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The climate response problem 

Lu et al 2008: simulations with GFDL 
CM2.1 model, 2081-2100 compared 
with 2001-2020 in A2 scenario. 

Longitudinal/time average change 
depends on physical processes which 
fluctuate in longitude and time. 



2017 Noble Lectures (1) 

Changes in the SH troposphere as 
a dynamical response to 
stratospheric ozone depletion 

(Thompson and Solomon 2002, Gillett and 
Thompson, 2003) 

Ozone perturbation applied to AGCM 
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Simple model of solar cycle effects 
Haigh et al (2005): response of simple troposphere to imposed 

changes, e.g. uniform increase in radiative equilibrium temperature 
in stratosphere 
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Changes in eddy fluxes are 
a vital part of the 
tropospheric dynamical 
response (possibility of 
‘amplification’) 

Simpson et al (2009) 
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Can we make predictions about the response of 
the tropospheric circulation? 

Can this tropospheric 
box really be 
‘decomposed’? 

Diagram from 
Simpson et al (2009) 

Analogous tropospheric response problems: ozone hole (Gillett and Thompson 
2003), stratospheric perturbation (Polvani and Kushner 2002, Song and Robinson 
2004), surface friction (Chen et al 2007),  tropospheric heating (Butler et al 2010) 
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Chen et al (2007): two-stage adjustment (short-time in jet strength 
followed by longer term change in jet position) 

Reduction in surface friction in simple circulation model 	
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Chen et al (2007) 

1) As the surface drag is reduced, the zonal wind acceleration is barotropic and 
proportional to the surface wind in the extratropics. Meanwhile, the baroclinic eddies 
are weakened by the increased barotropic meridional shear, but neither the 
weakening eddies nor the increased meridional shears are directly implicated in the 
poleward shift. 

2) The increase in the strength of the westerlies in the extratropics leads to faster eddy 
phase speeds, while the subtropical zonal winds barely change. Hence, the critical 
latitude for these eddies is displaced poleward. 

3) The dynamics of the wave breaking in the upper troposphere, in the presence of this 
poleward shift in critical latitude, shifts the eddy momentum fluxes poleward, driving a 
poleward shift in the surface zonal winds and the eddy-driven jet. This is particularly 
supported by the shallow water model results. 

4) Eddy heat fluxes, and the associated upward Eliassen– Palm (EP) fluxes tend to follow 
this upper-level eddy activity. This shift in the baroclinic eddy production provides 
some positive feedback on the upper-level shift. 

Mean zonal 
wind  

Structure of 
eddies 

Eddy 
momentum flux 

Surface 
Friction 
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Questions 

•  What is relation between spatial pattern of forcing and 
the amplitude and spatial pattern of response? 
(‘preferred response’, ‘most effective forcing’) 

•  Will different models overpredict or underpredict 
response (and correct pattern of response) relative to 
real atmosphere? 

Seek a ‘unified’ approach to quantitative prediction of tropospheric 
response, rather than post-hoc explanation of each special case  
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Brownian motion 

Einstein (1905,1906) 
Smoluchowksi (1906) 

Equipartition of kinetic energy:  

Stokes law for viscous drag force:  
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UNDISTURBED SYSTEM DISTURBED SYSTEM 

Calculation of change in statistical measure of chaotic/random 
system due to applied perturbation 

X(t) 

ρ(x)	

“Dynamical systems” approach 
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Evolution equation 

U(X, t)

dX

dt
= U(X, t) +�F(X, t)

is usually nonlinear and could contain explicit 
randomness 

dX

dt
= U(X, t)

Equilibrium statistical properties described by 
probability density function ⇢(x)

Perturb evolution equation   

What is new              ?   ⇢(x)

[Perturbations to individual trajectories are large – perturbations to 
overall statistics are small.] 
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If X is Gaussian then  

Fluctuation-Dissipation Theorem 
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Gritsun and Branstator 
(2007)  

Application of Gaussian 
FDT to predict response 
to localised tropical 
heating in GCM 

Individual AGCM 
integrations 40000 days  

FDT estimate 
constructed from 4M day 
integration 
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Gritsun and Branstator (2007)  Success of FDT measured by pattern 
correlation and amplitude ratio.  
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Ring and Plumb (2008): Gaussian FDT makes incorrect 
prediction for response to zonally symmetric thermal (!) and 
mechanical (") forcings 
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Practical issues in applying the FDT 

•  EOFs (which diagonalise C(0)) are a natural choice of 
variable (but not the only possible choice) 

•  < C( τ ) C(0)-1> must be estimated from available data.  
•  C(0)-1 potentially ill-conditioned – number of useful EOFs 

may be restricted by length of data series 

•  integration from τ = 0 to τ = ∞ must be approximated by 
finite sum 

L =

Z 1

0
d⌧ C(⌧)C(0)�1
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Statistical requirements on application of Gaussian FDT   

FDT prediction of response 

Cooper and H 2012 

2-D linear model 
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Study based on simple T21L20 general circulation model  
(Cooper and H 2012) 

10000 day 
simulations, mean 
and variance   

Forced response 
+/- 1 m/s/day 

Forced response 
+/- 0.1 m/s/day 
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Application of the FDT to predict the response to forcing of a 
simple T21L20 general circulation model   

Cooper & Haynes: FDT response of the tropospheric circulation. 15
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Fig. 14. The integral calculated response of the T21L20 model projected onto the first EOF of run 1, using 10

5 day runs (left) and an upper
limit of the integral of 300 days (right). There is no truncation in EOF space. The solid line is the mean over ten runs, the dashed lines
indicate two standard deviations of the mean, calculated from the standard deviation of a single run times 2/

√
10. The straight horizontal

lines represent the actual response of the model calculated from ten unforced runs and one forced run.
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Fig. 15. As figure 14 but using the log method and a lag of τ = 1 (right).

(10 x 105 day integrations) (300 day upper limit to integral) 
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Cooper & Haynes: FDT response of the tropospheric circulation. 17
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Fig. 18. Integral calculated responses of the T31L20 Ring & Plumb model without truncation (left), and range of responses given truncation
to the first 1 to 50 EOFs (right). The solid and dashed lines are the respective mean and standard deviation times 2/

√
10 of calculations using

ten 10
5 day time series taken from a single 10

6 day control and forced run. The dot-dashed lines are the same calculation performed directly
on the 10

6 day control run. The straight horizontal lines represent the actual response calculated by running the model.
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Fig. 19. As figure 18 but using the log calculated response without truncation (left) and truncated to the first 1 (solid), bracketed by the
standard deviation times 2/

√
10 (dashed), 4 (dot dashed) and 10 (solid) EOFs (right).

What is the 
optimal number 
of EOFs to 
include in the 
calculation? 

(T31L20 model) 
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Specification of forcing 

Where did the equations go? LGaussian =

Z 1

0
d�C(�)C(0)�1

Implications of truncation 

e.g. Ring and Plumb (2007) 

�u

�t
+ · · · = F

�u
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�T

�t
+ · · · = 0
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Effect of using 
climatological u 
versus u=0 in 
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Usefulness of Gaussian 
FDT may be limited by 
non-Gaussianity? 

18 Cooper & Haynes: FDT response of the tropospheric circulation.
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Fig. 20. Approximations to the PDFs of the zonal wind first EOF for
the T21L20 model (solid) and the Ring and Plumb model (dashed).
The mean has been removed to centre the PDF on zero.

There are biases, or systematic errors, present in the FDT
calculation which are reduced to zero with a sufficiently long
model run. These biases seem to grow with the dimension-
ality of the model. Truncating in EOF space can make the
calculation easier, it however introduces its own unknown
biases. We then come up against the problem of which
EOFs to use and know of no reliable method of choosing.
We have some evidence that our calculation has converged,
which suggests that the biases introduced by truncation of
EOF space are larger than other biases present.
It is also worth noting that since the response to a forcing

is expected to project onto the first few EOFs, and that the
EOFs describe the variability, the pattern of the responsemay
look quite like its own error. This means that for an insuffi-
ciently resolved climate, it is quite likely that the calculated
response patterns appear to have some skill when they do
not. Hence the magnitude of the response and error, require
separation which we have done here.

3.1 Summary of the Stochastic Model Results

- The autocorrelation, lag-covariances, EOFs and calculated
responses are systematically biased for short model runs.
- The error bars in the autocorrelations are larger than

naively expected and an ensemble of long runs is required
to find them.
- One must be careful to use the same definition of space,

e.g. real space, when calculating a mean response over sev-
eral runs. Means calculated using different estimated EOF
spaces can have significant, and not fully understood, errors.
- The FDT integral method, equation (2), requires a high

enough upper limit of integration, but as the upper limit in-
creases, so does the standard deviation. Without a theoretical

estimate of the required upper limit careful examination of
the convergence of this integral is required.
- The FDT log method, equation (3), is most accurate at

low lags and becomes very inaccurate at high lags.
- The FDT is applicable to one dimensional non-linear

stochastic models whose statistics are close to Gaussian.
However for systems far from Gaussianity it is not. It is un-
known how this extends to higher dimensions.

3.2 Summary of the Simplified GCM Results

- Both forms of the FDT produced an estimate of the re-
sponse of the GCM that was roughly double the actual re-
sponse.
- We have evidence that the length of run that we use is

sufficient to remove statistical biases and that our calcula-
tions have converged.
- Calculation of the statistical error is required to distin-

guish calculated responses from an EOF pattern and it is the
amplitude of the response that is important.
- EOF truncation introduces biases that are not dependent

upon run length and reduces others that are. For our cal-
culations the biases introduced seem to be larger than those
reduced. Longer runs or a larger ensemble would be more
convincing.
- It is possible to produce exceptionally accurate predic-

tions of the response through tweaking the upper limit of the
integral, lag τ and number of EOFs used. Anything other
than checking that the integral has converged for the integral
method, using a lag τ = 1 day for the log method or using
the full space requires justification that we cannot provide.
- The PDF of our simplified GCM is not Gaussian.

3.3 Future Work

The first step is to extend our simulations to check that our
calculations have indeed converged. If they have, we then
need to address the problem of non-Gaussian statistics. It is
possible to perform a FDT calculation for an arbitrary proba-
bility distribution function (PDF), however we are then faced
with the non-trivial problem of estimating a respective 640
and 960 dimensional PDF. One approach is to make assump-
tions that produce closer approximations to the actual PDF
than the Gaussian assumption by for example assuming a
form of the PDF that allows skew (Azzalini & Valle, 1996),
(Sardeshmukh & Sura, 2009), another is to truncate in EOF
space to a more manageable dimension and obtain a good es-
timate of the truncated PDF. Some understanding of the bi-
ases introduced by such an EOF truncation would then be re-
quired. Other approaches may be more fruitful. For example
computation of the linear response operator through a large
number of simulations, the fitting of some stochastic model
or the application of a different method of applying the FDT.
The FDT used by Abramov & Majda (2008a) includes non-
Gaussian effects for short times and the linear model with

pdfs of EOF1 in zonal 
wind for T21L20 and 
T31L20 simulations  
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The non-Gaussian case – a ‘non-parametric FDT’ 

Estimate using kernel density estimator 
method of non-parametric statistics 
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Simplest choice for K(.)  is 
isotropic Gaussian 

Bias and Uncertainty depend on h and N.  

Cooper and H 2011   
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in Fig. 5. Application of the Gaussian form of the FDT
required only a subset of our dataset to reduce the var-
iance to an acceptable level. Ten independent integra-
tions each of 105 data points were used. With this data
Eq. (4) yields at an upper limit of the integral of 50, a
calculated response to a forcing of f 5 0.1 of dhdxi 5
0.4966 0.027, which is not consistent with the true
response, estimated by model integrations to be dhdxi 5
0.3366 0.032 (see Fig. 5). Application of the nonpara-
metric FDT, using the full set of 100 integrations, each of
2 3 105 data points, yields a response that depends on
the choice of h. However, there is a range of h between
about 2 3 1022 and 5 3 1021 where the predicted re-
sponse is independent of h and the uncertainty is ac-
ceptably low. For h 5 0.1, say, dhdxi 5 0.342 6 0.005 is
consistent with the true response.

c. A stochastic Lorenz model

We now wish to test the ability of the nonparametric
FDT to predict the response of a system where the PDF
is to a large extent controlled by the chaotic behavior
of the internal nonlinear dynamics rather than primarily
by applied stochastic forcing. The three-dimensional
Lorenzmodel (Lorenz 1963) is a natural choice because it
is often used as a conceptual paradigm for climate (e.g.,
Palmer 1993), although it possesses a fractal equilibrium
PDF, which violates the assumption of smoothness re-
quired by the FDT. However, if we smooth the PDF by
adding a stochasticwhite noise term, j5 (jx, jy, jz), to the
Lorenz equations, we expect that the conditions required
for the nonparametric FDT should apply.
With standard parameters and an additional forcing

term our stochastic version of the Lorenz model is de-
fined by

dx

dt
5 10(y! x)1 f x 1 jx,

dy

dt
5 x(28! z)! y1 f y 1 jy,

dz

dt
5 xy! 8

3
z1 f z 1 jz, (28)

where x, y, and z are the components of the three-
dimensional state vector and f5 ( fx, fy, fz) is the applied
forcing.

FIG. 3. PDFs of the system described by Eq. (27) for f 5 0 (solid)
and f 5 0.1 (dashed).

FIG. 4. Response of the system described by Eq. (27) for various
magnitudes of forcing, illustrating the accuracy of the linear ap-
proximation. The dashed lines indicate two standard deviations
divided by the square root of the number of integrations.

FIG. 5. Estimated and actual response of the system described by
Eq. (27) with f 5 0 when a forcing of f 5 0.1 is applied. The
Gaussian estimate is a function of the upper limit of the integral
used to approximate Eq. (4), while the nonparametric estimate is
a function of the bandwidth parameter, h in Eq. (7), with the upper
limit of the integral in Eq. (2) taken to be 50. The regions indicate
the mean response plus or minus two standard deviations divided
by the square root of the number of integrations.

MAY 2011 COOPER AND HAYNES 945

dX

dt
= b1X � b2X

3 + �strongly non-Gaussian test 
case 

Perturbed 
and 
unperturbed 
pdfs 
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This is the model considered by Thuburn (2005), who
showed, at least for a particular amplitude of the sto-
chastic term, that the linear response to a forcing was well
estimated by consideration of the Fokker–Plank equation
for the system, that is, the deterministic partial differen-
tial equation for the equilibrium PDF. We first compare
the FDT algorithm proposed here with Thuburn’s results
and then apply it to a system with a smaller stochastic
component.

1) HIGH AMPLITUDE UNIFORM NOISE

In this case we take the amplitude of the noise to be
the same as that in Thuburn (2005), where the standard
deviation of the noise components jx, jy, and jz is chosen
so that Eq. (28) is equivalent to a vector stochastic dif-
ferential equation including in each component term
a Wiener process multiplied by a factor of 20. We ap-
proximate solutions to the stochastic Lorenz Eqs. (28)
using the same method as that used in section 3b. A
fourth-order Runge–Kutta scheme was applied to the
deterministic parts of the equation with an added noise
term identical to that in Eq. (24). We used a time step of
0.002 nondimensional time units and recorded the
state vector every 0.01 nondimensional time units. We
recorded 10 model runs, each of 106 data points after
discarding the first 1000. A typical trajectory from this
model is shown in Fig. 6.
The response in the x direction to unit forcings ap-

plied independently in the x, y, and z directions was
estimated by direct simulation and is shown as solid
lines in Fig. 7, alongside the corresponding estimate from
Thuburn (2005), shown as dotted lines, which are in good
agreement. This suggests that the unit forcings are in the
amplitude range consistent with linear theory. The cor-
responding quasi-Gaussian FDT estimates of the response
in the x direction to forcings in the x, y, and z directions
are respectively 0.0252 6 0.0018, 0.1287 6 0.0010, and
25.6114 3 1024 6 6.0076 3 1024, where an upper limit
of the integral in Eq. (4) of 1 was used in each case.
These results are summarized in Table 1. In the first two
cases (forcings in x and y directions), these are clearly
inconsistent with the simulated response (respectively un-
derpredicted by 65% and overpredicted by 24%). The
case of forcing in the z direction is not so clear since the
mean simulated response is significantly smaller than its
variance. Also shown in Fig. 7 is the response predicted
by the nonparametric FDT, with dependence on the
bandwidth parameter h andon the sample size both shown.
Taking a value of h around 1 as providing the ‘‘best’’ es-
timate it is clear that the nonparametric FDT is much
more accurate than the Gaussian FDT and very compa-
rable in accuracy to the Thuburn (2005) approach. Note
that, if the direction of forcing is fixed, then optimization

of the choice of h for each component of the response
(by minimizing some component of bias and variance)
naturally gives a different optimal value of h for each
component. A more satisfactory approach might be to
optimize by applying a criterion on dx as a vector, rather
than to individual components of dx.

2) LOWER AMPLITUDE NONUNIFORM NOISE

The forcing of trajectories toward the strange attrac-
tor of the Lorenz model is exceptionally strong in com-
parison with movement along the attractor itself (Tucker
2002). Therefore, the effect of a stochastic forcing in an
arbitrary direction is strongly suppressed in a direction
perpendicular to the attractor. On the other hand, to
provide sufficient smoothing of the PDF for application
of the nonparametric FDT to be feasible the isotropic
noise term needs to be large, which reduces correlations

FIG. 6. A typical trajectory of the stochastic Lorenz model with
(top) a large uniform stochastic term as used by Thuburn (2005)
and (bottom) a smaller nonuniform stochastic term.

946 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 68

Application to stochastic Lorenz 1963 model  

Compare with Thuburn (2005) approach of solving Fokker-Planck equation 
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in time and disrupts the structure of the attractor as a
whole. The solution we use is to add a stochastic forcing
locally normal to the attractor itself. To find an approxi-
mation of this direction we use numerical approximations
of time differentials

v’
›

›t
(x, y, z)

and

v̂’
›

›t
(x1 x̂, y1 ŷ, z1 ẑ)! ›

›t
(x! x̂, y! ŷ, z! ẑ)

to define the vectors v and v̂, where the caret denotes
a small random perturbation. If the perturbations x̂, ŷ,
and ẑ are sufficiently small with respect to the time step,
v̂! vj j " vj j, and we assume that v and v̂ are not parallel.
Then, since for a sufficiently small noise term movement
in one time step along the attractor is further than move-
ment toward it, the cross-product v 3 v̂ is a vector ap-
proximately perpendicular to the plane of the attractor.
We now define the stochastic noise vector to be

j5 aj0
v 3 v̂

v 3 v̂j j

FIG. 7. Response of the uniform stochastic noise Lorenz model in the x direction to a forcing in the (top) x, (middle) y, and (bottom)
z directions. (left) All three responses plotted on the same axis to give an idea of scale; (middle) response as a function of h for a run length
of n 5 106 data points; (right) three responses for particular values of h as a function of run length to show the rate of convergence. The
horizontal solid lines are the responses estimated by direct simulation, the circles are estimated using Eq. (12), the dotted line is the
response estimated by Thuburn (2005), and the dashed lines indicate two standard deviations divided by the square root of the number of
runs. An upper limit of the integral in Eq. (2) of 1 was used in all cases.

MAY 2011 COOPER AND HAYNES 947

Response in x direction 
to forcing applied in 
different directions 
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What is a useful measure of 
non-Gaussianity? 

18 Cooper & Haynes: FDT response of the tropospheric circulation.
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Fig. 20. Approximations to the PDFs of the zonal wind first EOF for
the T21L20 model (solid) and the Ring and Plumb model (dashed).
The mean has been removed to centre the PDF on zero.

There are biases, or systematic errors, present in the FDT
calculation which are reduced to zero with a sufficiently long
model run. These biases seem to grow with the dimension-
ality of the model. Truncating in EOF space can make the
calculation easier, it however introduces its own unknown
biases. We then come up against the problem of which
EOFs to use and know of no reliable method of choosing.
We have some evidence that our calculation has converged,
which suggests that the biases introduced by truncation of
EOF space are larger than other biases present.
It is also worth noting that since the response to a forcing

is expected to project onto the first few EOFs, and that the
EOFs describe the variability, the pattern of the responsemay
look quite like its own error. This means that for an insuffi-
ciently resolved climate, it is quite likely that the calculated
response patterns appear to have some skill when they do
not. Hence the magnitude of the response and error, require
separation which we have done here.

3.1 Summary of the Stochastic Model Results

- The autocorrelation, lag-covariances, EOFs and calculated
responses are systematically biased for short model runs.
- The error bars in the autocorrelations are larger than

naively expected and an ensemble of long runs is required
to find them.
- One must be careful to use the same definition of space,

e.g. real space, when calculating a mean response over sev-
eral runs. Means calculated using different estimated EOF
spaces can have significant, and not fully understood, errors.
- The FDT integral method, equation (2), requires a high

enough upper limit of integration, but as the upper limit in-
creases, so does the standard deviation. Without a theoretical

estimate of the required upper limit careful examination of
the convergence of this integral is required.
- The FDT log method, equation (3), is most accurate at

low lags and becomes very inaccurate at high lags.
- The FDT is applicable to one dimensional non-linear

stochastic models whose statistics are close to Gaussian.
However for systems far from Gaussianity it is not. It is un-
known how this extends to higher dimensions.

3.2 Summary of the Simplified GCM Results

- Both forms of the FDT produced an estimate of the re-
sponse of the GCM that was roughly double the actual re-
sponse.
- We have evidence that the length of run that we use is

sufficient to remove statistical biases and that our calcula-
tions have converged.
- Calculation of the statistical error is required to distin-

guish calculated responses from an EOF pattern and it is the
amplitude of the response that is important.
- EOF truncation introduces biases that are not dependent

upon run length and reduces others that are. For our cal-
culations the biases introduced seem to be larger than those
reduced. Longer runs or a larger ensemble would be more
convincing.
- It is possible to produce exceptionally accurate predic-

tions of the response through tweaking the upper limit of the
integral, lag τ and number of EOFs used. Anything other
than checking that the integral has converged for the integral
method, using a lag τ = 1 day for the log method or using
the full space requires justification that we cannot provide.
- The PDF of our simplified GCM is not Gaussian.

3.3 Future Work

The first step is to extend our simulations to check that our
calculations have indeed converged. If they have, we then
need to address the problem of non-Gaussian statistics. It is
possible to perform a FDT calculation for an arbitrary proba-
bility distribution function (PDF), however we are then faced
with the non-trivial problem of estimating a respective 640
and 960 dimensional PDF. One approach is to make assump-
tions that produce closer approximations to the actual PDF
than the Gaussian assumption by for example assuming a
form of the PDF that allows skew (Azzalini & Valle, 1996),
(Sardeshmukh & Sura, 2009), another is to truncate in EOF
space to a more manageable dimension and obtain a good es-
timate of the truncated PDF. Some understanding of the bi-
ases introduced by such an EOF truncation would then be re-
quired. Other approaches may be more fruitful. For example
computation of the linear response operator through a large
number of simulations, the fitting of some stochastic model
or the application of a different method of applying the FDT.
The FDT used by Abramov & Majda (2008a) includes non-
Gaussian effects for short times and the linear model with

Depends on structure of time 
correlations as well as form of pdf 
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• FDT potentially provides a quantitative description of 
tropospheric response to forcing (e.g. ozone hole, solar cycle, 
greenhouse gas increase) given information on statistics of 
unforced circulation 

• If model low-frequency variability (timescales and patterns) is 
wrong then response to forcing will be wrong 

• Typical response to forcing will be leading singular vector of 
response operator (providing forcing has significant projection 
onto leading singular vector), not necessarily the leading EOF. 

• In practice can FDT do better than simple estimation of 
timescale of leading EOF? 

• Applications? Model assessment/intercomparison? 

Summary 
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• Statistical nature of FDT requires explicit information on/
estimates for bias and uncertainty 

• Non-gaussian extension of FDT potentially extends 
validity (but there are challenges in implementation – can 
we escape the ‘curse of dimensionality’ or avoid it by 
working in a truncated system? ) 

• FDT for truncated system is non-trivial – need to 
consider proper ‘effective forcing’ on truncated system. 

• Clearer practical guide to implementation of FDT (How 
long a data record is needed for required precision? How 
many degrees of freedom to include?) 

Future lines of work? (Is the FDT a practical quantitative tool?) 
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Usefulness of linear theory? 

depends on problem being considered – but recall Haigh et al (2005) 
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Kidston et al (2015): tropospheric response to stratosphere 
on different timescales 
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20th century physics: large systems, small fluctuations, FDT has 
been discussed/applied/interpreted in terms of macroscopic 
variables. 

21st century physics: extension to non-equilibrium small systems 
with large fluctuations? 

Dynamical systems: Formal derivation/justification of 
‘fluctuation-response’ operators, conditions for applicability, can 
problems of non-smoothness/non-differentiability be overcome? 

Climate/circulation: Evaluation of ‘fluctuation-response’ operator 
from model simulation (or from data?) is a problem in statistics 
of large-degree-of-freedom systems. How much data is needed 
for required accuracy? How can effective dimensionality be most 
effectively reduced?    

FDT – cultural differences 


