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Motivation

» Holography a profound insight into quantum physics
» Can we understand highly-quantum aspects of holography?

» Sometimes, yes: A of Konishi operator Tr(¢¢)
to silly loop order in planar N' = 4 with integrability!

» Integrability works in examples of AdS3/CFT;
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Why AdS;/CFT,

Half the susy of N = 4 SYM: much richer dynamics

In UV max susy 2d QCD, with flow to CFT in IR

D1-D5 and black-hole entropy in string theory [Strominger Vafa]

D1-D5, 4d instanton moduli space, ADHM and small instantons

Large moduli space including WZW point [Ooguri Maldacena]

Challenge: Matching to CFT for non-protected quantities
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AdS; x S* x T*

D1- and D5-branes in string theory

|01 2 3 456 789
NCXD]...
NexD5|e o o o o @

Gravity:
Near-horizon limit: AdS3 x S x T* 4+ R-R 3-form charge

Other brane configs give same geometry but different charges

Gauge Theory:

Open string gauge theory not conformal - flows to CFT in IR
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UV gauge theory

D1/D5 is 2d SYM theory with dimensionful coupling constant gyy
» D1-D1 strings «— N = (8,8) U(N.) vector-multiplet:
N = (4,4) vector: ®o% Wo2 yai A =~ pab
N = (4,4) hyper: T2, xp?, x§°
» D1-D5 strings «— N = (4,4) U(N.) x U(Nr)
hyper-multiplets:
N = (4,4) hyper: H?, AL, )\%

» Db5-D5 strings: decoupled.
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IR CFT

UV gauge theory has two branches of vacua:

» Coulomb branch: D1 separated from D5 U(N.) — U(1)"e;
» Higgs branch: D1 on top of D5 — AdS3/CFT3. [Maldacena '97]

Because of susy, IR quite similar: [Witten "95]

CFT = CFTy ® CFT¢

CFTy is a o-model with target space given by moduli space of N,
instantons in U(Nf) theory. Encodes ADHM

Expect: o-model is (deformation of) Sym™eNr(T#) orbifold.

Protected quantities matched between Sym™<V7(T#) and sugra
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AdS; x S3 x T* Moduli

[IB string theory on T* has 25 moduli:
gab s Baps Clp. €O, il o
In near-horizon limit 5 become massive. Which 5?
For D1/D5 background massive fields are
g By CO—Chly

We are left with a 20-dimensional moduli space.

Four moduli are important. In D1/D5: ¢ and ij

In UV gauge theory they are 8-angle and three Fl parameters.
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Green-Schwarz action in general background

Spacetime supersymmetric GS worldsheet Lagrangian known
[Cvetic, Li, Pope, Stelle '99, Wulff '14]

L=Lpos + Liin + Lwz

where, for example

1J
Lyin = —iVhh*?0 E,, <5“Dﬂ + Zlf@) 05+ ...
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Gauge-fixing GS action

To find spectrum gauge-fix and find worldsheet S matrix

Gauge fixing: kappa-symmetry and diffeomorphisms

Technically tough: action not of Metsaev-Tseytlin coset form
Good gauge (and field redefinitions) makes integrability manifest
Worldsheet theory has four b+f of m?> = 1 and four b+f of m> =0

One finds a residual susy algebra A that commutes with
gauge-fixed Hamiltonian. Fermions transform linearly under it
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The algebra A

The algebra of charges that commutes with H takes the form
aQ L, a
{QL 7QLB} - 55 b (H + M)’ {QL ’QRb} =0
_ 1 ; .
{QRéa QRb} - §5ab (H - M)a {QLéa QRb} — 0

Commutators hold for physical level-matched states.

Constituent magnons do not satify level-matching and A is
. 1. . .
{QL37 QLb} - §5ab (H + M)7 {QL37 QRb} — 5ab C,
{Qe, Q} = 50" (H-M),  {Qu:Q:"} =4,°C,

Central extensions related to worldsheet momentum P

h . _ h .
C= —|—i§(e+’P —1), C= —iE(e_’P —-1),

h~ R?/a’ 4 --- ~ X\ with X like the 't Hooft coupling cst
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Fundamental worldsheet excitations

Worldsheet excitations (magnons) sit in short representations of .4

Their dispersion relation is (m? = 0,1)

E(p) = \/m2 + 4h?sin (g)2

Non-relativistic dispersion relation: Massless particles can scatter.
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Determining the S matrix from A

2-body S matrix fixed by A up to scalar dressing factor

5(12)(P7 q) Q(12)(P7 q) = Q(12)(q, p) 8(12)(13, q) .

S satisfies Yang-Baxter equation: worldsheet theory integrable

S most easily written in terms of Zhukovski variables x

1 _ 1 2i|m|

+ _

Xt F X T =
P

- 9

Xp h

For example,

L oL Xy =
8(12)(p7q) : ‘(bpawq) P_
p

+
+
% .
L — e,
Xp

Xq
X(-li,- ‘wq 7¢p>
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All-loop Bethe equations for closed string spectrum

The massive momentum-carrying roots satisfy the equations

1
+ L N> + - TF_=
<Xk> _ Xk XJ Xk X ( 00)2
- ) = I I - _ 1 _ _1 kj
Xk j=1 Xk XJ 1 X X
J#k
Ny _
XH Xk — N1 Xk — Y3y
+
je1 Xk TYLI I Xk T Y3
- 1 1
N Xt 1- XX
% k7 k7 (~00)2
1— 1 1 1 Ukj
i — == — =+
=1 X %; X %
1
1 1 2
No + _— (1———\2 [1——7=\2
% Xk zj Xk Z X:zj ( (1]
— 17 1 1_ 1 Tkj
j=1"%k J X:Z;r x,:szr

)
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Groundstates of the all-loop Bethe equations

The energy of a state is given by

E= N2+N2+/h2(—1>+/hz<1+—_1_>+ih§:(1+—1_>.
X Xk X Xk =1 %k Zk

Protected states have no h-corrections so x,j =x, le. pp =0

Recall the dispersion relation

E(pk) = \/m2 + 4h?sin (pk/2))2

A massless zero-momentum magnon has E = 0.

Conclusion:
Protected states are massless zero-momentum magnons.
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Protected states of AdS3;/CFT, from integrability.

We have conventional BMN groundstate
L
[Canpl)
Adding massless roots with zero momentum get two states
(T )1 E) + symmetric permutations,

Similarly, for x;**. Easy check BEs satisfied for z+ = 1.

Next consider state with two right-moving massless fermions,
|(¢++)L 2Tt xd ) + symmetric permutations,

the roots sit at zt = +1 or zt = —1. BEs satisfied.
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Protected states of AdS3;/CFT, from integrability.

Continuing in this way we find

State No Ny N 3 R Jo
(¢t )t 0 0 0 5 £ 0
++yL—1 +E L—1 L 1
(6™T) XR 1 0 0 ) 2 Il:j
L +
@ N SR
(T 2k Xy~ 2 o o 2 L 0
-1 4+ ++
() Ik xS 2 1 1 i Lo
—1 4
(ST I T 2 1 1 L L 0
L +— L42
(™ X 2 11 2oL 0
- - L—1
(G e 3 1 I N
-1+t L+1 L 1
(77 xR X X[ 31 1 5 5 #;
e S L L
@) T XR xR XL XL 4 2 2 3 £ 0




Protected states of AdS3;/CFT, from integrability.

Continuing in this way we find

State No Ny N3 3 R Jo
(o)t o 0 0 5 L 0
++yL—1 +E L—1 L 1
(677" "xg 1 0 o =5 3 %3
L +
(¢ X 11 o1 WL 4l
(¢++)L—2XE+X;§7 > 0 0 L;Z % 0
L—1 ++ ++
(TN Ik x 2 1 1 L TS
1+t
() Ixg T T 2 11 L 5 0
L +— L+2
(™ X 2 1 1 2L 0
— — L—1
(¢++)L ZXE+XE X+L—j: 3 1 1 L % i%
++\L—1 4+ A+ +— L+1 L 1
(77X XX 3 1 5z %3
L2 At L L
(BTN TR TR XX 4 2 2 3 7 0

This matches sugra and Sym" %—BPS states.
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Turning on moduli in AdS3 x S% x T*

Integrability works for backgrounds with:

RR charges (n.h. D1/D5) [Borsato+Ohlsson Sax-+Sfondrini+BS-+Torrielli]
NSNS+RR charges (n.h. D14+F1/D5+NS5)

[Hoare+Tseytlin, Lloyd+Ohlsson Sax+Sfondrini+BS]
We expect it will also work with more general charges

Integrability "works” means:

Wsheet S matrix known exactly in o/ or Rags, satisfies YBE
S matrix fixed with central extension

Bethe Equations, protected spectrum, wrapping...

Integrable results found when moduli zero

What happens away from the origin of moduli space?
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Turning on moduli in AdS3 x S% x T*

For each set of background charges 16 moduli inconsequential

E.g. Pure RR charge bkd:
9 geometric moduli g, of T*
6 moduli C,p
1 modulus Gy
do not enter GS action or periodicity conditions.

Each set of background charges has 143 consequential moduli

E.g. Pure NSNS charge bkd has Cp and C2+.
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Turning on Gy in NSNS AdS; x S® x T*

Attractor mechanism: Cy = —Covol(TH)

Gauge-invariant RR field-strength:
F3 = dGCy — CoH = — Gy kvol(S3) # 0
Eoms remain valid

Background charges remain unchanged. E.g.

QD5:/F3+ COH:/_C0H+ CH=0

Since H=#0, F3 #0, and all other F =0

GS action same as mixed-charge background!
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Integrability of NSNS AdS; x S x T* with Gy # 0

GS action same as mixed-charge background.
So exact S matrix is already known, just need to relate parameters

For example, the magnon dispersion relation is

_ Cokgs
2

E(p) = \/(m + kp)2 + 4h2sin?(p/2), h=

We see a new 't Hooft-like parameter appearing

A~ Co kgs

NSNS string theory integrable for Co # 0 [Ohlsson Sax, BS] point
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Integrability of NSNS AdS; x S x T* with Gy =0

At the Cp = 0 WZW point:

S matrix remains finite and non-diagonal
Central extensions zero - is derivation of S matrix valid?

Pert. long strings appear - new sector in Hilbert space.
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Conclusions

e AdS3 x S3 x T# spectrum with prs = wys = 0 integrable for any
background charges across whole moduli space*

e *Applies to NSNS theory away from "origin” of moduli space

e At origin, NSNS S matrix finite and non-diagonal. Need to
understand long string sector.

e Match short strings to Maldacena Ooguri spectrum?
Relation to low k results ?

[Giribet-+Hull4+Kleban-+Porrati4-Rabinovici,Gaberdiel4+Gopakumar]
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Find CFT, dual of AdS3 x S3 x §3 x St
[Gukov et al. '05] , [Tong '14], [Eberhardt, Gaberdiel, Li '17]



Thank you



