies from 0 up to some kinematic limit. However, all of these effects 
are presumably independent of the time of the decay, so this also does not 
contribute. 

You have to measure the time of each decay, which you do with some 
(presumably relatively small) uncertainty. 

So statistical uncertainties may dominate in this case (as one example) in 
which case you need to take data for as long as possible. 
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Fitting Your Data 
•  “Fitting” data means adjusting the variable parameters in the physics 

(mathematical) model so that the model best agrees with the data. 
•  By convention, the errors on the parameters are those corresponding 

to the ±34.1% Confidence Interval around the mean value (e.g. the 
range that contains 68.2% of the distribution). 

•  A commonly minimized quantity is χ2 which is a measure of the 
consistency of the measured data points and the fit function. 

Just as a measurement always has an associated 
error, a fit also has errors associated with the fit 
parameters. These are important when comparing a 
result to theoretical predictions to (for example) 
validate or falsify some theory or model. 
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Chi-squared (χ2) 
   Consider a set of n independent random variables xi, distributed as 

Gaussian densities with a theoretical means µi and standard deviations 
σi, respectively. The chi-square is the sum 

   In our case we typically have n measurements xi compared to the fit 
prediction for the best set of fit parameters. The mean value of the χ2 
should be approximately the number of degrees of freedom, e.g. the 
number of bins (data points) minus the number of (free) fit parameters. 

   There is a probability distribution to get a certain χ2 for a given number of 
degrees of freedom (dof). That probability is often quoted as a measure 
of the “goodness of fit”. 

•  A χ2/dof  which is very small might indicate that the errors have been overestimated.  
•  A χ2/dof  which is very large indicates either that the model (fit function) assumed does 

not describe the data well, or perhaps that errors have been underestimated (some 
unthought-of systematic?) 

  
χ 2 =

xi − µi

σ i

⎛

⎝⎜
⎞

⎠⎟i=1

n

∑
2
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Fitting Histograms 
When fitting to binned data, it is usually wise to bin your data so that 
there are adequate statistics in each bin. Many fitting packages assume 
that the errors you have passed to it are Gaussian, so you want to ensure 
that your fit results are not affected by bins with so few entries that this is 
not a valid approximation. 

Sometimes it may be appropriate to re-bin your data.  

Sometimes it may be appropriate to restrict the fit range. 

In any case, it is always wise to investigate how sensitive your fit results 
are to these issues.  

Note that the results of a fit that does not account for the 
measurement uncertainties is useless, as it cannot provide 
any uncertainty on the fitted parameters. 
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Charge Conjugation Invariance Test 
   In the reaction                       charge conjugation invariance implies that 

the π+ and π– momentum distributions must be identical.	



   Test this by taking the ratio of the number of π+ and π– in bins of their 
momentum P. 	



Fit is to the hypothesis that the distribution is flat and = 1. 

pp→π +π −π 0

N π +( ) ≈ 500
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Data Analysis / Fitting Software 

•  Matlab, Octave 
•  Maple, Mathematica, Reduce, … 
•  Excel (see comments on web pages) 
•  Python, C, C++, … 
•  Faraday, DataStudio, Kaleidagraph, … 
•  ROOT (C++ like particle physics analysis package) 

    You should use whatever software you are most comfortable with.  
We don’t care what you use, but we do care that you understand 
what you do. In particular, when fitting you should know what 
minimization scheme is being used, and what the metric is for the  
“goodness of fit” (for example the χ2/dof if the fit is minimizing the χ2). 

If you are staring from scratch, note that Python is the most supported 
platform in the APL. 
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Time-lapse view of some 
important measurements in 
experimental high-energy 
physics. 
•  Measurements improve as we 

improve experiments (statistics 
and systematic uncertainties). 

•  Physicists make mistakes!  

•  You will make mistakes too.  
−  Try to learn from them. 

•  But they also learn to do things 
better 
−   Try to do that too !!! 
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Understanding of the proper treatment of errors (uncertainties) is one 
of the most important things that you will learn in the lab course.       
This is also useful elsewhere in life (poll results, clinical trial results……). 

By this I mean developing judgment about what uncertainties are relevant to 
a particular measurement, and also about how meaningful a given result is 
(for example when you see the results of some poll or medical trial reported 
in the press, or of course read a scientific paper on some measurement). 

Poll results are often stated to be good to within (for example) 3.1% 19 times 
out of 20 (which is simply a statement that 3.1% = 2σ). 

Some food for thought…….. 

If a newspaper article reports that 100 people were given a pill to test it’s 
efficacy for a given condition and the researchers concluded that a positive 
outcomes were 20% higher than other results (e.g. no improvement or an 
adverse reaction) do you think that that’s a meaningful result? How confident 
can one be that the pill is actually beneficial?  How would you proceed as a 
researcher? 

A final comment…… 


