$\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ and integrability

Bogdan Stefański
Perimeter Institute and

City, University of London

Based on work with
A. Babichenko, M. Baggio, D. Bombardelli, R. Borsato, T. Lloyd O. Ohlsson Sax, A. Sfondrini, A. Torrielli, K. Zarembo

Today:
1807.07775 [hep-th], 1804.02023 [hep-th], 1701.03501 [hep-th], 1403.4543 [hep-th].

November 2018

Motivation

- Holography a profound insight into quantum physics
- Can we understand highly-quantum aspects of holography?
- Sometimes, yes: Δ of Konishi operator $\operatorname{Tr}(\bar{\phi} \phi)$ to silly loop order in planar $\mathcal{N}=4$ with integrability!
- Integrability works in examples of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Why $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

- Half the susy of $\mathcal{N}=4 \mathrm{SYM}$: much richer dynamics

Why $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

- Half the susy of $\mathcal{N}=4 \mathrm{SYM}$: much richer dynamics
- In UV max susy 2d QCD, with flow to CFT in IR

Why $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

- Half the susy of $\mathcal{N}=4 \mathrm{SYM}$: much richer dynamics
- In UV max susy 2d QCD, with flow to CFT in IR
- D1-D5 and black-hole entropy in string theory

Why $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

- Half the susy of $\mathcal{N}=4 \mathrm{SYM}$: much richer dynamics
- In UV max susy 2d QCD, with flow to CFT in IR
- D1-D5 and black-hole entropy in string theory
- D1-D5, 4d instanton moduli space, ADHM and small instantons

Why $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

- Half the susy of $\mathcal{N}=4 \mathrm{SYM}$: much richer dynamics
- In UV max susy 2d QCD, with flow to CFT in IR
- D1-D5 and black-hole entropy in string theory
- D1-D5, 4d instanton moduli space, ADHM and small instantons
- Large moduli space including WZW point

Why $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

- Half the susy of $\mathcal{N}=4 \mathrm{SYM}$: much richer dynamics
- In UV max susy 2d QCD, with flow to CFT in IR
- D1-D5 and black-hole entropy in string theory
- D1-D5, 4d instanton moduli space, ADHM and small instantons
- Large moduli space including WZW point
- Challenge: Matching to CFT for non-protected quantities

1. Introduction to $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$
2. Exact worldsheet \mathbf{S} matrix for Green-Schwarz strings
3. Protected closed string spectrum
4. Moduli, integrability and the WZW theory
5. Outlook

Introduction to $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

$\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

D1- and D5-branes in string theory

$\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

D1- and D5-branes in string theory

$$
\begin{array}{l|llllllllll}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline N_{c} \times \mathrm{D} 1 & \bullet & \bullet & & & & & & & & \\
N_{f} \times \mathrm{D} 5 & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet & & & &
\end{array}
$$

Gravity:

Near-horizon limit: $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}+\mathrm{R}-\mathrm{R} 3$-form charge

$\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

D1- and D5-branes in string theory

$$
\begin{array}{l|llllllllll}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline N_{c} \times \mathrm{D} 1 & \bullet & \bullet & & & & & & & & \\
N_{f} \times \mathrm{D} 5 & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet & & & &
\end{array}
$$

Gravity:

Near-horizon limit: $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}+\mathrm{R}-\mathrm{R} 3$-form charge
Other brane configs give same geometry but different charges

$\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

D1- and D5-branes in string theory

	0	1	2	3	4	5	6	7	8	9
$N_{c} \times \mathrm{D} 1$	\bullet	\bullet								
$N_{f} \times \mathrm{D} 5$	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet				

Gravity:

Near-horizon limit: $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}+\mathrm{R}-\mathrm{R} 3$-form charge
Other brane configs give same geometry but different charges

Gauge Theory:

Open string gauge theory not conformal - flows to CFT in IR

UV gauge theory

D1/D5 is 2d SYM theory with dimensionful coupling constant $g_{Y M}$

UV gauge theory

D1/D5 is 2d SYM theory with dimensionful coupling constant $g_{Y M}$

- D1-D1 strings $\longleftrightarrow \mathcal{N}=(8,8) U\left(N_{c}\right)$ vector-multiplet:

$$
\begin{aligned}
& \mathcal{N}=(4,4) \text { vector: } \Phi^{\alpha \dot{\alpha}}, \Psi_{\mathrm{L}}^{\dot{\alpha} \dot{a}}, \Psi_{\mathrm{R}}^{\alpha \dot{a}}, A_{\mu}, D^{\dot{a} \dot{b}} \\
& \mathcal{N}=(4,4) \text { hyper: } T^{a \dot{a}}, \chi_{\mathrm{L}}^{\alpha a}, \chi_{\mathrm{R}}^{\dot{\alpha} a}
\end{aligned}
$$

UV gauge theory

D1/D5 is 2d SYM theory with dimensionful coupling constant $g_{Y M}$

- D1-D1 strings $\longleftrightarrow \mathcal{N}=(8,8) U\left(N_{c}\right)$ vector-multiplet:

$$
\begin{aligned}
& \mathcal{N}=(4,4) \text { vector: } \Phi^{\alpha \dot{\alpha}}, \Psi_{\mathrm{L}}^{\dot{\alpha} \dot{a}}, \Psi_{\mathrm{R}}^{\alpha \dot{a}}, A_{\mu}, D^{\dot{a} \dot{b}} \\
& \mathcal{N}=(4,4) \text { hyper: } T^{a \dot{a}}, \chi_{\mathrm{L}}^{\alpha a}, \chi_{\mathrm{R}}^{\dot{\alpha} a}
\end{aligned}
$$

- D1-D5 strings $\longleftrightarrow \mathcal{N}=(4,4) U\left(N_{c}\right) \times U\left(N_{f}\right)$ hyper-multiplets:

$$
\mathcal{N}=(4,4) \text { hyper: } H^{\dot{a}}, \lambda_{\mathrm{L}}^{\alpha}, \lambda_{\mathrm{R}}^{\dot{\alpha}}
$$

UV gauge theory

D1/D5 is 2d SYM theory with dimensionful coupling constant $g_{Y M}$

- D1-D1 strings $\longleftrightarrow \mathcal{N}=(8,8) U\left(N_{c}\right)$ vector-multiplet:

$$
\begin{aligned}
& \mathcal{N}=(4,4) \text { vector: } \Phi^{\alpha \dot{\alpha}}, \Psi_{\mathrm{L}}^{\dot{\alpha} \dot{a}}, \Psi_{\mathrm{R}}^{\alpha \dot{a}}, A_{\mu}, D^{\dot{a} \dot{b}} \\
& \mathcal{N}=(4,4) \text { hyper: } T^{a \dot{a}}, \chi_{\mathrm{L}}^{\alpha a}, \chi_{\mathrm{R}}^{\dot{\alpha} a}
\end{aligned}
$$

- D1-D5 strings $\longleftrightarrow \mathcal{N}=(4,4) U\left(N_{c}\right) \times U\left(N_{f}\right)$ hyper-multiplets:

$$
\mathcal{N}=(4,4) \text { hyper: } H^{\dot{a}}, \lambda_{\mathrm{L}}^{\alpha}, \lambda_{\mathrm{R}}^{\dot{\alpha}}
$$

- D5-D5 strings: decoupled.

IR CFT

UV gauge theory has two branches of vacua:

- Coulomb branch: D1 separated from D5 $U\left(N_{c}\right) \rightarrow U(1)^{N_{c}}$;
- Higgs branch: D1 on top of D5 $\longrightarrow \mathrm{AdS}_{3} / \mathrm{CFT}_{2}$. [Maldacena '97]

IR CFT

UV gauge theory has two branches of vacua:

- Coulomb branch: D1 separated from D5 $U\left(N_{c}\right) \rightarrow U(1)^{N_{c}}$;
- Higgs branch: D1 on top of D5 $\longrightarrow \mathrm{AdS}_{3} / \mathrm{CFT}_{2}$. [Maldacena '97]

Because of susy, IR quite similar:
[Witten '95]

$$
\mathrm{CFT}=\mathrm{CFT}_{H} \oplus \mathrm{CFT}_{C}
$$

IR CFT

UV gauge theory has two branches of vacua:

- Coulomb branch: D1 separated from D5 $U\left(N_{c}\right) \rightarrow U(1)^{N_{c}}$;
- Higgs branch: D1 on top of D5 $\longrightarrow \mathrm{AdS}_{3} / \mathrm{CFT}_{2}$. [Maldacena '97]

Because of susy, IR quite similar:
[Witten '95]

$$
\mathrm{CFT}=\mathrm{CFT}_{H} \oplus \mathrm{CFT}_{C}
$$

CFT $_{H}$ is a σ-model with target space given by moduli space of N_{c} instantons in $U\left(N_{f}\right)$ theory. Encodes ADHM

IR CFT

UV gauge theory has two branches of vacua:

- Coulomb branch: D1 separated from D5 $U\left(N_{c}\right) \rightarrow U(1)^{N_{c}}$;
- Higgs branch: D1 on top of D5 $\longrightarrow \mathrm{AdS}_{3} / \mathrm{CFT}_{2}$. [Maldacena '97]

Because of susy, IR quite similar:
[Witten '95]

$$
\mathrm{CFT}=\mathrm{CFT}_{H} \oplus \mathrm{CFT}_{C}
$$

CFT $_{H}$ is a σ-model with target space given by moduli space of N_{C} instantons in $U\left(N_{f}\right)$ theory. Encodes ADHM

Expect: σ-model is (deformation of) $\operatorname{Sym}^{N_{c} N_{f}}\left(\mathrm{~T}^{4}\right)$ orbifold.

IR CFT

UV gauge theory has two branches of vacua:

- Coulomb branch: D1 separated from D5 $U\left(N_{c}\right) \rightarrow U(1)^{N_{c}}$;
- Higgs branch: D1 on top of D5 $\longrightarrow \mathrm{AdS}_{3} / \mathrm{CFT}_{2}$. [Maldacena '97]

Because of susy, IR quite similar:
[Witten '95]

$$
\mathrm{CFT}=\mathrm{CFT}_{H} \oplus \mathrm{CFT}_{C}
$$

CFT_{H} is a σ-model with target space given by moduli space of N_{C} instantons in $U\left(N_{f}\right)$ theory. Encodes ADHM

Expect: σ-model is (deformation of) $\operatorname{Sym}^{N_{c} N_{f}}\left(\mathrm{~T}^{4}\right)$ orbifold.
Protected quantities matched between $\operatorname{Sym}^{N_{c} N_{f}}\left(\mathrm{~T}^{4}\right)$ and sugra

$\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ Moduli

IIB string theory on T^{4} has 25 moduli:

$$
g_{a b}, \quad B_{a b}, \quad C_{a b}^{(2)}, \quad C^{(0)}, \quad C_{a b c d}^{(4)}, \quad \phi
$$

$\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ Moduli

IIB string theory on T^{4} has 25 moduli:

$$
g_{a b}, \quad B_{a b}, \quad C_{a b}^{(2)}, \quad C^{(0)}, \quad C_{a b c d}^{(4)}, \quad \phi
$$

In near-horizon limit 5 become massive. Which 5?

$\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ Moduli

IIB string theory on T^{4} has 25 moduli:

$$
g_{a b}, \quad B_{a b}, \quad C_{a b}^{(2)}, \quad C^{(0)}, \quad C_{a b c d}^{(4)}, \quad \phi
$$

In near-horizon limit 5 become massive. Which 5?

For D1/D5 background massive fields are

$$
g_{a a}, \quad B_{a b}^{-}, \quad C^{(0)}-C_{a b c d}^{(4)}
$$

We are left with a 20 -dimensional moduli space.

$\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ Moduli

IIB string theory on T^{4} has 25 moduli:

$$
g_{a b}, \quad B_{a b}, \quad C_{a b}^{(2)}, \quad C^{(0)}, \quad C_{a b c d}^{(4)}, \quad \phi
$$

In near-horizon limit 5 become massive. Which 5?

For D1/D5 background massive fields are

$$
g_{a a}, \quad B_{a b}^{-}, \quad C^{(0)}-C_{a b c d}^{(4)}
$$

We are left with a 20 -dimensional moduli space.

Four moduli are important. In D1/D5: ϕ and $B_{a b}^{+}$

$\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ Moduli

IIB string theory on T^{4} has 25 moduli:

$$
g_{a b}, \quad B_{a b}, \quad C_{a b}^{(2)}, \quad C^{(0)}, \quad C_{a b c d}^{(4)}, \quad \phi
$$

In near-horizon limit 5 become massive. Which 5?

For D1/D5 background massive fields are

$$
g_{a a}, \quad B_{a b}^{-}, \quad C^{(0)}-C_{a b c d}^{(4)}
$$

We are left with a 20 -dimensional moduli space.

Four moduli are important. In D1/D5: ϕ and $B_{a b}^{+}$
In UV gauge theory they are θ-angle and three FI parameters.

Green-Schwarz strings

Green-Schwarz action in general background

Spacetime supersymmetric GS worldsheet Lagrangian known

$$
L=L_{\mathrm{bos}}+L_{\mathrm{kin}}+L_{\mathrm{WZ}}
$$

where, for example

$$
L_{\text {kin }}=-i \sqrt{h} h^{\alpha \beta} \bar{\theta}^{\prime} \mathbb{E}_{\alpha}\left(\delta^{I J} D_{\beta}+\frac{\sigma_{3}^{I J}}{24} \nVdash_{\beta}\right) \theta_{J}+\ldots
$$

Gauge-fixing GS action

To find spectrum gauge-fix and find worldsheet S matrix

Gauge-fixing GS action

To find spectrum gauge-fix and find worldsheet S matrix
Gauge fixing: kappa-symmetry and diffeomorphisms

Gauge-fixing GS action

To find spectrum gauge-fix and find worldsheet S matrix
Gauge fixing: kappa-symmetry and diffeomorphisms
Technically tough: action not of Metsaev-Tseytlin coset form

Gauge-fixing GS action

To find spectrum gauge-fix and find worldsheet S matrix
Gauge fixing: kappa-symmetry and diffeomorphisms
Technically tough: action not of Metsaev-Tseytlin coset form
Good gauge (and field redefinitions) makes integrability manifest

Gauge-fixing GS action

To find spectrum gauge-fix and find worldsheet S matrix
Gauge fixing: kappa-symmetry and diffeomorphisms
Technically tough: action not of Metsaev-Tseytlin coset form
Good gauge (and field redefinitions) makes integrability manifest
Worldsheet theory has four $b+f$ of $m^{2}=1$ and four $b+f$ of $m^{2}=0$

Gauge-fixing GS action

To find spectrum gauge-fix and find worldsheet S matrix
Gauge fixing: kappa-symmetry and diffeomorphisms
Technically tough: action not of Metsaev-Tseytlin coset form
Good gauge (and field redefinitions) makes integrability manifest
Worldsheet theory has four $b+f$ of $m^{2}=1$ and four $b+f$ of $m^{2}=0$
One finds a residual susy algebra \mathcal{A} that commutes with gauge-fixed Hamiltonian. Fermions transform linearly under it

The algebra \mathcal{A}

The algebra of charges that commutes with H takes the form

$$
\begin{array}{ll}
\left\{\mathbf{Q}_{\mathrm{L}}^{\dot{a}}, \overline{\mathbf{Q}}_{\mathrm{L} \dot{b}}\right\}=\frac{1}{2} \delta^{\dot{a}}(\mathbf{H}+\mathbf{M}), & \left\{\mathbf{Q}_{\mathrm{L}}^{\dot{a}}, \mathbf{Q}_{\mathrm{R} \dot{b}}\right\}=0 \\
\left\{\mathbf{Q}_{\mathrm{R} \dot{a}}, \overline{\mathbf{Q}}_{\mathrm{R}}^{\dot{b}}\right\}=\frac{1}{2} \delta_{\dot{a}}^{\dot{b}}(\mathbf{H}-\mathbf{M}), & \left\{\overline{\mathbf{Q}}_{\mathrm{L} \dot{a}}, \overline{\mathbf{Q}}_{\mathrm{R}}^{\dot{b}}\right\}=0
\end{array}
$$

The algebra \mathcal{A}

The algebra of charges that commutes with H takes the form

$$
\begin{array}{ll}
\left\{\mathbf{Q}_{\mathrm{L}}^{\dot{a}}, \overline{\mathbf{Q}}_{\mathrm{L} \dot{b}}\right\}=\frac{1}{2} \delta^{\dot{a}}(\mathbf{H}+\mathbf{M}), & \left\{\mathbf{Q}_{\mathrm{L}}^{\dot{a}}, \mathbf{Q}_{\mathrm{R} \dot{b}}\right\}=0 \\
\left\{\mathbf{Q}_{\mathrm{R} \dot{a}}, \overline{\mathbf{Q}}_{\mathrm{R}}^{\dot{b}}\right\}=\frac{1}{2} \delta_{\dot{a}}^{\dot{b}}(\mathbf{H}-\mathbf{M}), & \left\{\overline{\mathbf{Q}}_{\mathrm{L} \dot{a}}, \overline{\mathbf{Q}}_{\mathrm{R}}^{\dot{b}}\right\}=0
\end{array}
$$

Commutators hold for physical level-matched states.

The algebra \mathcal{A}

The algebra of charges that commutes with H takes the form

$$
\begin{array}{ll}
\left\{\mathbf{Q}_{\mathrm{L}}^{\dot{a}}, \overline{\mathbf{Q}}_{\mathrm{L} \dot{b}}\right\}=\frac{1}{2} \delta^{\dot{a}}(\mathbf{H}+\mathbf{M}), & \left\{\mathbf{Q}_{\mathrm{L}}^{\dot{a}}, \mathbf{Q}_{\mathrm{R} \dot{b}}\right\}=0 \\
\left\{\mathbf{Q}_{\mathrm{R} a}, \overline{\mathbf{Q}}_{\mathrm{R}}^{\dot{b}}\right\}=\frac{1}{2} \delta_{\dot{a}}^{\dot{b}}(\mathbf{H}-\mathbf{M}), & \left\{\overline{\mathbf{Q}}_{\mathrm{L} \dot{a}}, \overline{\mathbf{Q}}_{\mathrm{R}}^{\dot{b}}\right\}=0
\end{array}
$$

Commutators hold for physical level-matched states.
Constituent magnons do not satify level-matching and \mathcal{A} is

$$
\begin{array}{ll}
\left\{\mathbf{Q}_{\mathrm{L}}^{\dot{a}}, \overline{\mathbf{Q}}_{\mathrm{L} \dot{b}}\right\}=\frac{1}{2} \delta_{\dot{b}}^{\dot{a}}(\mathbf{H}+\mathbf{M}), & \left\{\mathbf{Q}_{\mathrm{L}}^{\dot{a}}, \mathbf{Q}_{\mathrm{R} \dot{b}}\right\}=\delta_{\dot{b}}^{\dot{a}} \mathbf{C}, \\
\left\{\mathbf{Q}_{\mathrm{R} \dot{a}}, \overline{\mathbf{Q}}_{\mathrm{R}}^{\dot{b}}\right\}=\frac{1}{2} \delta_{\dot{a}}^{\dot{b}}(\mathbf{H}-\mathbf{M}), & \left\{\overline{\mathbf{Q}}_{\mathrm{L}} \dot{,}, \overline{\mathbf{Q}}_{\mathrm{R}}^{\dot{b}}\right\}=\delta_{\dot{a}}^{\dot{b}} \overline{\mathbf{C}},
\end{array}
$$

The algebra \mathcal{A}

The algebra of charges that commutes with H takes the form

$$
\begin{array}{ll}
\left\{\mathbf{Q}_{\mathrm{L}}^{\dot{a}}, \overline{\mathbf{Q}}_{\mathrm{L} \dot{b}}\right\}=\frac{1}{2} \delta_{\dot{b}}^{\dot{a}}(\mathbf{H}+\mathbf{M}), & \left\{\mathbf{Q}_{\mathrm{L}}^{\dot{a}}, \mathbf{Q}_{\mathrm{R} \dot{b}}\right\}=0 \\
\left\{\mathbf{Q}_{\mathrm{R} \dot{a}}, \overline{\mathbf{Q}}_{\mathrm{R}}^{\dot{b}}\right\}=\frac{1}{2} \delta_{\dot{a}}^{\dot{b}}(\mathbf{H}-\mathbf{M}), & \left\{\overline{\mathbf{Q}}_{\mathrm{L} \dot{a}}, \overline{\mathbf{Q}}_{\mathrm{R}}^{\dot{b}}\right\}=0
\end{array}
$$

Commutators hold for physical level-matched states.
Constituent magnons do not satify level-matching and \mathcal{A} is

$$
\begin{array}{ll}
\left\{\mathbf{Q}_{\mathrm{L}}^{\dot{a}}, \overline{\mathbf{Q}}_{\mathrm{L}}\right\}=\frac{1}{2} \delta_{\dot{b}}^{\dot{a}}(\mathbf{H}+\mathbf{M}), & \left\{\mathbf{Q}_{\mathrm{L}}^{\dot{a}}, \mathbf{Q}_{\mathrm{R} \dot{b}}\right\}=\delta_{\dot{b}}^{\dot{a}} \mathbf{C}, \\
\left\{\mathbf{Q}_{\mathrm{R} \dot{a}}, \overline{\mathbf{Q}}_{\mathrm{R}}^{\dot{b}}\right\}=\frac{1}{2} \delta_{\dot{a}}^{\dot{b}}(\mathbf{H}-\mathbf{M}), & \left\{\overline{\mathbf{Q}}_{\mathrm{L}} \dot{,}, \overline{\mathbf{Q}}_{\mathrm{R}}^{\dot{b}}\right\}=\delta_{\dot{a}}^{\dot{b}} \overline{\mathbf{C}},
\end{array}
$$

Central extensions related to worldsheet momentum \mathbf{P}

$$
\mathbf{C}=+i \frac{h}{2}\left(e^{+i \mathbf{P}}-1\right), \quad \overline{\mathbf{C}}=-i \frac{h}{2}\left(e^{-i \mathbf{P}}-1\right)
$$

$h \sim R^{2} / \alpha^{\prime}+\cdots \sim \lambda$ with λ like the 't Hooft coupling cst

Fundamental worldsheet excitations

Worldsheet excitations (magnons) sit in short representations of \mathcal{A}

Fundamental worldsheet excitations

Worldsheet excitations (magnons) sit in short representations of \mathcal{A}
Their dispersion relation is $\left(m^{2}=0,1\right)$

$$
E(p)=\sqrt{m^{2}+4 h^{2} \sin \left(\frac{p}{2}\right)^{2}}
$$

Fundamental worldsheet excitations

Worldsheet excitations (magnons) sit in short representations of \mathcal{A}

Their dispersion relation is $\left(m^{2}=0,1\right)$

$$
E(p)=\sqrt{m^{2}+4 h^{2} \sin \left(\frac{p}{2}\right)^{2}} .
$$

Non-relativistic dispersion relation: Massless particles can scatter.

Determining the S matrix from \mathcal{A}

2-body S matrix fixed by \mathcal{A} up to scalar dressing factor

$$
\mathcal{S}_{(12)}(p, q) \mathbf{Q}_{(12)}(p, q)=\mathbf{Q}_{(12)}(q, p) \mathcal{S}_{(12)}(p, q)
$$

Determining the S matrix from \mathcal{A}

2-body S matrix fixed by \mathcal{A} up to scalar dressing factor

$$
\mathcal{S}_{(12)}(p, q) \mathbf{Q}_{(12)}(p, q)=\mathbf{Q}_{(12)}(q, p) \mathcal{S}_{(12)}(p, q)
$$

\mathcal{S} satisfies Yang-Baxter equation: worldsheet theory integrable

Determining the S matrix from \mathcal{A}

2-body S matrix fixed by \mathcal{A} up to scalar dressing factor

$$
\mathcal{S}_{(12)}(p, q) \mathbf{Q}_{(12)}(p, q)=\mathbf{Q}_{(12)}(q, p) \mathcal{S}_{(12)}(p, q)
$$

\mathcal{S} satisfies Yang-Baxter equation: worldsheet theory integrable
\mathcal{S} most easily written in terms of Zhukovski variables $x^{ \pm}$

$$
x_{p}^{+}+\frac{1}{x_{p}^{+}}-x_{p}^{-}-\frac{1}{x_{p}^{-}}=\frac{2 i|m|}{h}, \quad \frac{x_{p}^{+}}{x_{p}^{-}}=e^{i p}
$$

Determining the S matrix from \mathcal{A}

2-body S matrix fixed by \mathcal{A} up to scalar dressing factor

$$
\mathcal{S}_{(12)}(p, q) \mathbf{Q}_{(12)}(p, q)=\mathbf{Q}_{(12)}(q, p) \mathcal{S}_{(12)}(p, q)
$$

\mathcal{S} satisfies Yang-Baxter equation: worldsheet theory integrable
\mathcal{S} most easily written in terms of Zhukovski variables $x^{ \pm}$

$$
x_{p}^{+}+\frac{1}{x_{p}^{+}}-x_{p}^{-}-\frac{1}{x_{p}^{-}}=\frac{2 i|m|}{h}, \quad \frac{x_{p}^{+}}{x_{p}^{-}}=e^{i p}
$$

For example,

$$
\mathcal{S}_{(12)}(p, q):\left|\phi_{p}^{L}, \psi_{q}^{L}\right\rangle \longrightarrow \frac{x_{p}^{+}-x_{q}^{+}}{x_{p}^{-}-x_{q}^{+}}\left|\psi_{q}^{L}, \phi_{p}^{L}\right\rangle
$$

All-loop Bethe equations for closed string spectrum

All-loop Bethe equations for closed string spectrum

The massive momentum-carrying roots satisfy the equations

$$
\begin{aligned}
\left(\frac{x_{k}^{+}}{x_{k}^{-}}\right)^{L}= & \prod_{\substack{j=1 \\
j \neq k}}^{N_{2}} \frac{x_{k}^{+}-x_{j}^{-}}{x_{k}^{-}-x_{j}^{+}} \frac{1-\frac{1}{x_{k}^{+} x_{j}^{-}}}{1-\frac{1}{x_{k}^{-} x_{j}^{+}}}\left(\sigma_{k j}^{\bullet \bullet}\right)^{2} \\
& \times \prod_{j=1}^{N_{1}} \frac{x_{k}^{-}-y_{1, j}}{x_{k}^{+}-y_{1, j}} \prod_{j=1}^{N_{3}} \frac{x_{k}^{-}-y_{3, j}}{x_{k}^{+}-y_{3, j}} \\
& \times \prod_{j=1}^{N_{\overline{2}}} \frac{1-\frac{1}{x_{k}^{+} x_{j}^{-}}}{1-\frac{1}{x_{k}^{-} \bar{x}_{j}^{-}}} \frac{1-\frac{1}{x_{k}^{+} \bar{x}_{j}^{-}}}{1-\frac{1}{x_{k}^{-} \bar{x}_{j}^{+}}}\left(\widetilde{\sigma}_{k j}^{\bullet \bullet}\right)^{2} \\
& \times \prod_{j=1}^{N_{0}} \frac{x_{k}^{+}-z_{j}^{-}}{x_{k}^{-}-z_{j}^{+}}\left(\frac{1-\frac{1}{x_{k}^{-} z_{j}^{-}}}{1-\frac{1}{x_{k}^{+} z_{j}^{+}}}\right)^{\frac{1}{2}}\left(\frac{1-\frac{1}{x_{k}^{+} z_{j}^{-}}}{1-\frac{1}{x_{k}^{-} z_{j}^{+}}}\right)^{\frac{1}{2}}\left(\sigma_{k j}^{\bullet \bullet}\right)^{2},
\end{aligned}
$$

Groundstates of the all-loop Bethe equations

The energy of a state is given by

$$
E=N_{2}+N_{\overline{2}}+i h \sum_{k=1}^{N_{2}}\left(\frac{1}{x_{k}^{+}}-\frac{1}{x_{k}^{-}}\right)+i h \sum_{k=1}^{N_{\overline{2}}}\left(\frac{1}{\bar{x}_{k}^{+}}-\frac{1}{\bar{x}_{k}^{-}}\right)+i h \sum_{k=1}^{N_{0}}\left(\frac{1}{z_{k}^{+}}-\frac{1}{z_{k}^{-}}\right) .
$$

Groundstates of the all-loop Bethe equations

The energy of a state is given by
$E=N_{2}+N_{\overline{2}}+i h \sum_{k=1}^{N_{2}}\left(\frac{1}{x_{k}^{+}}-\frac{1}{x_{k}^{-}}\right)+i h \sum_{k=1}^{N_{\overline{2}}}\left(\frac{1}{\bar{x}_{k}^{+}}-\frac{1}{\bar{x}_{k}^{-}}\right)+i h \sum_{k=1}^{N_{0}}\left(\frac{1}{z_{k}^{+}}-\frac{1}{z_{k}^{-}}\right)$.
Protected states have no h-corrections so $x_{k}^{+}=x_{k}^{-}$i.e. $p_{k}=0$

Groundstates of the all-loop Bethe equations

The energy of a state is given by

$$
E=N_{2}+N_{\overline{2}}+i h \sum_{k=1}^{N_{2}}\left(\frac{1}{x_{k}^{+}}-\frac{1}{x_{k}^{-}}\right)+i h \sum_{k=1}^{N_{\overline{2}}}\left(\frac{1}{\bar{x}_{k}^{+}}-\frac{1}{\bar{x}_{k}^{-}}\right)+i h \sum_{k=1}^{N_{0}}\left(\frac{1}{z_{k}^{+}}-\frac{1}{z_{k}^{-}}\right) .
$$

Protected states have no h-corrections so $x_{k}^{+}=x_{k}^{-}$i.e. $p_{k}=0$ Recall the dispersion relation

$$
E\left(p_{k}\right)=\sqrt{\left.m^{2}+4 h^{2} \sin \left(p_{k} / 2\right)\right)^{2}}
$$

Groundstates of the all-loop Bethe equations

The energy of a state is given by

$$
E=N_{2}+N_{\overline{2}}+i h \sum_{k=1}^{N_{2}}\left(\frac{1}{x_{k}^{+}}-\frac{1}{x_{k}^{-}}\right)+i h \sum_{k=1}^{N_{\overline{2}}}\left(\frac{1}{\bar{x}_{k}^{+}}-\frac{1}{\bar{x}_{k}^{-}}\right)+i h \sum_{k=1}^{N_{0}}\left(\frac{1}{z_{k}^{+}}-\frac{1}{z_{k}^{-}}\right) .
$$

Protected states have no h-corrections so $x_{k}^{+}=x_{k}^{-}$i.e. $p_{k}=0$
Recall the dispersion relation

$$
E\left(p_{k}\right)=\sqrt{\left.m^{2}+4 h^{2} \sin \left(p_{k} / 2\right)\right)^{2}}
$$

A massless zero-momentum magnon has $E=0$.

Groundstates of the all-loop Bethe equations

The energy of a state is given by

$$
E=N_{2}+N_{\overline{2}}+i h \sum_{k=1}^{N_{2}}\left(\frac{1}{x_{k}^{+}}-\frac{1}{x_{k}^{-}}\right)+i h \sum_{k=1}^{N_{\overline{2}}}\left(\frac{1}{\bar{x}_{k}^{+}}-\frac{1}{\bar{x}_{k}^{-}}\right)+i h \sum_{k=1}^{N_{0}}\left(\frac{1}{z_{k}^{+}}-\frac{1}{z_{k}^{-}}\right) .
$$

Protected states have no h-corrections so $x_{k}^{+}=x_{k}^{-}$i.e. $p_{k}=0$
Recall the dispersion relation

$$
E\left(p_{k}\right)=\sqrt{\left.m^{2}+4 h^{2} \sin \left(p_{k} / 2\right)\right)^{2}} .
$$

A massless zero-momentum magnon has $E=0$.
Conclusion:
Protected states are massless zero-momentum magnons.

Protected states of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ from integrability.

We have conventional BMN groundstate

$$
\left|\left(\phi^{++}\right)^{\iota}\right\rangle
$$

Protected states of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ from integrability.

We have conventional BMN groundstate

$$
\left|\left(\phi^{++}\right)^{L}\right\rangle
$$

Adding massless roots with zero momentum get two states

$$
\left|\left(\phi^{++}\right)^{L-1} \chi_{R}^{+ \pm}\right\rangle+\text {symmetric permutations },
$$

Similarly, for $\chi_{L^{+}}^{+ \pm}$. Easy check BEs satisfied for $z^{ \pm}=1$.

Protected states of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ from integrability.

We have conventional BMN groundstate

$$
\left|\left(\phi^{++}\right)^{L}\right\rangle
$$

Adding massless roots with zero momentum get two states

$$
\left|\left(\phi^{++}\right)^{L-1} \chi_{R}^{+ \pm}\right\rangle+\text {symmetric permutations }
$$

Similarly, for $\chi_{\mathrm{L}}{ }^{+ \pm}$. Easy check BEs satisfied for $z^{ \pm}=1$.
Next consider state with two right-moving massless fermions,

$$
\left|\left(\phi^{++}\right)^{L-2} \chi_{R}^{++} \chi_{R}^{+-}\right\rangle+\text {symmetric permutations }
$$

the roots sit at $z^{ \pm}=+1$ or $z^{ \pm}=-1$. BEs satisfied.

Protected states of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ from integrability.

Continuing in this way we find

Protected states of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ from integrability.

Continuing in this way we find

State	N_{0}	N_{1}	N_{3}	J_{L}	J_{R}	J_{\circ}
$\left(\phi^{++}\right)^{L}$	0	0	0	$\frac{L}{2}$	$\frac{L}{2}$	0
$\left(\phi^{++}\right)^{L-1} \chi_{\mathrm{R}}^{+ \pm}$	1	0	0	$\frac{L-1}{2}$	$\frac{L}{2}$	$\pm \frac{1}{2}$
$\left(\phi^{++}\right)^{L} \chi_{\mathrm{L}}^{+ \pm}$	1	1	1	$\frac{L+1}{2}$	$\frac{L}{2}$	$\pm \frac{1}{2}$
$\left(\phi^{++}\right)^{L-2} \chi_{\mathrm{R}}^{++} \chi_{\mathrm{R}}^{+-}$	2	0	0	$\frac{L-2}{2}$	$\frac{L}{2}$	0
$\left(\phi^{++}\right)^{L-1} \chi_{\mathrm{R}}^{+ \pm} \chi_{\mathrm{L}}^{+ \pm}$	2	1	1	$\frac{L}{2}$	$\frac{L}{2}$	± 1
$\left(\phi^{++}\right)^{L-1} \chi_{\mathrm{R}}^{+ \pm} \chi_{\mathrm{L}}^{+\mp}$	2	1	1	$\frac{L}{2}$	$\frac{L}{2}$	0
$\left(\phi^{++}\right)^{L} \chi_{\mathrm{L}}^{++} \chi_{\mathrm{L}}^{+-}$	2	1	1	$\frac{L+2}{2}$	$\frac{L}{2}$	0
$\left(\phi^{++}\right)^{L-2} \chi_{\mathrm{R}}^{++} \chi_{\mathrm{R}}^{+-} \chi_{\mathrm{L}}^{+ \pm}$	3	1	1	$\frac{L-1}{2}$	$\frac{L}{2}$	$\pm \frac{1}{2}$
$\left(\phi^{++}\right)^{L-1} \chi_{\mathrm{R}}^{+ \pm} \chi_{\mathrm{L}}^{++} \chi_{\mathrm{L}}^{+-}$	3	1	1	$\frac{L+1}{2}$	$\frac{L}{2}$	$\pm \frac{1}{2}$
$\left(\phi^{++}\right)^{L-2} \chi_{\mathrm{R}}^{++} \chi_{\mathrm{R}}^{+-} \chi_{\mathrm{L}}^{++} \chi_{\mathrm{L}}^{+-}$	4	2	2	$\frac{L}{2}$	$\frac{L}{2}$	0

Protected states of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ from integrability.

Continuing in this way we find

State	N_{0}	N_{1}	N_{3}	J_{L}	J_{R}	J_{\circ}
$\left(\phi^{++}\right)^{L}$	0	0	0	$\frac{L}{2}$	$\frac{L}{2}$	0
$\left(\phi^{++}\right)^{L-1} \chi_{\mathrm{R}}^{+ \pm}$	1	0	0	$\frac{L-1}{2}$	$\frac{L}{2}$	$\pm \frac{1}{2}$
$\left(\phi^{++}\right)^{L} \chi_{\mathrm{L}}^{+ \pm}$	1	1	1	$\frac{L+1}{2}$	$\frac{L}{2}$	$\pm \frac{1}{2}$
$\left(\phi^{++}\right)^{L-2} \chi_{\mathrm{R}}^{++} \chi_{\mathrm{R}}^{+-}$	2	0	0	$\frac{L-2}{2}$	$\frac{L}{2}$	0
$\left(\phi^{++}\right)^{L-1} \chi_{\mathrm{R}}^{+ \pm} \chi_{\mathrm{L}}^{+ \pm}$	2	1	1	$\frac{L}{2}$	$\frac{L}{2}$	± 1
$\left(\phi^{++}\right)^{L-1} \chi_{\mathrm{R}}^{+ \pm} \chi_{\mathrm{L}}^{+\mp}$	2	1	1	$\frac{L}{2}$	$\frac{L}{2}$	0
$\left(\phi^{++}\right)^{L} \chi_{\mathrm{L}}^{++} \chi_{\mathrm{L}}^{+-}$	2	1	1	$\frac{L+2}{2}$	$\frac{L}{2}$	0
$\left(\phi^{++}\right)^{L-2} \chi_{\mathrm{R}}^{++} \chi_{\mathrm{R}}^{+-} \chi_{\mathrm{L}}^{+ \pm}$	3	1	1	$\frac{L-1}{2}$	$\frac{L}{2}$	$\pm \frac{1}{2}$
$\left(\phi^{++}\right)^{L-1} \chi_{\mathrm{R}}^{+ \pm} \chi_{\mathrm{L}}^{++} \chi_{\mathrm{L}}^{+-}$	3	1	1	$\frac{L+1}{2}$	$\frac{L}{2}$	$\pm \frac{1}{2}$
$\left(\phi^{++}\right)^{L-2} \chi_{\mathrm{R}}^{++} \chi_{\mathrm{R}}^{+-} \chi_{\mathrm{L}}^{++} \chi_{\mathrm{L}}^{+-}$	4	2	2	$\frac{L}{2}$	$\frac{L}{2}$	0

This matches sugra and Sym ${ }^{N} \frac{1}{2}$-BPS states.

Moduli and Integrability

Turning on moduli in $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

- Integrability works for backgrounds with:

RR charges (n.h. D1/D5) [Borsato+Ohlsson Sax+Sfondrini+BS+Torrielli] NSNS+RR charges (n.h. D1+F1/D5+NS5)
[Hoare + Tseytlin, Lloyd+Ohlsson Sax+Sfondrini+BS]
We expect it will also work with more general charges

Turning on moduli in $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

- Integrability works for backgrounds with:

RR charges (n.h. D1/D5) [Borsato+Ohlsson Sax+Sfondrini+BS+Torrielli] NSNS + RR charges (n.h. D1+F1/D5+NS5)

> [Hoare+Tseytlin, Lloyd+Ohlsson Sax+Sfondrini+BS]

We expect it will also work with more general charges

- Integrability "works" means:

Wsheet S matrix known exactly in α^{\prime} or $R_{\text {AdS }}$, satisfies YBE
S matrix fixed with central extension
Bethe Equations, protected spectrum, wrapping...

Turning on moduli in $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

- Integrability works for backgrounds with:

RR charges (n.h. D1/D5) [Borsato+Ohlsson Sax+Sfondrini+BS+Torrielli]
NSNS + RR charges (n.h. D1+F1/D5+NS5)
[Hoare+Tseytlin, Lloyd+Ohlsson Sax+Sfondrini+BS]
We expect it will also work with more general charges

- Integrability "works" means:

Wsheet S matrix known exactly in α^{\prime} or $R_{\text {AdS }}$, satisfies YBE
S matrix fixed with central extension
Bethe Equations, protected spectrum, wrapping...

- Integrable results found when moduli zero

Turning on moduli in $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

- Integrability works for backgrounds with:

RR charges (n.h. D1/D5) [Borsato+Ohlsson Sax+Sfondrini+BS+Torrielli]
NSNS + RR charges (n.h. D1+F1/D5+NS5)
[Hoare+Tseytlin, Lloyd+Ohlsson Sax+Sfondrini+BS]
We expect it will also work with more general charges

- Integrability "works" means:

Wsheet S matrix known exactly in α^{\prime} or $R_{\text {AdS }}$, satisfies YBE
S matrix fixed with central extension
Bethe Equations, protected spectrum, wrapping...

- Integrable results found when moduli zero
- What happens away from the origin of moduli space?

Turning on moduli in $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

For each set of background charges 16 moduli inconsequential

Turning on moduli in $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

For each set of background charges 16 moduli inconsequential
E.g. Pure RR charge bkd:

9 geometric moduli $g_{a b}$ of T^{4}
6 moduli $C_{a b}$
1 modulus C_{0}
do not enter GS action or periodicity conditions.

Turning on moduli in $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

For each set of background charges 16 moduli inconsequential
E.g. Pure RR charge bkd: 9 geometric moduli $g_{a b}$ of T^{4}
6 moduli $C_{a b}$
1 modulus C_{0}
do not enter GS action or periodicity conditions.

Each set of background charges has $1+3$ consequential moduli

Turning on moduli in $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

For each set of background charges 16 moduli inconsequential
E.g. Pure RR charge bkd: 9 geometric moduli $g_{a b}$ of T^{4}
6 moduli $C_{a b}$
1 modulus C_{0}
do not enter GS action or periodicity conditions.

Each set of background charges has $1+3$ consequential moduli
E.g. Pure NSNS charge bkd has C_{0} and C_{2}^{+}.

Turning on C_{0} in NSNS $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

Set C_{0} to a non-zero constant.

Turning on C_{0} in NSNS $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

Attractor mechanism: $\quad C_{4}=-C_{0} \operatorname{vol}\left(T^{4}\right)$

Turning on C_{0} in NSNS $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

Attractor mechanism: $\quad C_{4}=-C_{0} \operatorname{vol}\left(T^{4}\right)$
Gauge-invariant RR field-strength:

$$
F_{3}=d C_{2}-C_{0} H=-C_{0} k \operatorname{vol}\left(S^{3}\right) \neq 0
$$

Turning on C_{0} in NSNS $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

Attractor mechanism: $\quad C_{4}=-C_{0} \operatorname{vol}\left(\mathrm{~T}^{4}\right)$
Gauge-invariant RR field-strength:

$$
F_{3}=d C_{2}-C_{0} H=-C_{0} k \operatorname{vol}\left(S^{3}\right) \neq 0
$$

Eoms remain valid

Turning on C_{0} in NSNS $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

Attractor mechanism: $\quad C_{4}=-C_{0} \operatorname{vol}\left(\mathrm{~T}^{4}\right)$
Gauge-invariant RR field-strength:

$$
F_{3}=d C_{2}-C_{0} H=-C_{0} k \operatorname{vol}\left(S^{3}\right) \neq 0
$$

Eoms remain valid
Background charges remain unchanged. E.g.

$$
Q_{D 5}=\int F_{3}+C_{0} H=\int-C_{0} H+C_{0} H=0
$$

Turning on C_{0} in NSNS $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$

Attractor mechanism: $\quad C_{4}=-C_{0} \operatorname{vol}\left(\mathrm{~T}^{4}\right)$
Gauge-invariant RR field-strength:

$$
F_{3}=d C_{2}-C_{0} H=-C_{0} k \operatorname{vol}\left(S^{3}\right) \neq 0
$$

Eoms remain valid
Background charges remain unchanged. E.g.

$$
Q_{D 5}=\int F_{3}+C_{0} H=\int-C_{0} H+C_{0} H=0
$$

Since

$$
H \neq 0, \quad F_{3} \neq 0, \text { and all other } F=0
$$

GS action same as mixed-charge background!

Integrability of NSNS $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ with $C_{0} \neq 0$

GS action same as mixed-charge background.

Integrability of NSNS $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ with $C_{0} \neq 0$

GS action same as mixed-charge background.
So exact S matrix is already known, just need to relate parameters

Integrability of NSNS $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ with $C_{0} \neq 0$

GS action same as mixed-charge background.
So exact S matrix is already known, just need to relate parameters
For example, the magnon dispersion relation is

$$
E(p)=\sqrt{(m+k p)^{2}+4 h^{2} \sin ^{2}(p / 2)}, \quad h=-\frac{C_{0} k g_{s}}{2 \pi}
$$

Integrability of NSNS $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ with $C_{0} \neq 0$

GS action same as mixed-charge background.
So exact S matrix is already known, just need to relate parameters
For example, the magnon dispersion relation is

$$
E(p)=\sqrt{(m+k p)^{2}+4 h^{2} \sin ^{2}(p / 2)}, \quad h=-\frac{C_{0} k g_{s}}{2 \pi}
$$

We see a new 't Hooft-like parameter appearing

$$
\lambda \sim C_{0} k g_{s}
$$

Integrability of NSNS $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ with $C_{0} \neq 0$

GS action same as mixed-charge background.
So exact S matrix is already known, just need to relate parameters
For example, the magnon dispersion relation is

$$
E(p)=\sqrt{(m+k p)^{2}+4 h^{2} \sin ^{2}(p / 2)}, \quad h=-\frac{C_{0} k g_{s}}{2 \pi}
$$

We see a new 't Hooft-like parameter appearing

$$
\lambda \sim C_{0} k g_{s}
$$

NSNS string theory integrable for $C_{0} \neq 0$
[Ohlsson Sax, BS] point

Integrability of NSNS AdS $3 \times S^{3} \times T^{4}$ with $C_{0}=0$

At the $C_{0}=0$ WZW point:

Integrability of NSNS AdS $3 \times S^{3} \times T^{4}$ with $C_{0}=0$

At the $C_{0}=0$ WZW point:
S matrix remains finite and non-diagonal

Integrability of NSNS AdS $3 \times S^{3} \times \mathrm{T}^{4}$ with $C_{0}=0$

At the $C_{0}=0$ WZW point:
S matrix remains finite and non-diagonal

Central extensions zero - is derivation of S matrix valid?

Integrability of NSNS AdS $3 \times S^{3} \times \mathrm{T}^{4}$ with $C_{0}=0$

At the $C_{0}=0$ WZW point:

S matrix remains finite and non-diagonal

Central extensions zero - is derivation of S matrix valid?

Pert. long strings appear - new sector in Hilbert space.

Conclusions and Outlook

Conclusions

- $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ spectrum with $p_{\mathrm{T}^{4}}=w_{\mathrm{T}^{4}}=0$ integrable for any background charges across whole moduli space*

Conclusions

- $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ spectrum with $p_{\mathrm{T}^{4}}=w_{\mathrm{T}^{4}}=0$ integrable for any background charges across whole moduli space*
- *Applies to NSNS theory away from " origin" of moduli space

Conclusions

- $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ spectrum with $p_{\mathrm{T}^{4}}=w_{\mathrm{T}^{4}}=0$ integrable for any background charges across whole moduli space*
- *Applies to NSNS theory away from " origin" of moduli space
- At origin, NSNS S matrix finite and non-diagonal. Need to understand long string sector.

Conclusions

- $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{T}^{4}$ spectrum with $p_{\mathrm{T}^{4}}=w_{\mathrm{T}^{4}}=0$ integrable for any background charges across whole moduli space*
- *Applies to NSNS theory away from " origin" of moduli space
- At origin, NSNS S matrix finite and non-diagonal. Need to understand long string sector.
- Match short strings to Maldacena Ooguri spectrum?

Relation to low k results ?
[Giribet+Hull+Kleban+Porrati+Rabinovici,Gaberdiel+Gopakumar]

Outlook

Investigate WZW point using integrability. Long strings.

Outlook

Investigate WZW point using integrability. Long strings.
Can we match non-protected states with CFT_{2} and find exact relation to Sym^{N} orbifold?

Outlook

Investigate WZW point using integrability. Long strings.
Can we match non-protected states with CFT_{2} and find exact relation to Sym ${ }^{N}$ orbifold?
What does this teach us about ADHM σ-model and the small instanton singularity?

Outlook

Investigate WZW point using integrability. Long strings.
Can we match non-protected states with CFT_{2} and find exact relation to Sym^{N} orbifold?
What does this teach us about ADHM σ-model and the small instanton singularity?

Understand relation to relativistic massless integrability.

Outlook

Investigate WZW point using integrability. Long strings.
Can we match non-protected states with CFT_{2} and find exact relation to Sym ${ }^{N}$ orbifold?
What does this teach us about ADHM σ-model and the small instanton singularity?

Understand relation to relativistic massless integrability.
Find CFT_{2} dual of $\mathrm{AdS}^{3} \times S^{3} \times S^{3} \times S^{1}$.
[Gukov et al. '05], [Tong '14], [Eberhardt, Gaberdiel, Li '17]

Thank you

