$\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ duality with $\mathcal{N}=(3,3)$ supersymmetry

Ida Zadeh

Based on: L. Eberhardt and IGZ [arXiv: 1805.ijklm]

University of Toronto
17 May 2018

- String theory on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times S^{3} \times S^{1}$ supports the large $\mathcal{N}=4$ SCA.
[Boonstra, Peeters, Skenderis; '98; de Boer, Pasquinucci, Skenderis '99]
- \mathcal{S}_{κ} CFTs are $\mathcal{N}=1$ WZW models $\mathfrak{s u}(2)_{\kappa+2}^{(1)} \times \mathfrak{u}(1)^{(1)}$ associated to $S^{3} \times S^{1}$ and have large $\mathcal{N}=4$ susy.
[Sevrin, Troost, van Proeyen '88; Gukov, Martinec, Moore, Strominger '04]
- Holographic duality: string theory on $\operatorname{AdS}_{3} \times S^{3} \times S^{3} \times S^{1}$ is dual to the symmetric product orbifold $\operatorname{Sym}^{N}\left(\mathcal{S}_{\kappa}\right)$.
[Eberhardt, Gaberdiel, Li; Eberhardt, Gaberdiel, Gopakumar, Li '17]
- We consider string theory on $\operatorname{AdS}_{3} \times\left(S^{3} \times S^{3} \times S^{1}\right) / \mathbb{Z}_{2}$. This background supports $\mathcal{N}=3$ or $\mathcal{N}=1$ SCA depending on the action of \mathbb{Z}_{2}. [Yamaguchi, Ishimoto, Sugiyama, '99]
- Holographic duality with $\mathcal{N}=(3,3)$ susy: string theory on $\operatorname{AdS}_{3} \times\left(S^{3} \times S^{3} \times S^{1}\right) / \mathbb{Z}_{2}$ is dual to symmetric orbifold $\operatorname{Sym}^{N}\left(\mathcal{S}_{0} / \mathbb{Z}_{2}\right)$. [Eberhardt, IGZ; to appear]
- The BPS spectrum of the dual CFT matches that of the worldsheet string theory. Moreover, the modified elliptic genera of the CFT and string theory match.
- Stringy $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ dualities with $\mathcal{N}=(4,4)$ and $(4,4)$
- $\mathcal{N}=(3,3)$ duality: world-sheet theory
- $\mathcal{N}=(3,3)$ duality: dual CFT
- Elliptic genus
- Conclusions

D1-D5 brane system

	0	1	2	3	4	5	6	7	8	9
Q_{1} D1 branes	-	-	\sim	\sim	\sim	\sim
Q_{5}	D5 branes	-	-	-	-	-	-	.	.	.
.										

where \mathcal{M} is \mathbb{T}^{4} or $K 3$. Near horison geometry: $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathcal{M}$.

D1-D5 brane system

	0	1	2	3	4	5	6	7	8	9
Q_{1} D1 branes	-	-	\sim	\sim	\sim	\sim
Q_{5}	D5 branes	-	-	-	-	-	-	.	.	.
.										

where \mathcal{M} is \mathbb{T}^{4} or $K 3$. Near horison geometry: $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathcal{M}$.
In the limit where the size of $\mathcal{M} \ll$ size of S^{1}, the worldvolume gauge theory of D branes is a 2 d field theory that lives on S^{1}.

D1-D5 brane system

where \mathcal{M} is \mathbb{T}^{4} or $K 3$. Near horison geometry: $A d S_{3} \times S^{3} \times \mathcal{M}$.
In the limit where the size of $\mathcal{M} \ll$ size of S^{1}, the worldvolume gauge theory of D branes is a 2 d field theory that lives on S^{1}.

It flows in IR to a CFT described by a sigma model whose target space is a resolution of symmetric product orbifold $\operatorname{Sym}^{N}(\mathcal{M})$.
[Vafa, ‘95; Strominger, Vafa '96]

Symmetric product orbifold $\operatorname{Sym}^{N}(\mathcal{M})$

- 2 d SCFT with small $\mathcal{N}=(4,4)$ susy and $S O(4)_{R} \cong S U(2)_{L} \times$ $S U(2)_{R} R$-symmetry.

Symmetric product orbifold $\operatorname{Sym}^{N}(\mathcal{M})$

- 2 d SCFT with small $\mathcal{N}=(4,4)$ susy and $S O(4)_{R} \cong S U(2)_{L} \times$ $S U(2)_{R} R$-symmetry.
- Generators of left-moving superconformal algebra: $L_{n}, G_{r}^{\mu \nu}$, and J_{n}^{i} (similar for right-moving generators).

Symmetric product orbifold $\operatorname{Sym}^{N}(\mathcal{M})$

- 2 d SCFT with small $\mathcal{N}=(4,4)$ susy and $S O(4)_{R} \cong S U(2)_{L} \times$ $S U(2)_{R} R$-symmetry.
- Generators of left-moving superconformal algebra: $L_{n}, G_{r}^{\mu \nu}$, and J_{n}^{i} (similar for right-moving generators).
- The orbifold group, S_{N}, acts by permuting N copies of seed theory. It defines a new sector of Hilbert space, the twisted sector, through imposing new bc's on the fundamental fields.

$\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ with small $\mathcal{N}=(4,4)$ susy

- Stringy duality: string theory on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathcal{M}$ is dual to symmetric orbifold $\operatorname{Sym}^{N}(\mathcal{M})$.

$\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ with small $\mathcal{N}=(4,4)$ susy

- Stringy duality: string theory on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathcal{M}$ is dual to symmetric orbifold $\operatorname{Sym}^{N}(\mathcal{M})$.
- The BPS spectra of the two theories match.

$\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ with small $\mathcal{N}=(4,4)$ susy

- Stringy duality: string theory on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathcal{M}$ is dual to symmetric orbifold $\operatorname{Sym}^{N}(\mathcal{M})$.
- The BPS spectra of the two theories match.
- For $\mathcal{M}=K 3$, the elliptic genera of the CFT and supergravity match. [de Boer, '98]

$\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ with small $\mathcal{N}=(4,4)$ susy

- Stringy duality: string theory on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathcal{M}$ is dual to symmetric orbifold $\operatorname{Sym}^{N}(\mathcal{M})$.
- The BPS spectra of the two theories match.
- For $\mathcal{M}=K 3$, the elliptic genera of the CFT and supergravity match. [de Boer, '98]
- 3-point functions of chiral primaries in orbifold CFT, world-sheet theory, and supergravity match.
[Gaberdiel, Kirsch, '07; Dabholkar, Pakman, '07; Taylor, '08]

$\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ with small $\mathcal{N}=(4,4)$ susy

- Stringy duality: string theory on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathcal{M}$ is dual to symmetric orbifold $\operatorname{Sym}^{N}(\mathcal{M})$.
- The BPS spectra of the two theories match.
- For $\mathcal{M}=K 3$, the elliptic genera of the CFT and supergravity match. [de Boer, '98]
- 3-point functions of chiral primaries in orbifold CFT, world-sheet theory, and supergravity match.
[Gaberdiel, Kirsch, '07; Dabholkar, Pakman, '07; Taylor, '08]
- Great progress in constructing new classes of 3-charge D1-D5-P black hole microstates with arbitrary finite angular momenta.
[Bena, Giusto, Martinec, Mathur, Peet, Russo, Shigemori, Turton, Warner]

$\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ with small $\mathcal{N}=(4,4)$ susy

- Stringy duality: string theory on $\operatorname{AdS}_{3} \times \mathrm{S}^{3} \times \mathcal{M}$ is dual to symmetric orbifold $\operatorname{Sym}^{N}(\mathcal{M})$.
- The BPS spectra of the two theories match.
- For $\mathcal{M}=K 3$, the elliptic genera of the CFT and supergravity match. [de Boer, '98]
- 3-point functions of chiral primaries in orbifold CFT, world-sheet theory, and supergravity match.
[Gaberdiel, Kirsch, '07; Dabholkar, Pakman, '07; Taylor, '08]
- Great progress in constructing new classes of 3-charge D1-D5-P black hole microstates with arbitrary finite angular momenta. [Bena, Giusto, Martinec, Mathur, Peet, Russo, Shigemori, Turton, Warner]
- Embedding of higher spin/CFT duality in stringy duality. [Gaberdiel, Gopakumar '14]

Large $\mathcal{N}=(4,4)$ susy

D brane system:

	0	1	2	3	4	5	6	7	8	9
Q_{1}	D1 branes	-	-	\sim	\sim	\sim
Q_{5}^{+}	D5 branes	-	-	-	-	-
	-									
Q_{5}^{-}	D5 fluxes	\circ	\circ	\circ

where $\mathcal{M}=S^{3} \times S^{1}$. Near horison geometry: $\mathrm{AdS}_{3} \times S^{3} \times S^{3} \times S^{1}$.

Large $\mathcal{N}=(4,4)$ susy

D brane system:

		0	1	2	3	4	5	6	7	8	9
Q_{1}	D1 branes	-	-	\sim	\sim	\sim	\sim
Q_{5}^{+}	D5 branes	-	-	-	-	-	-
Q_{5}^{-}	D5 fluxes	\circ	\circ	\circ	.

where $\mathcal{M}=S^{3} \times S^{1}$. Near horison geometry: $\mathrm{AdS}_{3} \times S^{3} \times S^{3} \times S^{1}$.
D1-branes are instantons in D5-brane worldvolume theory. In IR, the theory is described by a sigma model on moduli space of instantons $\mathcal{M}_{Q_{1}, Q_{5}^{+}=1, Q_{5}^{-}} \cong \operatorname{Sym}^{Q_{1}}\left(S_{Q_{5}^{-}-1}^{3} \times S_{1}\right)$.
[Eberhardt, Gaberdiel, Li; Eberhardt, Gaberdiel, Gopakumar, Li '17]

Large $\mathcal{N}=(4,4)$ susy

D brane system:

	0	1	2	3	4	5	6	7	8	9	
Q_{1}	D1 branes	-	-	\sim	\sim	\sim	\sim
Q_{5}^{+}	D5 branes	-	-	-	-	-	-
Q_{5}^{-}	D5 fluxes	\circ	\circ	\circ	.

where $\mathcal{M}=S^{3} \times S^{1}$. Near horison geometry: $A d S_{3} \times S^{3} \times S^{3} \times S^{1}$.
D1-branes are instantons in D5-brane worldvolume theory. In IR, the theory is described by a sigma model on moduli space of instantons $\mathcal{M}_{Q_{1}, Q_{5}^{+}=1, Q_{5}^{-}} \cong \operatorname{Sym}^{Q_{1}}\left(S_{Q_{5}^{-}-1}^{3} \times S_{1}\right)$.
[Eberhardt, Gaberdiel, Li; Eberhardt, Gaberdiel, Gopakumar, Li '17]
\mathcal{S}_{κ} is CFT on $S^{3} \times S^{1}:$ an $\mathcal{N}=1$ WZW model $\mathfrak{s u}(2)_{\kappa+2}^{(1)} \oplus \mathfrak{u}(1)^{(1)}$, $\kappa=Q_{5}^{-}-1$. It has large $\mathcal{N}=(4,4)$ linear A_{γ} SCA.
[Gukov, Martinec, Moore, Strominger '04]

Large $\mathcal{N}=4$ SCA:

- \mathcal{S}_{κ} is a 2 d SCFT with large $\mathcal{N}=(4,4)$ susy, $\mathfrak{s u}(2)_{k^{+}} \oplus \mathfrak{s u}(2)_{k^{-}}$ R-symmetry algebra, and levels $k^{+}=1, k^{-}=\kappa+1$.
[Sevrin, Troost, van Proeyen '88; Gukov, Martinec, Moore, Strominger '04]
- Generators of left-moving SCA: $L_{n}, G_{r}^{\mu \nu}, A_{n}^{+i}, A_{n}^{-i}, U_{n}, Q^{\mu \nu}$.
- $c=\frac{6 k^{+} k^{-}}{k^{+}+k^{-}}, \gamma=\frac{k^{-}}{k^{+}+k^{-}}$.
- Global wedge algebra: $\mathfrak{d}(2,1 \mid \alpha), \alpha=\frac{\gamma}{1-\gamma}$, spanned by $L_{0}, L_{ \pm 1}, G_{-\frac{1}{2}}^{\mu \nu}, A_{0}^{ \pm i}$.
- BPS bound of A_{γ} SCA:

$$
\begin{array}{r}
h_{\mathrm{BPS}}\left(j^{+}, j^{-}, u\right)=\frac{1}{k^{+}+k^{-}}\left(k^{+} j^{-}+k^{-} j^{+}+\left(j^{+}-j^{-}\right)^{2}+u^{2}\right), \\
k^{ \pm} \in\left\{0, \frac{1}{2}, 1, \cdots, \frac{k^{ \pm}-1}{2}\right\} .
\end{array}
$$

[Gunaydin, Petersen, Taormina, van Proeyen '89, Petersen, Taormina '90]

\mathcal{S}_{k} :

- Each BPS multiplet of the large $\mathcal{N}=4$ SCA with $j^{+}=j^{-}$has two states which are chiral primaries of the $\mathcal{N}=2$ subalgebra.

1

- Hodge diamond of $\mathcal{S}_{\kappa}: \begin{array}{llll} & 1 & & 1\end{array}$,
$4 \mathrm{cp-cp}:|0\rangle_{\mathrm{NS}}, \psi_{-1 / 2}^{++}|0\rangle_{\mathrm{NS}}, \tilde{\psi}_{-1 / 2}^{++}|0\rangle_{\mathrm{NS}}, \psi_{-1 / 2}^{++} \tilde{\psi}_{-1 / 2}^{++}|0\rangle_{\mathrm{NS}}$.

\mathcal{S}_{0} :

- Theory of 1 free boson and 4 free fermions, $k^{+}=k^{-}=1, c=3$, $j^{+}=j^{-}=u=0$.
$\operatorname{Sym}^{Q_{1}}\left(\mathcal{S}_{\kappa}\right):$
- Low-lying single-particle BPS spectrum:
[Eberhardt, Gaberdiel, Li '17]

$$
\left.\bigoplus_{j \in \frac{1}{2} \mathbb{Z} \geq 0}^{\frac{c}{12}}[j, j, u=0]_{S} \otimes \overline{[j, j, u=0}\right]_{S} .
$$

- Hodge diamonds:

$\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ with large $\mathcal{N}=(4,4)$ susy

- Stringy duality: string theory on $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{S}^{3} \times \mathrm{S}^{1}$ is dual to symmetric orbifold $\operatorname{Sym}^{Q_{1} Q_{5}^{+}}\left(\mathcal{S}_{\kappa}\right)$.
[Eberhardt, Gaberdiel, Li '17]
- World-sheet theory is described by a WZW model based on $\mathfrak{s l}(2, \mathbb{R})_{k=\frac{k^{+} k^{-}}{k^{+}+k^{-}}}^{(1)} \oplus \mathfrak{s u}(2)_{k^{+}}^{(1)} \oplus \mathfrak{s u}(2)_{k^{-}}^{(1)} \oplus \mathfrak{u}(1)^{(1)}$ for pure NS-NS background. [Elitzur, Feinerman, Giveon, Tsabar '99]
- BPS spectrum matches the CFT spectrum:
[Eberhardt, Gaberdiel, Li; Baggio, Ohlsson Sax, Sfondrini, Stefanski, Torielli '17]

$$
\left.\bigoplus_{j \in \frac{1}{2} \mathbb{Z} \geq 0}^{\frac{c}{12}}[j, j, u=0]_{S} \otimes \overline{[j, j, u=0}\right]_{S} .
$$

- Supergravity limit corresponds to $k \rightarrow \infty$.
- BPS spectrum is also derived using integrability techniques. [Ohlsson Sax, Sfondrini, Stefanski, Torielli '17]

$\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ with large $\mathcal{N}=(4,4)$ susy

- Stringy duality: string theory on $\operatorname{AdS}_{3} \times S^{3} \times S^{3} \times S^{1}$ is dual to symmetric orbifold $\operatorname{Sym}^{Q_{1} Q_{5}^{+}}\left(\mathcal{S}_{\kappa}\right)$.
[Eberhardt, Gaberdiel, Li '17]
- BPS bound of the supergravity symmetry algebra $\mathfrak{d}(2,1 \mid \alpha)$:

$$
h_{\mathrm{BPS}}\left(j^{+}, j^{-}\right)=\frac{k^{+} j^{-}+k^{-} j^{+}}{k^{+}+k^{-}} .
$$

Only agrees with A_{γ} BPS bound for $j^{+}=j^{-}$and $u=0$.

- BPS spectrum of supergravity is computed through compactifying $9 d$ sugra on $S^{3} \times S^{3}$. The spectrum perfectly matches that of string theory and CFT:
[Eberhardt, Gaberdiel, Gopakumar, Li '17]

$$
\bigoplus_{j \in \frac{1}{2} Z_{\geq 2}}^{\infty}[j, j, u=0]_{S} \otimes[\overline{j, j, u=0}]_{S} .
$$

- Stringy $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ dualities with $\mathcal{N}=(4,4)$ and $(4,4)$
- $\mathcal{N}=(3,3)$ duality: world-sheet theory
- $\mathcal{N}=(3,3)$ duality: dual CFT
- Elliptic genus
- Conclusions

World-sheet theory: action of \mathbb{Z}_{2}

- String theory on $\operatorname{AdS}_{3} \times\left(\mathrm{S}^{3} \times \mathrm{S}^{3} \times \mathrm{S}^{1}\right) / \mathbb{Z}_{2}$: the \mathbb{Z}_{2} acts by exchanging the two spheres and changing the signature of fields on S^{1}.
[Yamaguchi, Ishimoto, Sugiyama, '99]
- This amounts to exchanging the two affine $\mathfrak{s u}(2)_{k^{ \pm}}^{(1)}$ SCAs: imposes the constraint $Q_{5}^{+}=Q_{5}^{-}, \kappa=0$.
- The diagonal part of the $\mathfrak{s u}(2)_{k^{+}}^{(1)} \oplus \mathfrak{s u}(2)_{k^{-}}^{(1)}$ algebra of the large $\mathcal{N}=4$ SCA survives the \mathbb{Z}_{2} action: $\mathfrak{s u}(2)_{k^{d}}^{(1)}, k^{d}=k^{+}+k^{-}=2 k^{+}$.
- Supercharges originally transformed in the $(\mathbf{2}, \mathbf{2})$ of $\mathfrak{s u}(2)_{+} \oplus$ $\mathfrak{s u}(2)_{-}$. Under the \mathbb{Z}_{2}, they transform in $\mathbf{3} \oplus \mathbf{1}$ of diagonal $\mathfrak{s u}(2)$. \mathbb{Z}_{2} actions which project out the singlet/triplet yield spacetime $\mathcal{N}=$ $3 / \mathcal{N}=1$, respectively.

World-sheet theory: \mathbb{Z}_{2} untwisted sector

- BPS bound of $\mathcal{N}=3$ SCA: $h_{\mathrm{BPS}}=\frac{\ell}{2}, \ell$ is $\mathfrak{s u}(2)_{d}$ spin, $\ell \leq \frac{k_{d}}{2}$. [Miki, '90]
- Global algebra of $\mathcal{N}=3$ SCA is $\mathfrak{o s p}(3 \mid 2)$ with bound $h_{\mathrm{BPS}}=\frac{\ell}{2}$.
- Taking into account the NS and R sectors, and orbifold unprojected and projected contributions, BPS spectrum in supergravity limit, $k_{d} \rightarrow \infty$, is organised into representations of the $\mathcal{N}=3$ SCA:

World-sheet theory: \mathbb{Z}_{2} twist 2 sector

- NS sector does not contribute to BPS states; R sector does:

$$
\begin{gathered}
\bigoplus_{\ell \in \frac{1}{2} \mathbb{Z}_{>0}} 2[\ell]_{\mathrm{S}} \otimes[\ell]_{\mathrm{S}}, \\
\vdots \\
2 \\
2 \\
2 \\
2 \\
2 \\
0
\end{gathered}
$$

- Multiplicity: \mathbb{Z}_{2} orbifold action on S^{1} has two fixed points.

World-sheet theory: full BPS spectrum in $k_{d} \rightarrow \infty$

$$
\begin{aligned}
& \bigoplus_{\ell \in \mathbb{Z}_{\geq 0}}\left([\ell]_{\mathrm{s}} \otimes[\ell]_{\mathrm{s}}\right) \oplus 2\left(\left[\ell+\frac{1}{2}\right] \mathrm{s} \otimes\left[\ell+\frac{1}{2}\right] \mathrm{s}\right) \oplus\left([\ell+1]_{\mathrm{s}} \otimes[\ell+1]_{\mathrm{s}}\right) \oplus \\
& \bigoplus_{\ell \in \mathbb{Z} \geq 0+\frac{1}{2}} 2\left(\left[\ell+\frac{1}{2}\right] \mathrm{s} \otimes\left[\ell+\frac{1}{2}\right] \mathrm{s}\right),
\end{aligned}
$$

- Stringy $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ dualities with $\mathcal{N}=(4,4)$ and $(4,4)$
- $\mathcal{N}=(3,3)$ duality: world-sheet theory
- $\mathcal{N}=(3,3)$ duality: dual CFT
- Elliptic genus
- Conclusions

Dual CFT: action of \mathbb{Z}_{2}

- \mathcal{S}_{0} is the theory of one free boson and four free fermions.
- Action of \mathbb{Z}_{2} is realised in two ways:
(i) $\partial X \mapsto-\partial X, \quad \psi^{++} \mapsto-\psi^{++}, \quad \psi^{--} \mapsto-\psi^{--}$,

$$
\begin{gathered}
\psi^{+-} \mapsto \psi^{-+}, \quad \psi^{-+} \mapsto \psi^{+-}, \\
G^{++} \mapsto G^{++}, \quad G^{--} \mapsto G^{--}, \quad G^{+-} \mapsto G^{-+}, \quad G^{-+} \mapsto G^{+-} .
\end{gathered}
$$

(ii) $\partial X \mapsto-\partial X, \quad \psi^{++} \mapsto \psi^{++}, \quad \psi^{--} \mapsto \psi^{--}$,

$$
\psi^{+-} \mapsto-\psi^{-+}, \quad \psi^{-+} \mapsto-\psi^{+-},
$$

$$
G^{++} \mapsto-G^{++}, \quad G^{--} \mapsto-G^{--}, \quad G^{+-} \mapsto-G^{-+}, \quad G^{-+} \mapsto-G^{+-} .
$$

- The large $\mathcal{N}=4$ SCA reduces to:

$$
\begin{aligned}
& \text { (i) } \mathcal{N}=3, \quad G^{++}, \quad G^{--}, \quad \frac{1}{2}\left(G^{+-}+G^{-+}\right), \\
& \text {(ii) } \mathcal{N}=1, \quad \frac{1}{2}\left(G^{+-}-G^{-+}\right) .
\end{aligned}
$$

BPS spectrum of $\mathcal{S}_{0} / \mathbb{Z}_{2}$

- We recall that the BPS spectrum of \mathcal{S}_{0} is

$$
1 \begin{array}{lll}
1 & \\
1 & 1, & 4 \mathrm{cp}-\mathrm{cp}: \\
& |0\rangle_{\mathrm{NS}}, \psi_{-1 / 2}^{++}|0\rangle_{\mathrm{NS}}, \tilde{\psi}_{-1 / 2}^{++}|0\rangle_{\mathrm{NS}}, \psi_{-1 / 2}^{++} \tilde{\psi}_{-1 / 2}^{++}|0\rangle_{\mathrm{NS}} .
\end{array}
$$

BPS spectrum of $\mathcal{S}_{0} / \mathbb{Z}_{2}$

- We recall that the BPS spectrum of \mathcal{S}_{0} is

- For $\mathcal{N}=(3,3)$ susy, $\psi_{-1 / 2}^{++}|0\rangle_{\text {NS }}$ and $\tilde{\psi}_{-1 / 2}^{++}|0\rangle_{\text {NS }}$ do not survive \mathbb{Z}_{2} action. In \mathbb{Z}_{2} twist- 2 sector, S^{1} has two fixed points. The BPS spectrum is then:

$$
\begin{array}{lll}
& 1 & \\
0 & 2 & 0 \\
& 1 &
\end{array}
$$

BPS spectrum of $\mathcal{S}_{0} / \mathbb{Z}_{2}$

- Similarly, for theories with $(\mathcal{N}, \widetilde{\mathcal{N}})=(3,1),(1,3)$ and $(1,1)$ supersymmetry we can derive the reduced spectrum of the BPS states of \mathcal{S}_{0} which survive the \mathbb{Z}_{2} projection. In the untwisted sector we have:

	$\mathcal{N}=3$			$\mathcal{N}=1$		
$\mathcal{N}=3$	0	1	0	0	0	
		1			1	1
$\mathcal{N}=1$	1	0	0		1	
					1	

Dual CFT: BPS spectrum of $\operatorname{Sym}^{N}\left(\mathcal{S}_{0} / \mathbb{Z}_{2}\right)$, S_{N} odd twisted sector

	\vdots		
0		0	\vdots
	2		2
0		0	\oplus
	2		0
0		0	0
	1		2
			0

\mathbb{Z}_{2} untwisted sector

$$
h=\bar{h}=\frac{n-1}{4}
$$

\mathbb{Z}_{2} twist-2 sector

$$
h=\bar{h}=\frac{n}{4}
$$

Dual CFT: BPS spectrum of $\operatorname{Sym}^{N}\left(\mathcal{S}_{0} / \mathbb{Z}_{2}\right)$, S_{N} even twisted sector

\vdots
0
2
0
2
0
0

$$
\begin{array}{cc}
\mathbb{Z}_{2} \text { untwisted sector } & \mathbb{Z}_{2} \text { twist-2 sector } \\
\text { no contribution } & h=\bar{h}=\frac{n}{4}
\end{array}
$$

Dual CFT: full BPS spectrum of $\operatorname{Sym}^{N}\left(\mathcal{S}_{0} / \mathbb{Z}_{2}\right)$

- BPS spectrum of $\operatorname{Sym}^{N}\left(\mathcal{S}_{0} / \mathbb{Z}_{2}\right)$ matches the that of the worldsheet theory.
- Stringy $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ dualities with $\mathcal{N}=(4,4)$ and $(4,4)$
- $\mathcal{N}=(3,3)$ duality: world-sheet theory
- $\mathcal{N}=(3,3)$ duality: dual CFT
- Elliptic genus
- Conclusions

Dual CFT: modified elliptic genus

- Elliptic genus is defined as the trace over the RR sector of the Hilbert space of the theory
[Witten, '93]

$$
\mathcal{Z}_{\mathrm{R}}(z, \tau ; 0, \bar{\tau})=\operatorname{tr}_{\mathrm{RR}}\left((-1)^{F} q^{L_{0}-\frac{c}{24}} y^{J_{0}} \bar{q}^{\bar{L}_{0}-\frac{c}{24}}\right)
$$

J is the $U(1)$ R-current, $q=e^{2 \pi i \tau}, y=e^{2 \pi i z}$.

- Elliptic genus of any CFT with $\mathcal{N}=3$ symmetry vanishes because $\mathcal{N}=3$ SCA contains a free fermion which is a singlet of the Rsymmetry $\mathfrak{s u}(2)_{k}$.
[Goddard and A. Schwimmer, '88]
- We consider the index $\mathcal{Z}_{\text {NS }}$, which is non-vanishing, and define a quantity composed of chiral primaries in the right-moving sector and arbitrary excited states in the left-moving sector:

$$
\left.\mathcal{Z}_{\mathrm{NS}}(z, \tau) \equiv \tilde{Z}_{\mathrm{NS}}(z, \tau ; \bar{z}, \bar{\tau})\right|_{\bar{h}=\frac{\bar{e}}{2}}
$$

Dual CFT: modified elliptic genus

- Odd twisted sector of $\operatorname{Sym}^{N}\left(\mathcal{S}_{0} / \mathbb{Z}_{2}\right)$:
\mathbb{Z}_{2} untwisted sector:

$$
\mathcal{Z}_{\mathrm{NS}}^{\mathrm{U}_{\mathbb{Z}_{2}}}(z, \tau)=\frac{2}{1-y q^{\frac{1}{2}}}+\frac{2}{1-y^{-1} q^{\frac{1}{2}}}-3
$$

\mathbb{Z}_{2} twist-2 sector:

$$
\mathcal{Z}_{\mathrm{NS}}^{\mathrm{T}_{Z_{2}}}(z, \tau)=\frac{2 y^{\frac{1}{2}} q^{\frac{1}{4}}}{1-y q^{\frac{1}{2}}}+\frac{2 y^{-\frac{1}{2}} q^{\frac{1}{4}}}{1-y^{-1} q^{\frac{1}{2}}}
$$

- Even twisted sector of $\operatorname{Sym}^{N}\left(\mathcal{S}_{0} / \mathbb{Z}_{2}\right)$: modified genus vanishes.
- Single-particle contribution to the modified elliptic genus of the CFT matches the that of string theory in $k_{d} \rightarrow \infty$ limit.
- Stringy $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ dualities with $\mathcal{N}=(4,4)$ and $(4,4)$
- $\mathcal{N}=(3,3)$ duality: world-sheet theory
- $\mathcal{N}=(3,3)$ duality: dual CFT
- Elliptic genus
- Conclusions

$\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ duality with $\mathcal{N}=(3,3)$ susy

- String theory on $\operatorname{AdS}_{3} \times\left(\mathrm{S}^{3} \times \mathrm{S}^{3} \times \mathrm{S}^{1}\right) / \mathbb{Z}_{2}$ is dual to symmetric product orbifold $\operatorname{Sym}^{N}\left(\mathcal{S}_{0} / \mathbb{Z}_{2}\right)$.
- BPS spectrum of the dual CFT matches the BPS spectrum of the world-sheet theory.
- Modified elliptic genera of the CFT and string theory match.

