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Questions and discussion welcomed (in fact required) as we go along.

— Not much about GCM results, but GCMs are a key part of what we do — the ‘'model hierarchy".
— The model hierarchy is our theory of climate.



A NOTE ON EQUATIONS

&

Strange as it may sound, the power of mathematics rests on its evasion
of all unnecessary thought and on its wonderful saving of mental operations.

Ernst Mach (1838-1916)

1. So mathematics make it easier.
2. But we should always be able to explain in words after the fact.

3. Soin these lectures, if you are a trusting soul, you can ignore the equations and just follow the
pictures and words!



A FEW PLANETS

Three planets in the Solar System span a large parameter space:

1. Earth (of course!)
Sidereal day = 23 hours 56 minutes. Sol = 24 hours.

2. Jupiter.
Sidereal day = 10 hours. Sol = 10 hours.
Gas giant, hydrogen atmosphere and interior
(some helium).

3. Venus.
Sidereal day = 200 Earth days. Sol = 117 days
Terrestrial, thick CO, atmosphere, large greenhouse effect.




&

One of our main goals is to
understand this structure.

OCEAN AND ATMOSPHERE
Basic structure (Earth, our default planet)

atmosphere

tropopause

8 km

Philosophy:
Think big, research small.

thermocline
temperature

ocean



EARTH FROM SPACE /t]

Characteristics:
Weather, clouds

Weather scales (1000 — 10000 km)

Mid-latitude organization.

Somewhat zonal flow.




EARTH WEATHER. A DAY IN EARLY 2019... /tz

NOAA Global Forecast System (GFS),

Visualization by Martin Jucker:
martinjucker.com

Weather, clouds

Weather scales (1000 — 10000 km)

Mid-latitude organization.

Somewhat zonal flow.




JUPITER FROM SPACE ,tr

Characteristics:
e Weather, clouds

e Jets!

Global organization.

Very zonal flow, embedded eddies.

e Jets ~ 50-100ms".
Eddies ~ 10- 50ms~".

(Enhanced color from 3 images, K. M. Gill)



JUPITER AND ITS JETS
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- Strong, sharp jets. Barotropically unstable 8 — 92U/ 3 y? changes sign.
— Superrotates.

- Multiple super-rotating jets in the tropics!



VENUS FROM SPACE

)

Clouds (false color). Galileo

NASA/JPLIGALILEO

Real color. Mariner 10.




VENUS — VORTEX AT SOUTH POLE

)

Southern Vortex (false color).



VERTICAL STRUCTURE, EARTH /fl —
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Troposphere, Stratosphere, Tropopause

‘US standard atmosphere’ Observed profiles.
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Troposphere: A region of fast dynamics in which the stratification is set dynamically.

Stratosphere: The region above that in which stratification is set radiatively



TROPOPAUSE HEIGHT AND TEMPERATURE
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1. Tropical tropopause is higher.

2. Tropical tropopause is cooler.

NCEP2 re-analysis.



TEMPERATURE PROFILE ON JUPITER
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Pressure, Pa
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NH3
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Temperature, K

Features:

1. There is a troposphere
and a stratosphere

2. Troposphere is stably
stratified (baroclinic
instability? moist
convection?)

3. In the deep atmosphere

almost neutral
stratification.



TEMPERATURE PROFILE ON VENUS
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Four probes from Pioneer. Adapted from Seiff et al (1979)
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Features:

1. Almost uniform temperature
in the horizontal!

2. Tropopause at about 60 km

3. Closely follows dry adiabatic
lapse rate (g/c, = 8.8 K/km).

4. Stratosphere (mesosphere?)
weakly stratified.



RADIATIVE EQUILIBRIUM /ff

IR radiative transfer (Schwarzschild) equations:
U oD
e U-B e B - D,
where 7 = 7(z) is optical depth, U is upwards irradiance, D is downwards irradiance.
If grey B = oT*.
Boundary conditions at top: U = Incoming solar radiation, D =0
Varying Optical Depth

Radiative equilibrium: 15 — tau0=00[]

— tau0=1.5

1+ —_ =

D=Z10R, U= (1 + 3) OlR, B=-_'OIR. au0=3.0
2 2 2 € 10} tau0 =4.5 (]

< tau0 = 6.0

and if 7 < 1 (e.g, stratosphere) <

g |

D =0, U = OLR = 2B, B =oT*=0LR/2.

In optically thin limit, stratosphere is isothermal, 0 ‘
OLR=20T} 220

strat®

260 300 340

TAarmivAara+riva ()



RADIATIVE-DYNAMICAL EQUILIBRIUM /f'

Atmosphere adjusts to give a specified lapse rate (e.g., by convection or baroclinic instability).
(Like an equal-area adjustment.)

ul --- Radiative equilibrium 7 o Q. What determines the height to
—— Radiative-convective equilibrium which it adjusts?
124 1
o A.Overall radiative balance. The
— qop Tropopause ) o
& outgoing longwave radiation must
c 8 . . ..
=) balance the incoming solar radiation.
[
T 6 o .
e Tropopause height is function of
4 i stratification and optical depth.
2 N |
......... e Tropopause temperature fixed by OLR.
07330 240 260 280 300 320 340 (in a grey atmosphere).
Temperature (K)
. 7-trop = Tstrac
0T mic = OLR = Sp(1 - a), (radiative balance) , Tomi
OLR = 20T2 .. (as per previous derivation). 7+ Twop = 21/4



TROPOPAUSE HEIGHT /]i

Ball Park Estimate

Tropopause temperature given by - Radiative equilibrium

“s._— Radiative-convective equilibrium

T 12

4 _ T4
20T} = So(1 —a)=oT, Tr = 21‘/94 2
zs
Surface temperature is: 2
1 4

+

oTd = So(1—or)( 2TO) or Ts = Tr(1+10)'* 2

220 240 260 280 300 320 340
Temperature (K)

The height of the tropopause, Hr, is then such that (Ts — T7)/Hr =T so:

Ts-Tr _Tr

S 0_1/4
r 2?((1+T0)1/4—1). or HTZL

r

Hy ((1 + ) - 1).

Venus tropopause height because of very strong greenhouse effect. Surface temperature = 700 K.
Tropopause temperature = 200 K. Lapse rate = 10 K/km.

Therefore Venus tropopause height = 80 km. Earth — 15 km



TROPOPAUSE HEIGHT
Better theory

&

=== Radiative equilibrium

P Tropopause

—— Radiative-convective equilibrium

220 240 260 280 300 320 340
Temperature (K)

Assume ‘dynamics’ operates to a finite height,
and with a specified lapse rate.

Solve the radiative transfer equations, and
demand overall radiative balance, allowing
tropospheric height to adjust.
(i) Outgoing IR at top of atmosphere
equals incoming solar
(if) Upward IR at surface = o T

Obtain numerical solution exactly, or
analytic solution approximately.

Adjustment to red profile is similar to an ‘Equal area construction’ (although not exactly).



TROPOPAUSE HEIGHT /).

Analytic Expression

du _B_uU, dD B_D

dr dr '
Suppose that lapse rate, I, is given up to a height Hr, above which the atmosphere is in radiative
equilibrium.
Formal solution:

’ ’

D(t")=¢e™" [D(O)— /0 ' B(T)erT], U©) = U(t"e™ + /0 ' B(t)e " dr

Must adjust Hr so that the equations satisfy the boundary conditions (equal area construction, done
properly).

After some algebra...

1
Hr = oD (CTT + \/CZTZ + 3275 H, TT)

where 7; is surface optical depth, H, is the scale height of the main absorber and C = log 2.



TROPOPAUSE HEIGHT
Analytic vs Numerical

1
Hr = — (CTr + JC?T2 + 327 H, Tr
16r
where C = 1.4.
Numerical solution Analytic approximation
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In tropics I" is approximately moist adiabatic lapse rate, about 6°/km.

Look at other planets — Venus, Mars, Jupiter etc. Also, compare with ‘top-down’ theories by



TROPOPAUSE HEIGHT
Prediction for Earth

&

Does the theory reproduced the observed tropopause height? Semi-quantitatively, yes.
N
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Tropical tropopause is too low

Hu and Vallis 2019.



EFFECTS OF THE STRATOSPHERE /tz
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Add a cooling to the stratosphere:

(a) (b)
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TROPOPAUSE ON VENUS /I
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Four probes from Pioneer. Adapted from Seiff et al (1979)



TROPOPAUSE HEIGHT, MIDLATITUDES
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Lapse rate now determine by baroclinic eddies:
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Take the lapse rate to be such
that isotherms pass from
surface in midlatitudes to
tropopause near the pole (this
is ‘baroclinic adjustment’ or

‘marginal supercriticality’,

Stone (1978).



BAROCLINIC ADJUSTMENT (MARGINAL SUPERCRITICALITY) /r| '
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A Loose Argument

In two-layer model the condition for marginal stability is that the PV gradient just changes sign.

0Q AU
B3y P77
oy Ly
but, thermal wind:
fAU _ Apb
H L
and N2 = A,b/H. Gives
LB Apb
f  Ab

orif B~ f/L,

H
Isopycnal Slope ~ "

Isotherms pass from surface in tropics to tropopause at pole.



TROPOPAUSE HEIGHT: ANALYTIC FOR MIDLATITUDES

4

Combine these arguments, predict height and stratification.

Hr = 16r, (

A+ VA2 + 32T 1 H, TT)

where A = CTr —8f0,T/B. t Tr = temperature tropopause.

Surface optical depth
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TROPOPAUSE HEIGHT /)i

Recap: Increase with Global Warming

Summary of arguments:

— Incoming solar radiation = outgoing IR
— Stratosphere optically thin, in radiative equilibrium
—  Uniform tropospheric stratification

— Then, outgoing IR radiation can be written as a function of tropopause temperature only.

Height

Warming

Temperature

Only one choice of H(T) gives the correct OLR. Tropopause height increases with increased COT.



TROPOPAUSE TEMPERATURE CHANGES

4

Surface temperature change (K)

Tropopause temperature change

Global Warming Results from CMIP5
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Tropopause temperature change is small — but not zero!



NON-GRAY EFFECTS OF RADIATIVE TRANSFER /Zi
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Atmospheric

Window (non-window)

7, B aTg (1 - ) 20T

UL ETEETY EEETETEEREPPEEPE S Tropopause

T, Ground

Total OLR remains constant with global
warming.

1,807, +(1-p)20T# = OLR

If 7, diminishes sufficiently (i.e., the
window closes) because of increase
greenhouse gases then Tr must increase!

(Needs a detailed calculation to be
quantitative.)



A WINDOWED CALCULATION
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TROPOPAUSE SUMMARY

&

1. Presented theory for tropopause height.

(i) Predicts height on Earth, Venus etc reasonably well.
(if) Latitudinal structure on Earth.
(iii) Higher, colder tropical tropopause due to Brewer-Dobson cooling.

2. Height and temperature will both increase with global warming.



ELLIPTICAL EXOPLANET ORBITS! /tz
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Test theory in an extreme case

(i)
(ii)
(iii)
(iv)

Telluric planet

Various elliptical orbital configurations.

Zero obliquity (no tilt).

Kepler’s law satisfied by each orbit

Each orbital configuration receives the same

amount of solar radiation.

Flux (W m~2)

Temperature over the seasonal cycle
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ELLIPTICAL EXOPLANET ORBITS!

Results

Lapse Rate
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High temperature, low lapse rate. (Moist
adiabatic.)



ELLIPTICAL EXOPLANET ORBITS!
Tropopause Height
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ELLIPTICAL EXOPLANET ORBITS!
Tropopause temperature
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GRAVITY



GRAVITY @

Suppose we double the gravity (Newtonian acceleration) at Earth’s surface, from 9.8 to 19.6 m/s2.
What happens to the circulation?



GRAVITY @

Suppose we double the gravity (Newtonian acceleration) at Earth’s surface, from 9.8 to 19.6 m/s2.
What happens to the circulation?

If the atmosphere obeys the dry primitive equations — absolutely nothin! (to worry about).



SCALING THE EQUATIONS

The primitive equations of motion are:

Du . uvtand 1 ap
= _2Qvsind+ =- iy
Dt vsin a pacosd oA
2
& +2Qusind + 2 tand = —lﬂ
Dt a pa 38
op
oz | PE
Dp
— +pV.-v =0,
De P
DT p Dé
— +EBv.v=o = =0.
By , v or 5,

(Don'’t worry about the details!)

(1)

)
®3)

(4)

(5)



SCALING THE EQUATIONS /tz

Change gravity

Change gravity, g — ag

p—ap,  p—ap,  (T.0)—(T.0)
o )=y, z-oz/a, (6)

t—t

(u,v) = (u,v), w— w/a.

Substitute into the equations of motion — nothing changes! All factors of a cancel.



SCALING THE EQUATIONS /tz

Change gravity

Change gravity, g — ag

p—ap,  p—ap,  (T.0)—(T.0)
tot,  (y)->Mky), z-oz/a (6)

(u,v) = (u,v), w— w/a.

Substitute into the equations of motion — nothing changes! All factors of a cancel.

Does not hold if the equations are non-hydrostatic:

2

Dw u?+v 10p
—_ - -2Qucosd =-——— —g. 7
Dt r “ p or £ @)



SPOT THE DIFFERENCE
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SPOT THE DIFFERENCE

Pressure (hPa)
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The only difference is the y-axis
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SCALING THE EQUATIONS
Changing the Mass

&

Change mass, p — ap, keep gravity constant.

g8 p—ap, p — ap, (T,0) = (T,0),
t —t, (x,y) = (x, ), zZ— z, (8)

(u,v) = (u,v), w— w.

Substitute into the equations of motion — again nothing changes! All factors of a cancel.

Venus

Surface pressure = 92bars ~ 100 X Earth surface pressure.

So Venus is not dynamically different from Earth simply because it's atmosphere is more massive.
Rather, a more massive atmosphere gives an enormous greenhouse effect.



MoIsT EFFECTS @

(as gravity changes)

Increase gravity — squashes atmosphere, but no other affect on the dynamics. For example,
deformation radius, H — H/a, N(= (g/60)06/8z) — Na — no change to dynamics!

Therefore NH/f — NH/f.
1. But the atmosphere shrinks in height.
2. So overall, less moisture.s

3. Atmosphere gets colder!



MOISTURE

Temperature
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The opposite of global warming!
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MOISTURE @

Specific Humidity
Temperature
e Temperature stays the same, at lowest order. 00 Qo
. . . ! 22.5
e Vapour pressure e is (mainly) a function of ” 150
temperature. o ' o
0.6 -7.5
[ ] -15.0
. L e e 0.8 -22.5
Specific humidity =g = — » — (9) ‘ ‘ 300

p ap
So specific humidity falls with increasing gravity.

1.0
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e Moist adiabatic lapse rate increases, so ,
Low gravity

temperature falls even more at high altitudes in

the tropics. , 1 Moist adiabatic
. - lapse rates
e Lapse rate changes because specific humidity High
changes: Gravity

dT| _ & 1+Lqs/(RT)
dz |4 B cp 14 L2qs/(c,RVT?) Temperature




