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Alan Brewer 

Dry air observed by Brewer 
corresponds to frost point 
of ~195K 

Stratospheric water vapour 
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‘Troposphere-stratosphere exchange of trace 
constituents: the water vapor puzzle’ (Holton 1984).   

 Brewer (1949) -- ‘Evidence for a world circulation provided by the 
measurements of helium and water vapour distribution in the stratosphere’ 

Mean temperatures too high to account for observed concentrations of water 
vapour -- Newell and Gould-Stewart (1981) -- ‘A stratospheric fountain’ 

Importance of convective-scale -- convective penetration of stratosphere 
without hydration of stratosphere -- Danielsen (1982) --  ‘A dehydration 
mechanism for the stratosphere’ 

Geographical/seasonal differences in water vapour profiles – Kelly et al 
(1993) 

 Water vapour trend from 1960s to 1990s? Sharp drop in 2000. Stratospheric 
water vapour important for tropospheric climate and stratospheric ozone 
chemistry 
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CALIPSO 28 January 2009 

(Taylor et al 2011) 
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Panama (July) and Darwin (January) water vapour profiles (ER-2) 
 (Kelly et al 1993) 
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Seasonal variation of tropical 
tropopause temperature 

Variation of tropical water vapour observed 
by MLS instrument on UARS 

‘Tropical tape recorder’  

Yulaeva et al (1994) 
Mote et al (1996) 
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Effects of CO2 increase/ stratospheric H2O increase 

Changing CO2 Changing stratospheric H2O 

Manabe and Wetherald (1967) 

(many subsequent calculations) 
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Interannual/decadal changes in stratospheric water vapour 
(Solomon et al 2010) 
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What determines annual, interannual and longer term 
variations in stratospheric water vapour? 

• Temperatures (spatial scales? time scales? resolved by different 
observations and by re-analysis datasets? or not?)   

• Transport (pathways? rates? convective penetration?) 

• Dehydration efficiency (homogeneous vs heterogeneous 
nucleation?  changes in background aerosol?) 

• What processes are captured by climate models? 
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Tropical Tropopause Layer (TTL) Fueglistaler et al (2009) 

Transport from troposphere to stratosphere and dehydration is a 3-D process 
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Horizontal variation of smr 

In tropical upwelling regions, saturation mixing ratios 
vary by almost one order of magnitude.  

3-D  circulation is important! e.g. Holton and Gettelman 2001  

[ERA-Interim, January 2001] 

The relation between Eulerian temperature field and atmospheric water vapour is 

strongly modulated by transport.
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3-D view of dehydration   

Schematic models: Holton and Gettelman (2001), Plumb (2002) 

Trajectories from GCM: Hatsushika and Yamazaki (2003) 

Trajectories from operational analysis/re-analysis data:  

Jensen and Pfister (2004), Fueglistaler et al (2004), Bonazzola and H (2004) 

Fueglistaler, Bonazzola, H and Peter (2005), Fueglistaler and H (2005), ….. 

Liu, Fueglistaler and H (2010), …. 

Dessler and Schoeberl (2011), … 

Ploeger et al (2011), … 



2017 Noble Lectures (3) 

Lagrangian approach to relating temperatures to 
stratospheric water vapour 

(e.g. Liu et al 2010) 

(i) Back trajectories (using ECMWF re-analysis data) are started in the lower 
stratosphere 

(ii) Those that can be traced back to the troposphere within integration time  
(1-year) form the Troposphere-to-Stratosphere (TST) ensemble 

(iii) Find Lagrangian Dry Point (LDP) of the TST-ensemble (note T, lat, lon, 
pres, time) - this is the last point at which trajectories encounter 100% RH 
before the endpoint 

Results are assumed to be statistically representative (large ensembles of 
trajectories  calculated - usually on the order of 106 – 107). Individual 
trajectories are not accurate. 
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Data: ERA-Interim 
2005020100


Pot. temp

(TST) criterion


Dehydration

Endpoint 

Lagrangian 
dry point 

340K 
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LDP distribution Liu (2009) 
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Previous results using ERA-40 data 

Fueglistaler et al. 2005, 
JGR 

Climatologically averaged annual 
cycle of tropical mean (30˚S - 30˚N) 
water vapour on 400K  

Estimate using trajectories 

Tropically averaged model results  
are in quite good agreement with 
observations! 

(a) Vertical propagation too fast 

(b) Results have a moist bias 

Estimate from local Eulerian  
column minimum temperature 

Observation (HALOE) 
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Bonazzola and H (2004) 

La Nina (1998-99) 

El Nino (1997-98) 
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Interannual variability 
(Fueglistaler and H 2005) 
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Dependence on data and trajectory type 

E4 - ERA-40 
(3D-var assimilation 
ends 2002) 

EI  - ERA-Interim 
(4D-var assimilation 
1989 - present) 

kin - kinematic  
(vertical velocity 
calculated from 
continuity equation) 

dia - diabatic 
(vertical motion 
from heating rates) 

LDP water vapour from TST-ensemble only 

Liu et al., 2010 

6-hourly T159L60 
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Simple LDP correction 

Increase LDP temperature 

by +3K to bring results to 
agreement with MLS!


(Surprisingly, such a simple 

LDP temperature correction

can correct much of the bias 

in both the mean and amplitude)


Liu et al (2010) 
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Liu et al (2010) -- summary 

•  The simplest advection-condensation model (dehydration at 
100% relative humidity, immediate and complete sedimentation of 
condensates) is dry biased - Good news, since in better 
agreement with what we might expect for such a model. Previous 
results showing moist bias less easy to understand. 

•  After considering errors incurred in applying the model (errors in 
reanalysis temperature and transport), we estimate that a 
Lagrangian Dry Point temperature correction of ~3K is sufficient 
to bring results into agreement with observations. 

•  How to explain the dry bias in the A-C model? Quantify roles of 
microphysics/mixing/convective penetration. 



2017 Noble Lectures (3) 

log (χ) 	

instantaneous condensation  to local 
saturation mixing ratio  

160% supersaturation followed by 
instantaneous condensation  to local 
saturation mixing ratio  

Supersaturation? 
log (χ) 	

time  time  

log (φ) 	

χ = water vapour concentration 
φ = saturation mixing ratio 
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supersaturation α > 1 

temperature correction ΔT ~  T2 log α / 6300K ~ (6K) log α 

given supersaturation is equivalent to given temperature 
correction 
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Fueglistaler et al (2013) 

Update on LDP analysis of annual cycle 
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Fueglistaler et al 2013 

Comparison of LDP predictions with observations 
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LDP predictions of interannual variability 

Fueglistaler et al 2013 
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Recent interannual variability 

Randel and Jensen (2013) post-2011 drop 
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Role of localised cold events in large-scale dehydration?  

Takashima et al (2010)  	
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83hPa weighted 
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(Sue Liu, personal communication) 
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Role of overshooting convection? 

Liu and Zipser (2005) 
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Schiller et al (2009) 

Moistening effect of convection 
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Numerical simulations of “Hector” system 

Dauhut et al (2015) Observations -- Corti et al (2008) 
[1.3 x 109 grid points on 16000 processors]  
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Dauhut et al (2015) 
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Dauhut et al (2015) 
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T 

t 

LDP 

Implication of convective injection?  
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~0.5-1K/100yrs 

~0.5-1ppmv/100yrs 

CCMVal model predicted trends  

 Gettelman et al (2010) 
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Summary 

•  Tropical TST is 3-dimensional process and Lagrangian approach is a 
useful way to explore and quantify.  

•  Annual mean and annual cycle can be captured with constant temperature 
correction – what physical effects is this capturing? 

•  Time variation (less than one month) of temperature field is very important.  
•  Large part of interannual variability in stratospheric water vapour is 

captured by Lagrangian Dry Point calculation – the temperature constraint 
is strong on interannual time scales. 

•  There is observational evidence for convective moistening but none for 
convective drying. Extrapolation from localised observations/modelling of 
convective moistening to the large scale is difficult.  

•  Models predict increasing stratospheric water vapour. 
•  Is this simply a temperature effect? (Longitudinal structure important – 

Garfinkel et al 2013) 
•  Are other changes important on longer time scales (e.g. aerosol?, gravity 

waves – Kim and Alexander 2015? ‘ice lofting’ – Dessler et al 2016)   


