Processes in the Upper Troposphere/Lower Stratosphere (UT/LS) Observed by SHADOZ

Anne Thompson, Penn State Univ. amt16@psu.edu

NOAA

PIMENT OF

With: Sonya Miller, A L Allen, A A Jensen (PSU) J Witte (SSAI), S J Oltmans (NOAA), F Schmidlin (NASA)

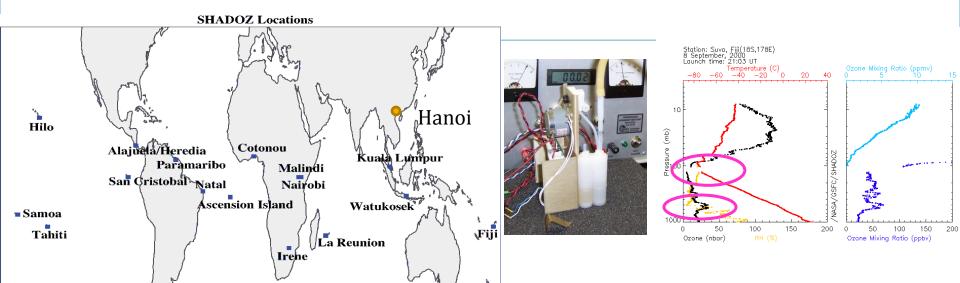
Introduction to Three Related Talks

SHADOZ & UT/LS Processes <u>Tuesday</u>

- Importance of Tropical UT/LS (TTL)
- Regional differences in convection, extra-tropical influence, pollution (biomass burning, urban)
- Climatological approach, Laminae (LID), SOMs
- Tropical Atmospheric Chemistry (I) <u>Wednesday</u>
 - Interannual variability (QBO, ENSO), trends (LS -yes, UT ?)
 - Remote sensing SHADOZ motivation, progress, challenges
- Tropical Atmospheric Chemistry (II) <u>Thursday</u>
 - SHADOZ & related data collection quantity <u>and</u> quality
 - African Fulbright research "science & service"
 - Mega-city Johannesburg, So Africa, trends or no?

Road Map – SHADOZ & UT/LS

- SHADOZ: What/when/where/how
- Importance of Tropical UT/LS (TTL)
- UT/LS Processes
 - Convective, pollution, large-scale transport signatures in troposphere & TTL ozone
 - Climatological approach: seasonality, profiles classified in distinct regions
 - Laminar Identification (LID) of Gravity Waves. Use Index to quantify convection
 - SOMs (self-organizing maps) for classifying pollution, stratospheric, convective impacts

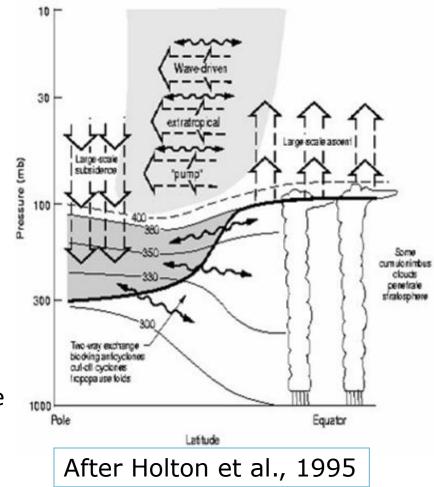

What-Where-When-How SHADOZ?

(So. Hemisphere Additional Ozonesondes)

Strategic Design Addresses Questions – 1998->

- 1> Satellite/model validation & optimization
- 2> Nature of zonal wave-one
- 3> Ozone variability on multiple time, space scales
 - Resolution in *stratosphere, troposphere* requires soundings
 - Full zonal coverage 9 sites in 1998, now 13; weekly soundings
 - Complements campaigns & archives data (SAFARI-2000, TC4)
 - 2011 > 5000 profiles at <u>http://croc.gsfc.nasa.gov/shadoz</u>

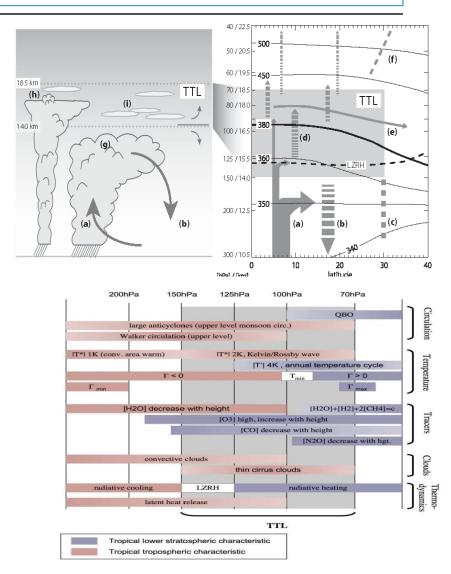
4> Keys to success: Leverage resources to sustain sites. Open access. Additional distribution through WOUDC (woudc.org).



Tropical UT/LS (TTL) Issues

- "Tropical Pipe" entry of tropospheric constituents into stratosphere
- O TTL is where ozone depletion & Delta-temperature intersect → impact on circulation? Feedbacks?
- Investigate with:
 - Models (GCM, coupled chemistryclimate, with-w/o assimilation)
 - Theory
 - Data temperature, water vapor, ozone
 & other constituents. In-situ, satellite

Free Troposphere-TTL-Lower Stratospheric

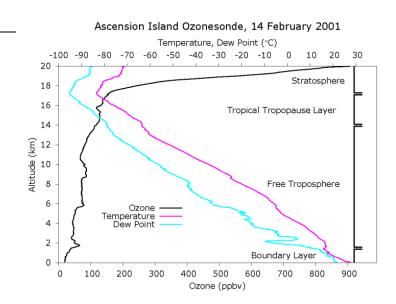

Processes (Fueglistaler et al, *Rev Geophys*, 2009)

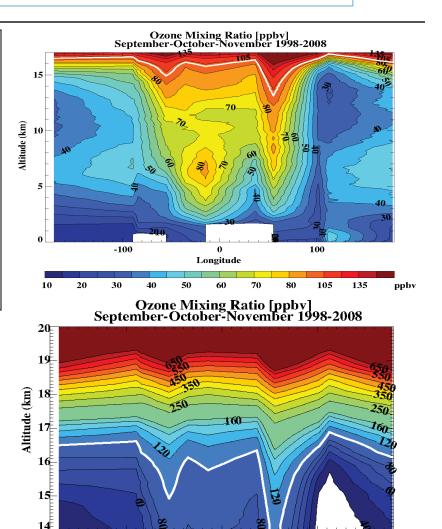
TTL defined as:

- 14-18.5 km or 150-70 hPa
- 140-185K absolute
- 355-400K potential temp

• Processes:

- Convection, dehydration, subsidence (left & right =a).
 Cirrus formation
- Zonal mean circulation (right)
- TTL properties w/ strat <u>and</u> trop character. Values and/or gradients (lower)




Scope of Recent FT (Free Trop) & TTL Ozone Studies

"Wave-one" feature indicates <u>3 processes</u>:

- Convection, low-BL ozone introduced into UT, TTL => S-shape
- UT ozone enriched by subsidence, extra-tropical air, "more stratospheric"
- High FT O₃ layers => pollution typically biomass burning, some lightning

0

Longitude

250

350

100

550

650

ppby

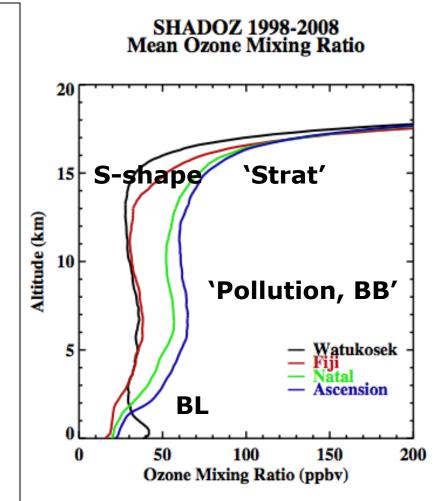
450

-100

120

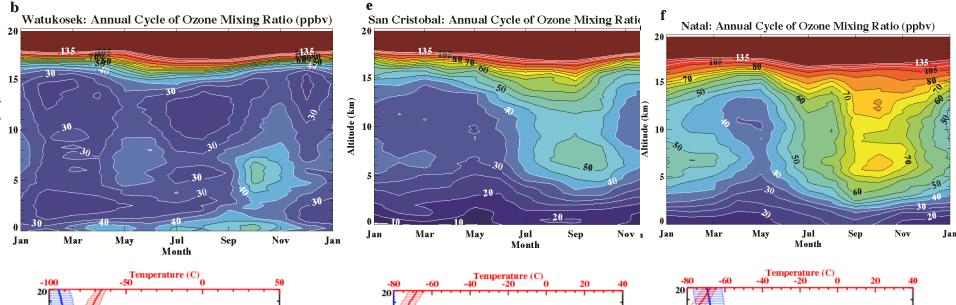
160

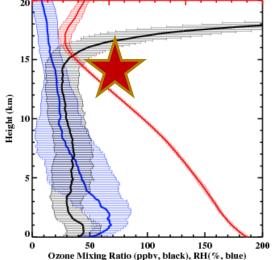
80

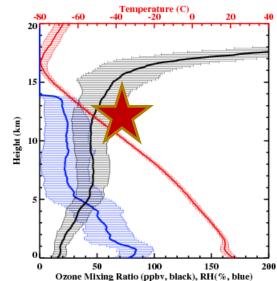

40

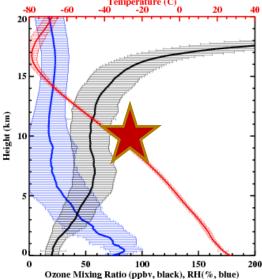
60

Methods Used in Recent FT & TTL Ozone Climatological Studies

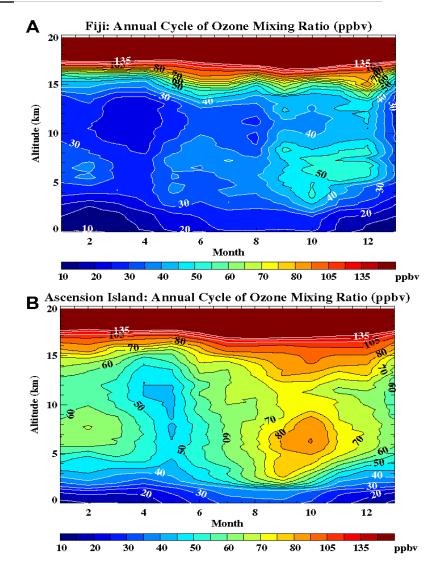



- <u>Climatology</u> Regional differences based on mean profiles & seasonal cycles. T'pause height, "S-shape" [Thompson et al., 2011a] →
- 2. TTL closeup Convective comparisons inferred from gravity wave activity using Laminar Identification (LID) [*Thompson et al.*, 2011b]
- FT-UT closeup Pollution, convection influences classified by Self-Organizing Maps (SOMs) [A Jensen MS Thesis, 2011]




Three Distinct Regions: W Pacific, 'Equatorial Americas,' Atlantic-Africa

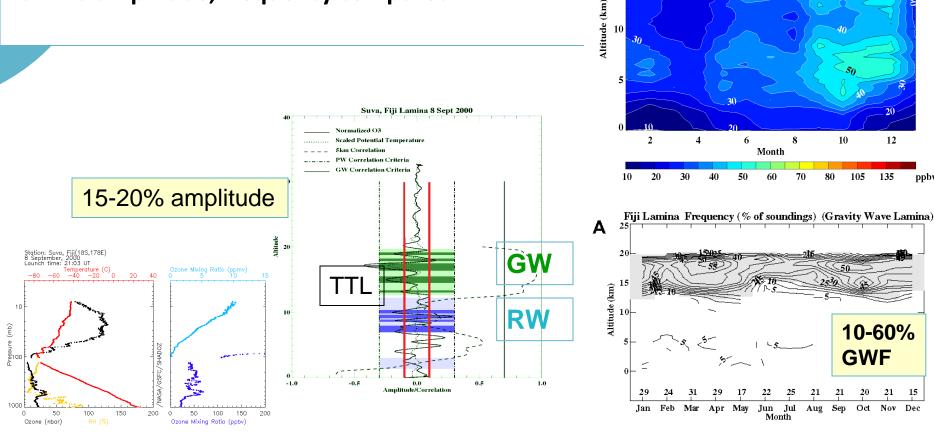
Ozone from Sondes in TTL & Tropospheric Convection, Pollution Signals


Questions relating to TTL transport of constituents

Ques 1: Does convective seasonality match period of most active KW/GW?

→ Examine <u>all</u> SHADOZ profiles w/ laminar formalism (*Teitelbaum et al*, 1994; *Pierce & Grant*, 1998)

Ques 2: Does wave activity, detected by LID, link to active convection in individual profiles?


 \rightarrow Examine TC4 soundings

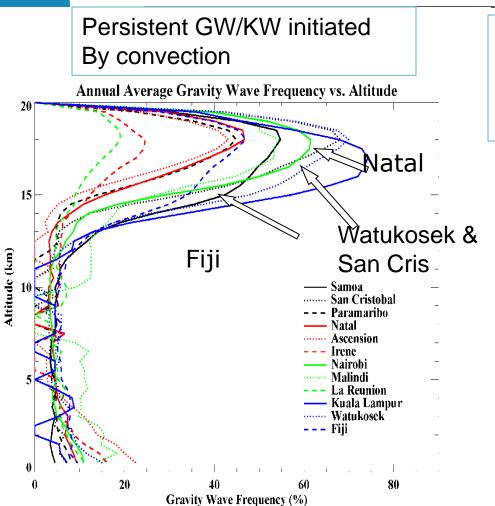
Scientific Rationale: "Laminae" normalized to running mean ozone, PT used to detect presence of "waves"

Advective (horizontal) motions, "Rossby Waves" Convective (vertical) motions, "Gravity Waves" Lamina amplitude, frequency computed

Apply Laminar Identification (LID) to Every SHADOZ Sonde – Goal is Vertical, Seasonal Wave Climatology. Method of Thompson et al. (2007b; 2010; 2011b)

ppby

Dec


Fiji: Annual Cycle of Ozone Mixing Ratio (ppbv)

20

15

Annually-averaged GW Frequency (Left) West (W Pac) to East (Atl-Africa) Regions Classify by Declining Convection, Increasing Pollution (Right)

Summary statistics point to lower t'pause, increasing FT (5-15 km) pollution, decreasing convection [GWI] west-to-east

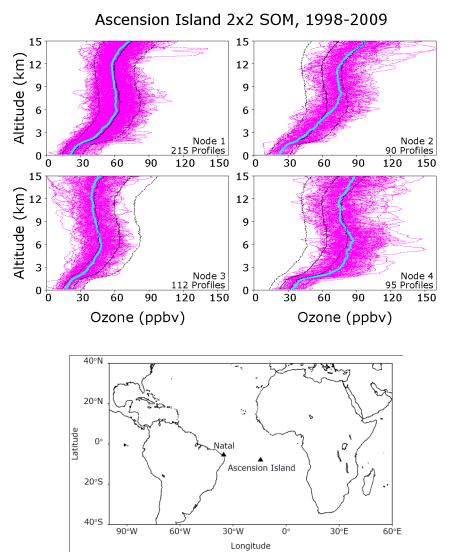
0

WePac Eq Am Atl

Property	Watuk.	San Cris.	Natal
T'pause Alt (km)	16.6	16.6	16.0
Mean Mix Rat	33 ppbv	46 ppbv	58 ppbv
(5-15 km)			
GW Index,	18.5	12.6	10.9
Mean (arb unit)			

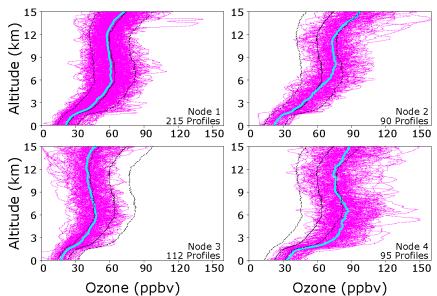
Thompson et al., JGR, 2011b

Statistical Classification by SOMs (Self-Organizing Maps)

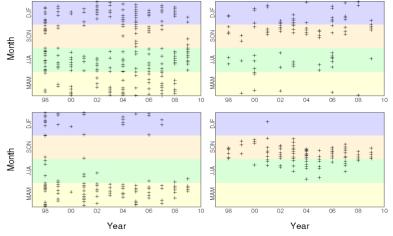


- Statistical classification methods were applied to ozone profiles by Diab et al. (2003, 2004) & Phahlane (MS, 2006) who used SOMs on Irene data. Groupings separated by meteorological conditions over southern Africa
- SOMs were applied to Ascension (SN= 512) and Natal (SN=425) by Jensen* to determine:
 - Whether SOM-classified categories cluster 'best match' profiles (SOMs, Kohonen, 1995) that are associated with seasons, sources, meteorological conditions
 - Optimal classification schemes for each dataset, ie desirable for satellite algorithms, model initialization, etc
 - Whether Natal and Ascension, that are generally similar (2300 km apart) in 'mean profile,' can be distinguished in convective biomass burning influences, interaction with Walker circulation
 - * A A Jensen, MS Thesis, April 2011; Paper in preparation

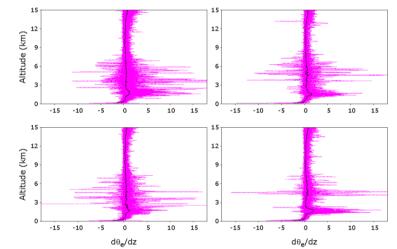
Ascension 2x2 Ozone Profile SOMs


- How to interpret?
- Node 1: most profiles resembles the mean in black. Is mode, "typical," and possibly median
- Node 3: One Std dev < mean –
 S shape, convective-influence?
- Node 4: One Std dev > mean, esp below 9 km. Biomass burning pollution?

Ascension SOMs Link to Biomass Burning w/ High Stability at 2.5 km(SON); Convection (MAM)



Ascension Island 2x2 SOM, 1998-2009



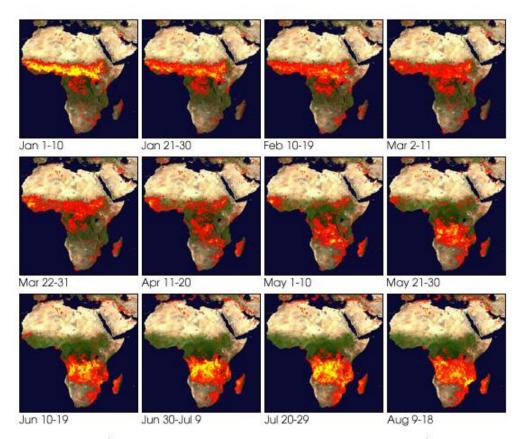
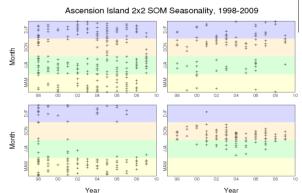
- Node 1- mode/median
- Node 3 Convective
- Node 4 Biomass burning

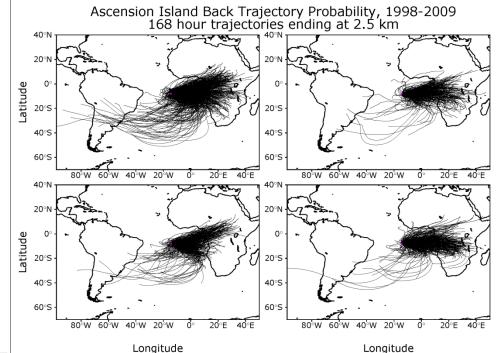
Ascension Island 2x2 SOM Seasonality, 1998-2009

Ascension Island 2x2 SOM Stability, 1998-2009

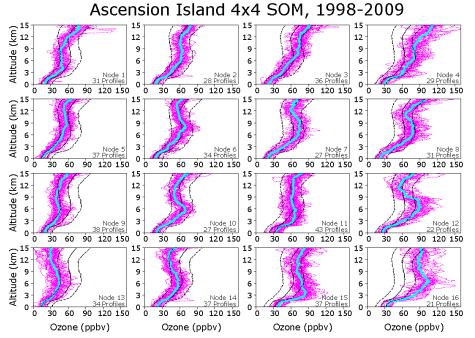
Fire Seasonality from MODIS/NASA Website

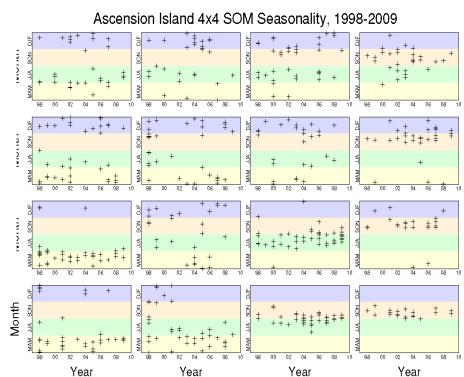
5


Figure 1.3: 2005 African fires detected by MODIS. Image courtesy the National Aeronautics and Space Administration (NASA).

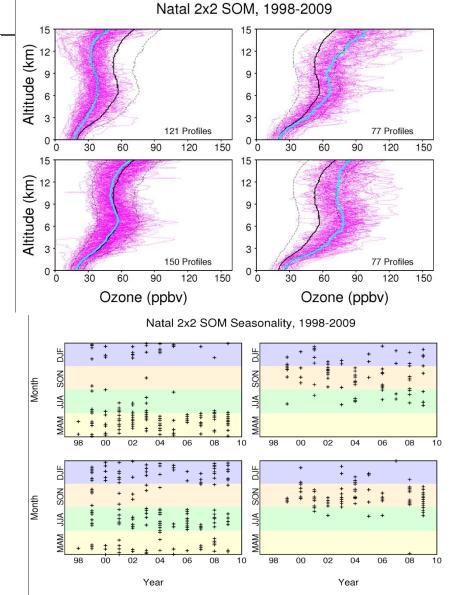
Biomass Burning – Trajectory LInks


- SON burning maximum, 0-20S
- MAM convective maximum. Trajectory origins over nonburning region



Ascension 4x4 Ozone Profile SOMs

- Separates out high 2.5 km ozone from higher altitude. Temporal progression?
- Trajectories (not shown) indicate shorter time to fires => most polluted.



Natal 2x2 Ozone Profile SOMs

Similar sort to Ascension but:

- No one mode dominates
- 'Topology' is different. Node 1 is convectively influenced 'background'
- OLR (proxy for convective clouds, not shown) consistent with low-ozone
- MAM seasonality for convective influence is not exclusive

Summary – SHADOZ & UT/LS

○ UT/LS Processes **√** Today

- Convective, pollution, large-scale transport signatures in troposphere & TTL ozone examined seasonally, regionally
- Laminar Identification (LID) of Gravity Waves. Index for quantifying convection & classifying regions
- SOMs (self-organizing maps) for robust statistics of pollution, stratospheric, convective impacts
- Interannual Variability (Trends?). Remote Sensing. Tomorrow
 - Ten years of FT, TTL ozone variability (QBO, ENSO)
 - Evidence for trends Fujiwara/Morioka (2011), Randel/Thompson (2011)
 - Sondes & UT/LS ozone remote sensing

Acknowledgments, References

Thank You for Attention!

- Aura Validation & SHADOZ (M. J. Kurylo, NASA); NOAA GMD (S. Oltmans) GRUAN (H Voemel); WMO (M. Proffit, L. Barrie, G. Braathen)
- SHADOZ CD Data through 2009!

<u>References</u>

Ο

SHADOZ

NOAP

DEPARTMENT OF CO

PENNSTATE

- S Fueglistaler, A E Dessler, T J Dunkerton, I Folkins, Q Fu, P W Mote, The tropical tropopause layer, Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267, 2009.
- A Jensen, Ozonesonde classification using Self-organizing Maps at Ascension Island and Natal, MS Thesis, Penn State Univ., 2011.
- A L Loucks, Evaluation of dynamical sources of ozone laminae in the tropical troposphere and tropical tropopause layer, MS Thesis, Penn State Univ., 2007.
- R B Pierce & W B Grant, *GRL*, 25, 1859-1862, 1998.
- A M Thompson, et al., Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2000 tropical ozone climatology. 2. Tropospheric ozone variability and the zonal wave-one, *J. Geophys. Res.*, 108, D2, 8241, doi: 10.129/2002JD002241, 2003.
- A M Thompson, J C Witte, H G J Smit, S J Oltmans, B J Johnson, V W J H Kirchhoff, F J Schmidlin, Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2004 tropical ozone climatology. 3. Instrumentation, station variability, evaluation with simulated flight profiles, *J. Geophys. Res.*, 112, D03304, doi: 10.1029/2005JD007042, 2007.
- A M Thompson et al., Convective and wave signatures in ozone profiles over the equatorial Americas: Views from TC4 (2007) and SHADOZ, J. Geophys. Res., 115, D00J23, doi: 10.1029/2009JD012909, 2010.
- A M Thompson et al., Strategic ozone sounding networks: Review of design and accomplishments, *Atmos. Environ.*, 45, 2145-2163, 2011a.
- A M Thompson et al., Gravity and Rossby wave influences in the tropical troposphere and lower stratosphere based on SHADOZ (Southern Hemisphere Additional Ozonesondes) soundings, 1998-2007, J. Geophys. Res., 116, D05302, doi: 10.1029/2009JD0134292011b.