AdS_3/CFT_2 duality with $\mathcal{N} = (3,3)$ supersymmetry

Ida Zadeh

Based on: L. Eberhardt and IGZ [arXiv: 1805.ijklm]

University of Toronto 17 May 2018

\blacktriangleright String theory on $AdS_3 \times S^3 \times S^3 \times S^1$ supports the large $\mathcal{N}=4$ SCA.

[Boonstra, Peeters, Skenderis; '98; de Boer, Pasquinucci, Skenderis '99]

► S_{κ} CFTs are $\mathcal{N} = 1$ WZW models $\mathfrak{su}(2)_{\kappa+2}^{(1)} \times \mathfrak{u}(1)^{(1)}$ associated to $S^3 \times S^1$ and have large $\mathcal{N} = 4$ susy. [Sevrin, Troost, van Proeyen '88; Gukov, Martinec, Moore, Strominger '04]

► Holographic duality: string theory on $AdS_3 \times S^3 \times S^3 \times S^1$ is dual to the symmetric product orbifold $Sym^N(S_{\kappa})$. [Eberhardt, Gaberdiel, Li; Eberhardt, Gaberdiel, Gopakumar, Li '17] ▶ We consider string theory on $AdS_3 \times (S^3 \times S^3 \times S^1)/\mathbb{Z}_2$. This background supports $\mathcal{N} = 3$ or $\mathcal{N} = 1$ SCA depending on the action of \mathbb{Z}_2 . [Yamaguchi, Ishimoto, Sugiyama, '99]

▶ Holographic duality with $\mathcal{N} = (3,3)$ susy: string theory on $AdS_3 \times (S^3 \times S^3 \times S^1)/\mathbb{Z}_2$ is dual to symmetric orbifold $Sym^N(\mathcal{S}_0/\mathbb{Z}_2)$. [Eberhardt, IGZ; to appear]

► The BPS spectrum of the dual CFT matches that of the worldsheet string theory. Moreover, the modified elliptic genera of the CFT and string theory match.

- Stringy AdS₃/CFT₂ dualities with $\mathcal{N} = (4,4)$ and (4,4)
- $\mathcal{N} = (3,3)$ duality: world-sheet theory
- $\mathcal{N} = (3,3)$ duality: dual CFT
- Elliptic genus
- Conclusions

D1-D5 brane system

where \mathcal{M} is \mathbb{T}^4 or K3. Near horison geometry: $AdS_3 \times S^3 \times \mathcal{M}$.

D1-D5 brane system

where \mathcal{M} is \mathbb{T}^4 or K3. Near horison geometry: $AdS_3 \times S^3 \times \mathcal{M}$.

In the limit where the size of $\mathcal{M} \ll$ size of S^1 , the worldvolume gauge theory of D branes is a 2d field theory that lives on S^1 .

D1-D5 brane system

where \mathcal{M} is \mathbb{T}^4 or K3. Near horison geometry: $AdS_3 \times S^3 \times \mathcal{M}$.

In the limit where the size of $\mathcal{M} \ll$ size of S^1 , the worldvolume gauge theory of D branes is a 2d field theory that lives on S^1 .

It flows in IR to a CFT described by a sigma model whose target space is a resolution of symmetric product orbifold $\operatorname{Sym}^{N}(\mathcal{M})$. [Vafa, '95; Strominger, Vafa '96] Symmetric product orbifold $\operatorname{Sym}^{N}(\mathcal{M})$

▶ 2d SCFT with small $\mathcal{N} = (4, 4)$ susy and $SO(4)_R \cong SU(2)_L \times SU(2)_R$ *R*-symmetry.

Symmetric product orbifold $\operatorname{Sym}^{N}(\mathcal{M})$

▶ 2d SCFT with small $\mathcal{N} = (4, 4)$ susy and $SO(4)_R \cong SU(2)_L \times SU(2)_R$ *R*-symmetry.

► Generators of left-moving superconformal algebra: L_n , $G_r^{\mu\nu}$, and J_n^i (similar for right-moving generators).

Symmetric product orbifold $\operatorname{Sym}^{N}(\mathcal{M})$

▶ 2d SCFT with small $\mathcal{N} = (4, 4)$ susy and $SO(4)_R \cong SU(2)_L \times SU(2)_R$ *R*-symmetry.

▶ Generators of left-moving superconformal algebra: L_n , $G_r^{\mu\nu}$, and J_n^i (similar for right-moving generators).

▶ The orbifold group, S_N , acts by permuting N copies of seed theory. It defines a new sector of Hilbert space, the *twisted* sector, through imposing new bc's on the fundamental fields.

▶ Stringy duality: string theory on $AdS_3 \times S^3 \times M$ is dual to symmetric orbifold $Sym^N(M)$.

▶ Stringy duality: string theory on $AdS_3 \times S^3 \times M$ is dual to symmetric orbifold $\operatorname{Sym}^N(\mathcal{M})$.

► The BPS spectra of the two theories match.

▶ Stringy duality: string theory on $AdS_3 \times S^3 \times M$ is dual to symmetric orbifold $\operatorname{Sym}^N(\mathcal{M})$.

► The BPS spectra of the two theories match.

▶ For $\mathcal{M} = K3$, the elliptic genera of the CFT and supergravity match. [de Boer, '98]

▶ Stringy duality: string theory on $AdS_3 \times S^3 \times M$ is dual to symmetric orbifold $\operatorname{Sym}^N(\mathcal{M})$.

► The BPS spectra of the two theories match.

▶ For $\mathcal{M} = K3$, the elliptic genera of the CFT and supergravity match. [de Boer, '98]

► 3-point functions of chiral primaries in orbifold CFT, world-sheet theory, and supergravity match.

[Gaberdiel, Kirsch, '07; Dabholkar, Pakman, '07; Taylor, '08]

▶ Stringy duality: string theory on $AdS_3 \times S^3 \times M$ is dual to symmetric orbifold $\operatorname{Sym}^N(\mathcal{M})$.

► The BPS spectra of the two theories match.

▶ For $\mathcal{M} = K3$, the elliptic genera of the CFT and supergravity match. [de Boer, '98]

► 3-point functions of chiral primaries in orbifold CFT, world-sheet theory, and supergravity match.

[Gaberdiel, Kirsch, '07; Dabholkar, Pakman, '07; Taylor, '08]

► Great progress in constructing new classes of 3-charge D1-D5-P black hole microstates with arbitrary finite angular momenta. [Bena, Giusto, Martinec, Mathur, Peet, Russo, Shigemori, Turton, Warner]

▶ Stringy duality: string theory on $AdS_3 \times S^3 \times M$ is dual to symmetric orbifold $\operatorname{Sym}^N(\mathcal{M})$.

► The BPS spectra of the two theories match.

▶ For $\mathcal{M} = K3$, the elliptic genera of the CFT and supergravity match. [de Boer, '98]

► 3-point functions of chiral primaries in orbifold CFT, world-sheet theory, and supergravity match.

[Gaberdiel, Kirsch, '07; Dabholkar, Pakman, '07; Taylor, '08]

Great progress in constructing new classes of 3-charge D1-D5-P black hole microstates with arbitrary finite angular momenta.
 [Bena, Giusto, Martinec, Mathur, Peet, Russo, Shigemori, Turton, Warner]
 Embedding of higher spin/CFT duality in stringy duality.
 [Gaberdiel, Gopakumar '14]

Large $\mathcal{N} = (4,4)$ susy

D brane system:

	0	1	2	3	4	5	6	7	8	9
Q_1 D1 branes	—	•			•	—	\sim	\sim	\sim	\sim
Q_5^+ D5 branes	—	•	•	•	•					
Q_5^- D5 fluxes	•	•	•	•	•	•	0	0	0	•

where $\mathcal{M}=S^3\times S^1.$ Near horison geometry: $AdS_3{\times}S^3{\times}S^3{\times}S^1$.

Large $\mathcal{N} = (4, 4)$ susy

D brane system:

	0	1	2	3	4	5	6	7	8	9
Q_1 D1 branes	—	•	•	•	•	—	\sim	\sim	\sim	\sim
Q_5^+ D5 branes		•	•	•	•					—
Q_5^- D5 fluxes	•	•	•	•	•	•	0	0	0	•

where $\mathcal{M}=S^3\times S^1.$ Near horison geometry: $AdS_3{\times}S^3{\times}S^3{\times}S^1$.

D1-branes are instantons in D5-brane worldvolume theory. In IR, the theory is described by a sigma model on moduli space of instantons $\mathcal{M}_{Q_1,Q_5^+=1,Q_5^-} \cong \operatorname{Sym}^{Q_1}(S^3_{Q_5^--1} \times S_1)$. [Eberhardt, Gaberdiel, Li; Eberhardt, Gaberdiel, Gopakumar, Li '17]

Large $\mathcal{N} = (4, 4)$ susy

D brane system:

	0	1	2	3	4	5	6	7	8	9
Q_1 D1 branes	—	•	•	•	•	—	\sim	\sim	\sim	\sim
Q_5^+ D5 branes		•	•	•	•					
Q_5^- D5 fluxes	•	•	•	•	•	•	0	0	0	•

where $\mathcal{M} = S^3 \times S^1$. Near horison geometry: $AdS_3 \times S^3 \times S^3 \times S^1$.

D1-branes are instantons in D5-brane worldvolume theory. In IR, the theory is described by a sigma model on moduli space of instantons $\mathcal{M}_{Q_1,Q_5^+=1,Q_5^-} \cong \operatorname{Sym}^{Q_1}(S^3_{Q_5^--1} \times S_1)$. [Eberhardt, Gaberdiel, Li; Eberhardt, Gaberdiel, Gopakumar, Li '17]

 S_{κ} is CFT on S³×S¹: an $\mathcal{N} = 1$ WZW model $\mathfrak{su}(2)_{\kappa+2}^{(1)} \oplus \mathfrak{u}(1)^{(1)}$, $\kappa = Q_5^- - 1$. It has large $\mathcal{N} = (4, 4)$ linear A_{γ} SCA. [Gukov, Martinec, Moore, Strominger '04]

Large $\mathcal{N} = 4$ SCA:

► S_{κ} is a 2d SCFT with large $\mathcal{N} = (4, 4)$ susy, $\mathfrak{su}(2)_{k^+} \oplus \mathfrak{su}(2)_{k^-}$ *R*-symmetry algebra, and levels $k^+ = 1$, $k^- = \kappa + 1$. [Sevrin, Troost, van Proeyen '88; Gukov, Martinec, Moore, Strominger '04]

► Generators of left-moving SCA: L_n , $G_r^{\mu\nu}$, A_n^{+i} , A_n^{-i} , U_n , $Q^{\mu\nu}$.

$$\blacktriangleright \ c = \frac{6k^+k^-}{k^++k^-} \ , \ \gamma = \frac{k^-}{k^++k^-} \ .$$

▶ Global wedge algebra: $\mathfrak{d}(2,1|\alpha)$, $\alpha = \frac{\gamma}{1-\gamma}$, spanned by L_0 , $L_{\pm 1}$, $G_{-\frac{1}{2}}^{\mu\nu}$, $A_0^{\pm i}$.

▶ BPS bound of A_{γ} SCA:

$$h_{ ext{BPS}}(j^+, j^-, u) = rac{1}{k^+ + k^-} \left(k^+ j^- + k^- j^+ + (j^+ - j^-)^2 + u^2
ight),$$

 $k^{\pm} \in \{0, rac{1}{2}, 1, \cdots, rac{k^{\pm} - 1}{2}\}.$

[Gunaydin, Petersen, Taormina, van Proeyen '89, Petersen, Taormina '90]

 \mathcal{S}_{κ} :

► Each BPS multiplet of the large $\mathcal{N} = 4$ SCA with $j^+ = j^-$ has two states which are chiral primaries of the $\mathcal{N} = 2$ subalgebra.

► Hodge diamond of
$$S_{\kappa}$$
: 1 1,
1 4 cp-cp: $|0\rangle_{\rm NS}$, $\psi^{++}_{-1/2}|0\rangle_{\rm NS}$, $\tilde{\psi}^{++}_{-1/2}|0\rangle_{\rm NS}$, $\psi^{++}_{-1/2}\tilde{\psi}^{++}_{-1/2}|0\rangle_{\rm NS}$.

\mathcal{S}_0 :

▶ Theory of 1 free boson and 4 free fermions, $k^+ = k^- = 1$, c = 3, $j^+ = j^- = u = 0$.

 $\operatorname{Sym}^{Q_1}(\mathcal{S}_{\kappa})$:

► Low-lying single-particle BPS spectrum: [Eberhardt, Gaberdiel, Li '17]

$$\bigoplus_{j\in\frac{1}{2}\mathbb{Z}_{\geq 0}}^{\frac{c}{12}} [j,j,u=0]_{\mathcal{S}} \otimes \overline{[j,j,u=0]}_{\mathcal{S}} .$$

► Hodge diamonds:

$\mathsf{AdS}_3/\mathsf{CFT}_2$ with large $\mathcal{N}=(4,4)$ susy

▶ Stringy duality: string theory on $AdS_3 \times S^3 \times S^3 \times S^1$ is dual to symmetric orbifold $Sym^{Q_1Q_5^+}(S_\kappa)$.

[Eberhardt, Gaberdiel, Li '17]

▶ World-sheet theory is described by a WZW model based on $\mathfrak{sl}(2,\mathbb{R})_{k=\frac{k^+k^-}{k^++k^-}}^{(1)} \oplus \mathfrak{su}(2)_{k^+}^{(1)} \oplus \mathfrak{su}(2)_{k^-}^{(1)} \oplus \mathfrak{u}(1)^{(1)}$ for pure NS-NS back-ground. [Elitzur, Feinerman, Giveon, Tsabar '99]

► BPS spectrum matches the CFT spectrum:

[Eberhardt, Gaberdiel, Li; Baggio, Ohlsson Sax, Sfondrini, Stefanski, Torielli '17]

$$\bigoplus_{j\in\frac{1}{2}\mathbb{Z}_{\geq 0}}^{\frac{c}{12}} [j,j,u=0]_{\mathcal{S}} \otimes \overline{[j,j,u=0]}_{\mathcal{S}} .$$

▶ Supergravity limit corresponds to $k \to \infty$.

► BPS spectrum is also derived using integrability techniques. [Ohlsson Sax, Sfondrini, Stefanski, Torielli '17]

► Stringy duality: string theory on $AdS_3 \times S^3 \times S^3 \times S^1$ is dual to symmetric orbifold $Sym^{Q_1Q_5^+}(S_{\kappa})$. [Eberhardt, Gaberdiel, Li '17]

▶ BPS bound of the supergravity symmetry algebra $\vartheta(2,1|\alpha)$:

$$h_{\rm BPS}(j^+,j^-) = rac{k^+j^- + k^-j^+}{k^+ + k^-}$$

Only agrees with A_{γ} BPS bound for $j^+ = j^-$ and u = 0.

► BPS spectrum of supergravity is computed through compactifying 9d sugra on $S^3 \times S^3$. The spectrum perfectly matches that of string theory and CFT: [Eberhardt, Gaberdiel, Gopakumar, Li '17]

$$\bigoplus_{j\in\frac{1}{2}\mathbb{Z}_{\geq 0}}^{\infty} [j,j,u=0]_{\mathcal{S}} \otimes \overline{[j,j,u=0]}_{\mathcal{S}} .$$

- Stringy AdS₃/CFT₂ dualities with $\mathcal{N} = (4,4)$ and (4,4)
- $\mathcal{N} = (3,3)$ duality: world-sheet theory
- $\mathcal{N} = (3,3)$ duality: dual CFT
- Elliptic genus
- Conclusions

World-sheet theory: action of \mathbb{Z}_2

▶ String theory on $AdS_3 \times (S^3 \times S^3 \times S^1)/\mathbb{Z}_2$: the \mathbb{Z}_2 acts by exchanging the two spheres and changing the signature of fields on S^1 . [Yamaguchi, Ishimoto, Sugiyama, '99]

▶ This amounts to exchanging the two affine $\mathfrak{su}(2)_{k^{\pm}}^{(1)}$ SCAs: imposes the constraint $Q_5^+ = Q_5^-$, $\kappa = 0$.

▶ The diagonal part of the $\mathfrak{su}(2)_{k^+}^{(1)} \oplus \mathfrak{su}(2)_{k^-}^{(1)}$ algebra of the large $\mathcal{N} = 4$ SCA survives the \mathbb{Z}_2 action: $\mathfrak{su}(2)_{k^d}^{(1)}$, $k^d = k^+ + k^- = 2k^+$.

▶ Supercharges originally transformed in the (2,2) of $\mathfrak{su}(2)_+ \oplus \mathfrak{su}(2)_-$. Under the \mathbb{Z}_2 , they transform in $\mathbf{3} \oplus \mathbf{1}$ of diagonal $\mathfrak{su}(2)$. \mathbb{Z}_2 actions which project out the singlet/triplet yield spacetime $\mathcal{N} = 3/\mathcal{N} = 1$, respectively.

World-sheet theory: \mathbb{Z}_2 untwisted sector

▶ BPS bound of $\mathcal{N} = 3$ SCA: $h_{\text{BPS}} = \frac{\ell}{2}$, ℓ is $\mathfrak{su}(2)_d$ spin, $\ell \leq \frac{k_d}{2}$. [Miki, '90]

• Global algebra of $\mathcal{N} = 3$ SCA is $\mathfrak{osp}(3|2)$ with bound $h_{\mathrm{BPS}} = \frac{\ell}{2}$.

▶ Taking into account the NS and R sectors, and orbifold unprojected and projected contributions, BPS spectrum in supergravity limit, $k_d \rightarrow \infty$, is organised into representations of the $\mathcal{N} = 3$ SCA:

$$\bigoplus_{\ell \in \mathbb{Z}_{\geq 0}} \begin{bmatrix} \ell \end{bmatrix}_{S} \otimes \overline{[\ell]}_{S} \oplus \begin{bmatrix} \ell+1 \end{bmatrix}_{S} \otimes \overline{[\ell+1]}_{S},$$

$$\vdots \quad \vdots \quad \vdots \\
 0 \quad 0 \\
 2 \\
 0 \quad 0 \\
 2 \\
 0 \quad 0 \\
 1
 1$$

World-sheet theory: \mathbb{Z}_2 twist 2 sector

▶ NS sector does not contribute to BPS states; R sector does:

$$\bigoplus_{\ell \in \frac{1}{2}\mathbb{Z}_{>0}} 2 \ [\ell]_{\mathrm{S}} \otimes [\ell]_{\mathrm{S}} ,$$

$$\vdots$$

$$2$$

$$2$$

$$2$$

$$2$$

$$2$$

$$2$$

$$2$$

$$2$$

$$2$$

$$2$$

$$0$$

▶ Multiplicity: \mathbb{Z}_2 orbifold action on S^1 has two fixed points.

World-sheet theory: full BPS spectrum in $k_d \rightarrow \infty$

$$\bigoplus_{\ell \in \mathbb{Z}_{\geq 0}} \left([\ell]_{\mathrm{S}} \otimes [\ell]_{\mathrm{S}} \right) \oplus 2 \left([\ell + \frac{1}{2}]_{\mathrm{S}} \otimes [\ell + \frac{1}{2}]_{\mathrm{S}} \right) \oplus \left([\ell + 1]_{\mathrm{S}} \otimes [\ell + 1]_{\mathrm{S}} \right) \ \oplus$$

 $\bigoplus_{\ell\in\mathbb{Z}_{\geq0}+\frac{1}{2}} 2\big([\ell+\frac{1}{2}]_{\mathrm{S}}\otimes[\ell+\frac{1}{2}]_{\mathrm{S}}\big)\ ,$

- Stringy AdS₃/CFT₂ dualities with $\mathcal{N} = (4,4)$ and (4,4)
- $\mathcal{N} = (3,3)$ duality: world-sheet theory
- $\mathcal{N} = (3,3)$ duality: dual CFT
- Elliptic genus
- Conclusions

Dual CFT: action of \mathbb{Z}_2

- \blacktriangleright \mathcal{S}_0 is the theory of one free boson and four free fermions.
- ▶ Action of \mathbb{Z}_2 is realised in two ways:

$$\begin{array}{cccc} (i) & \partial X \mapsto -\partial X \ , & \psi^{++} \mapsto -\psi^{++} \ , & \psi^{--} \mapsto -\psi^{--} \ , \\ & \psi^{+-} \mapsto \psi^{-+} \ , & \psi^{-+} \mapsto \psi^{+-} \ , \\ & G^{++} \mapsto G^{++}, & G^{--} \mapsto G^{--}, & G^{+-} \mapsto G^{-+}, & G^{-+} \mapsto G^{+-} \ . \end{array}$$

(ii)
$$\partial X \mapsto -\partial X$$
, $\psi^{++} \mapsto \psi^{++}$, $\psi^{--} \mapsto \psi^{--}$,
 $\psi^{+-} \mapsto -\psi^{-+}$, $\psi^{-+} \mapsto -\psi^{+-}$,
 $G^{++} \mapsto -G^{++}$, $G^{--} \mapsto -G^{--}$, $G^{+-} \mapsto -G^{-+}$, $G^{-+} \mapsto -G^{+-}$

▶ The large $\mathcal{N} = 4$ SCA reduces to:

(i)
$$\mathcal{N} = 3$$
, G^{++} , G^{--} , $\frac{1}{2}(G^{+-} + G^{-+})$,
(ii) $\mathcal{N} = 1$, $\frac{1}{2}(G^{+-} - G^{-+})$.

BPS spectrum of $\mathcal{S}_0/\mathbb{Z}_2$

▶ We recall that the BPS spectrum of S_0 is

$$\begin{array}{cccc} 1 & & & \\ 1 & & & 1 \ , & 4 \ {\rm cp-cp:} \ |0\rangle_{\rm NS}, \ \psi^{++}_{-1/2} |0\rangle_{\rm NS}, \ \tilde{\psi}^{++}_{-1/2} |0\rangle_{\rm NS}, \ \psi^{++}_{-1/2} \tilde{\psi}^{++}_{-1/2} |0\rangle_{\rm NS} \ . \\ & & 1 \end{array}$$

BPS spectrum of $\mathcal{S}_0/\mathbb{Z}_2$

▶ We recall that the BPS spectrum of S_0 is

$$\begin{array}{cccc} 1 & & & \\ 1 & & & 1 \ , & 4 \ \mathsf{cp-cp:} \ |0\rangle_{\mathrm{NS}} , \ \psi_{-1/2}^{++} |0\rangle_{\mathrm{NS}} , \ \tilde{\psi}_{-1/2}^{++} |0\rangle_{\mathrm{NS}} , \ \psi_{-1/2}^{++} \tilde{\psi}_{-1/2}^{++} |0\rangle_{\mathrm{NS}} \ . \\ & & & 1 \end{array}$$

▶ For $\mathcal{N} = (3,3)$ susy, $\psi_{-1/2}^{++} |0\rangle_{\rm NS}$ and $\tilde{\psi}_{-1/2}^{++} |0\rangle_{\rm NS}$ do not survive \mathbb{Z}_2 action. In \mathbb{Z}_2 twist-2 sector, S^1 has two fixed points. The BPS spectrum is then:

$$\begin{array}{ccc} 1\\ 0&2&0\\ 1\end{array}$$

BPS spectrum of $\mathcal{S}_0/\mathbb{Z}_2$

▶ Similarly, for theories with $(\mathcal{N}, \widetilde{\mathcal{N}}) = (3, 1)$, (1, 3) and (1, 1) supersymmetry we can derive the reduced spectrum of the BPS states of S_0 which survive the \mathbb{Z}_2 projection. In the untwisted sector we have:

	\mathcal{N}	= 3	${\cal N}=1$			
		1	0			
$\mathcal{N}=3$	0	0	0	1		
		1		1		
		0		1		
$\mathcal{N}=1$	1	0	1	1		
		1		1		

Dual CFT: BPS spectrum of $Sym^N(S_0/\mathbb{Z}_2)$, S_N odd twisted sector

\mathbb{Z}_2 untwisted sector	\mathbb{Z}_2 twist-2 sector
$h=ar{h}=rac{n-1}{4}$	$h=ar{h}=rac{n}{4}$

Dual CFT: BPS spectrum of $\text{Sym}^{N}(\mathcal{S}_{0}/\mathbb{Z}_{2})$, S_{N} even twisted sector

Dual CFT: full BPS spectrum of $Sym^{N}(S_0/\mathbb{Z}_2)$

▶ BPS spectrum of $Sym^N(S_0/\mathbb{Z}_2)$ matches the that of the world-sheet theory.

- Stringy AdS₃/CFT₂ dualities with $\mathcal{N} = (4,4)$ and (4,4)
- $\mathcal{N} = (3,3)$ duality: world-sheet theory
- $\mathcal{N} = (3,3)$ duality: dual CFT
- Elliptic genus
- Conclusions

Dual CFT: modified elliptic genus

► Elliptic genus is defined as the trace over the RR sector of the Hilbert space of the theory [Witten, '93]

$$\mathcal{Z}_{
m R}({\sf z}, au;{\sf 0},ar{ au}) = {
m tr}_{
m R
m R}ig((-1)^{{\sf F}} {\sf q}^{{\it L}_0-rac{c}{24}} y^{{\it J}_0}ar{{\sf q}}^{ar{{\sf L}}_0-rac{c}{24}}ig) \;,$$

J is the U(1) R-current, $q = e^{2\pi i \tau}$, $y = e^{2\pi i z}$.

► Elliptic genus of any CFT with $\mathcal{N} = 3$ symmetry vanishes because $\mathcal{N} = 3$ SCA contains a free fermion which is a singlet of the R-symmetry $\mathfrak{su}(2)_k$. [Goddard and A. Schwimmer, '88]

▶ We consider the index Z_{NS} , which is non-vanishing, and define a quantity composed of chiral primaries in the right-moving sector and arbitrary excited states in the left-moving sector:

$$\mathcal{Z}_{
m NS}(z, au)\equiv ilde{Z}_{
m NS}(z, au;ar{z},ar{ au})\Big|_{ar{h}=rac{ar{ au}}{2}}\;.$$

Dual CFT: modified elliptic genus

- ▶ Odd twisted sector of $Sym^N(S_0/\mathbb{Z}_2)$:
- \mathbb{Z}_2 untwisted sector:

$$\mathcal{Z}_{\rm NS}^{{\rm U}_{\mathbb{Z}_2}}(z,\tau) = rac{2}{1-yq^{rac{1}{2}}} + rac{2}{1-y^{-1}q^{rac{1}{2}}} - 3 \; .$$

 \mathbb{Z}_2 twist-2 sector:

$$\mathcal{Z}_{\rm NS}^{{\rm T}_{\mathbb{Z}_2}}(z,\tau) = \frac{2y^{\frac{1}{2}}q^{\frac{1}{4}}}{1-yq^{\frac{1}{2}}} + \frac{2y^{-\frac{1}{2}}q^{\frac{1}{4}}}{1-y^{-1}q^{\frac{1}{2}}}$$

▶ Even twisted sector of $Sym^N(S_0/\mathbb{Z}_2)$: modified genus vanishes.

▶ Single-particle contribution to the modified elliptic genus of the CFT matches the that of string theory in $k_d \rightarrow \infty$ limit.

- Stringy AdS₃/CFT₂ dualities with $\mathcal{N} = (4,4)$ and (4,4)
- $\mathcal{N} = (3,3)$ duality: world-sheet theory
- $\mathcal{N} = (3,3)$ duality: dual CFT
- Elliptic genus
- Conclusions

AdS_3/CFT_2 duality with $\mathcal{N} = (3,3)$ susy

▶ String theory on AdS₃×(S³×S³×S¹)/ℤ₂ is dual to symmetric product orbifold $\mathrm{Sym}^N(\mathcal{S}_0/\mathbb{Z}_2)$.

 \blacktriangleright BPS spectrum of the dual CFT matches the BPS spectrum of the world-sheet theory.

▶ Modified elliptic genera of the CFT and string theory match.