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Motivation

I Holography a profound insight into quantum physics

I Can we understand highly-quantum aspects of holography?

I Sometimes, yes: ∆ of Konishi operator Tr(φ̄φ)
to silly loop order in planar N = 4 with integrability!

I Integrability works in examples of AdS3/CFT2



Why AdS3/CFT2

Half the susy of N = 4 SYM: much richer dynamics

In UV max susy 2d QCD, with flow to CFT in IR

D1-D5 and black-hole entropy in string theory [Strominger Vafa]

D1-D5, 4d instanton moduli space, ADHM and small instantons

Large moduli space including WZW point [Ooguri Maldacena]

Challenge: Matching to CFT for non-protected quantities
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Introduction to AdS3/CFT2



AdS3 × S3 × T4

D1- and D5-branes in string theory

0 1 2 3 4 5 6 7 8 9

Nc × D1 • •
Nf × D5 • • • • • •

Gravity:

Near-horizon limit: AdS3 × S3 × T4 + R-R 3-form charge

Other brane configs give same geometry but different charges

Gauge Theory:

Open string gauge theory not conformal - flows to CFT in IR
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UV gauge theory

D1/D5 is 2d SYM theory with dimensionful coupling constant gYM

I D1-D1 strings ←→ N = (8, 8) U(Nc) vector-multiplet:

N = (4, 4) vector: Φαα̇, Ψα̇ȧ
L , Ψαȧ

R , Aµ, D
ȧḃ

N = (4, 4) hyper: T aȧ, χαaL , χα̇aR

I D1-D5 strings ←→ N = (4, 4) U(Nc)× U(Nf )
hyper-multiplets:

N = (4, 4) hyper: H ȧ, λαL , λ
α̇
R

I D5-D5 strings: decoupled.
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I D1-D5 strings ←→ N = (4, 4) U(Nc)× U(Nf )
hyper-multiplets:

N = (4, 4) hyper: H ȧ, λαL , λ
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IR CFT

UV gauge theory has two branches of vacua:

I Coulomb branch: D1 separated from D5 U(Nc)→ U(1)Nc ;

I Higgs branch: D1 on top of D5 −→ AdS3/CFT2. [Maldacena ’97]

Because of susy, IR quite similar: [Witten ’95]

CFT = CFTH ⊕ CFTC

CFTH is a σ-model with target space given by moduli space of Nc

instantons in U(Nf ) theory. Encodes ADHM

Expect: σ-model is (deformation of) SymNcNf (T4) orbifold.

Protected quantities matched between SymNcNf (T4) and sugra
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AdS3 × S3 × T4 Moduli

IIB string theory on T4 has 25 moduli:

gab , Bab , C
(2)
ab , C (0), C

(4)
abcd , φ

In near-horizon limit 5 become massive. Which 5?

For D1/D5 background massive fields are

gaa, B−ab, C (0) − C
(4)
abcd

We are left with a 20-dimensional moduli space.

Four moduli are important. In D1/D5: φ and B+
ab

In UV gauge theory they are θ-angle and three FI parameters.
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Green-Schwarz strings



Green-Schwarz action in general background

Spacetime supersymmetric GS worldsheet Lagrangian known
[Cvetic, Lü, Pope, Stelle ’99, Wulff ’14]

L = Lbos + Lkin + LWZ

where, for example

Lkin = −i
√
hhαβ θ̄

I /Eα

(
δIJDβ +

σIJ3
24

/F /Eβ

)
θJ + . . .



Gauge-fixing GS action

To find spectrum gauge-fix and find worldsheet S matrix

Gauge fixing: kappa-symmetry and diffeomorphisms

Technically tough: action not of Metsaev-Tseytlin coset form

Good gauge (and field redefinitions) makes integrability manifest

Worldsheet theory has four b+f of m2 = 1 and four b+f of m2 = 0

One finds a residual susy algebra A that commutes with
gauge-fixed Hamiltonian. Fermions transform linearly under it
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The algebra A
The algebra of charges that commutes with H takes the form

{Q ȧ
L ,QLḃ} =

1

2
δȧ

ḃ
(H + M), {Q ȧ

L ,QRḃ} = 0

{QRȧ,Q
ḃ

R } =
1

2
δ ḃ
ȧ (H−M), {QLȧ,Q

ḃ
R } = 0

Commutators hold for physical level-matched states.

Constituent magnons do not satify level-matching and A is

{Q ȧ
L ,QLḃ} =

1

2
δȧ

ḃ
(H + M), {Q ȧ

L ,QRḃ} = δȧ
ḃ
C,

{QRȧ,Q
ḃ

R } =
1

2
δ ḃ
ȧ (H−M), {QLȧ,Q

ḃ
R } = δ ḃ

ȧ C,

Central extensions related to worldsheet momentum P

C = +i
h

2
(e+iP − 1), C = −i h

2
(e−iP − 1),

h ∼ R2/α′ + · · · ∼ λ with λ like the ’t Hooft coupling cst
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ḃ
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1

2
δȧ
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ḃ

R } =
1

2
δ ḃ
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Fundamental worldsheet excitations

Worldsheet excitations (magnons) sit in short representations of A

Their dispersion relation is (m2 = 0 , 1)

E (p) =

√
m2 + 4h2 sin

(p
2

)2
.

Non-relativistic dispersion relation: Massless particles can scatter.



Fundamental worldsheet excitations

Worldsheet excitations (magnons) sit in short representations of A

Their dispersion relation is (m2 = 0 , 1)

E (p) =

√
m2 + 4h2 sin

(p
2

)2
.

Non-relativistic dispersion relation: Massless particles can scatter.



Fundamental worldsheet excitations

Worldsheet excitations (magnons) sit in short representations of A

Their dispersion relation is (m2 = 0 , 1)

E (p) =

√
m2 + 4h2 sin

(p
2

)2
.

Non-relativistic dispersion relation: Massless particles can scatter.



Determining the S matrix from A
2-body S matrix fixed by A up to scalar dressing factor

S(12)(p, q)Q(12)(p, q) = Q(12)(q, p)S(12)(p, q) .

S satisfies Yang-Baxter equation: worldsheet theory integrable

S most easily written in terms of Zhukovski variables x±

x+
p +

1

x+
p
− x−p −

1

x−p
=

2i |m|
h

,
x+
p

x−p
= e ip.

For example,

S(12)(p, q) : |φLp , ψL
q〉 −→

x+
p − x+

q

x−p − x+
q
|ψL

q , φ
L
p〉
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All-loop Bethe equations for closed string spectrum

The massive momentum-carrying roots satisfy the equations

(
x+
k

x−k

)L

=

N2∏
j=1
j 6=k

x+
k − x−j

x−k − x+
j

1− 1
x+
k x−j

1− 1
x−k x+

j

(σ••kj )2

×
N1∏
j=1

x−k − y1,j

x+
k − y1,j

N3∏
j=1

x−k − y3,j

x+
k − y3,j

×
N2̄∏
j=1

1− 1
x+
k x̄+

j

1− 1
x−k x̄−j

1− 1
x+
k x̄−j

1− 1
x−k x̄+

j

(σ̃••kj )2

×
N0∏
j=1

x+
k − z−j

x−k − z+
j

1− 1
x−k z−j

1− 1
x+
k z+

j


1
2
1− 1

x+
k z−j

1− 1
x−k z+

j


1
2

(σ•◦kj )2,
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Groundstates of the all-loop Bethe equations

The energy of a state is given by

E = N2+N2̄+ih

N2∑
k=1

( 1

x+
k

− 1

x−k

)
+ih
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( 1
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k

− 1

x̄−k

)
+ih

N0∑
k=1

( 1

z+
k

− 1

z−k

)
.

Protected states have no h-corrections so x+
k = x−k i.e. pk = 0

Recall the dispersion relation

E (pk) =

√
m2 + 4h2 sin

(
pk/2)

)2
.

A massless zero-momentum magnon has E = 0.

Conclusion:
Protected states are massless zero-momentum magnons.
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Protected states of AdS3/CFT2 from integrability.

We have conventional BMN groundstate

|(φ++)L〉

Adding massless roots with zero momentum get two states

|(φ++)L−1χ+±
R 〉+ symmetric permutations,

Similarly, for χ+±
L . Easy check BEs satisfied for z± = 1.

Next consider state with two right-moving massless fermions,

|(φ++)L−2χ++
R χ+−

R 〉+ symmetric permutations,

the roots sit at z± = +1 or z± = −1. BEs satisfied.
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Protected states of AdS3/CFT2 from integrability.

Continuing in this way we find

State N0 N1 N3 JL JR J◦
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L
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L
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R
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L
2
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(φ++)L−1χ+±
R

χ+±
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2 1 1 L
2

L
2

±1

(φ++)L−1χ+±
R

χ+∓
L

2 1 1 L
2

L
2

0

(φ++)L χ++
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χ+−
L

2 1 1 L+2
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L
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(φ++)L−2χ++
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χ+±
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3 1 1 L−1
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L
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χ++
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χ+−
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3 1 1 L+1
2

L
2
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4 2 2 L
2

L
2

0

This matches sugra and SymN 1
2 -BPS states.
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Moduli and Integrability



Turning on moduli in AdS3 × S3 × T4

Integrability works for backgrounds with:
RR charges (n.h. D1/D5) [Borsato+Ohlsson Sax+Sfondrini+BS+Torrielli]

NSNS+RR charges (n.h. D1+F1/D5+NS5)
[Hoare+Tseytlin, Lloyd+Ohlsson Sax+Sfondrini+BS]

We expect it will also work with more general charges

Integrability ”works” means:
Wsheet S matrix known exactly in α′ or RAdS, satisfies YBE
S matrix fixed with central extension
Bethe Equations, protected spectrum, wrapping...

Integrable results found when moduli zero

What happens away from the origin of moduli space?
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Turning on moduli in AdS3 × S3 × T4

For each set of background charges 16 moduli inconsequential

E.g. Pure RR charge bkd:
9 geometric moduli gab of T4

6 moduli Cab

1 modulus C0

do not enter GS action or periodicity conditions.

Each set of background charges has 1+3 consequential moduli

E.g. Pure NSNS charge bkd has C0 and C+
2 .
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Turning on C0 in NSNS AdS3 × S3 × T4

Set C0 to a non-zero constant.

Attractor mechanism: C4 = −C0 vol(T4)

Gauge-invariant RR field-strength:

F3 = dC2 − C0H = −C0 k vol(S3) 6= 0

Eoms remain valid

Background charges remain unchanged. E.g.

QD5 =

∫
F3 + C0 H =

∫
−C0 H + C0 H = 0

Since H 6= 0 , F3 6= 0, and all other F = 0

GS action same as mixed-charge background!
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Integrability of NSNS AdS3 × S3 × T4 with C0 6= 0

GS action same as mixed-charge background.

So exact S matrix is already known, just need to relate parameters

For example, the magnon dispersion relation is

E (p) =

√
(m + kp)2 + 4h2 sin2(p/2) , h = −C0kgs

2π

We see a new ’t Hooft-like parameter appearing

λ ∼ C0 kgs

NSNS string theory integrable for C0 6= 0 [Ohlsson Sax, BS] point
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Integrability of NSNS AdS3 × S3 × T4 with C0 = 0

At the C0 = 0 WZW point:

S matrix remains finite and non-diagonal

Central extensions zero - is derivation of S matrix valid?

Pert. long strings appear - new sector in Hilbert space.
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Conclusions

AdS3 × S3 × T4 spectrum with pT4 = wT4 = 0 integrable for any
background charges across whole moduli space*

*Applies to NSNS theory away from ”origin” of moduli space

At origin, NSNS S matrix finite and non-diagonal. Need to
understand long string sector.

Match short strings to Maldacena Ooguri spectrum?
Relation to low k results ?

[Giribet+Hull+Kleban+Porrati+Rabinovici,Gaberdiel+Gopakumar]
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Outlook

Investigate WZW point using integrability. Long strings.

Can we match non-protected states with CFT2 and find exact
relation to SymN orbifold?

What does this teach us about ADHM σ-model and the small
instanton singularity?

Understand relation to relativistic massless integrability.

Find CFT2 dual of AdS3 × S3 × S3 × S1.
[Gukov et al. ’05] , [Tong ’14], [Eberhardt, Gaberdiel, Li ’17]
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