Newton-Cartan	Geometry
0000000	

Non-Relativistic Matter

Comments

00

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Newton-Cartan Gravity in Action

Eric Bergshoeff

Groningen University

work done in collaboration with Jan Rosseel and Paul Townsend

University of Toronto, Toronto, May 16, 2018

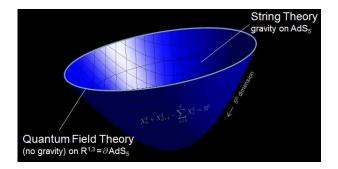
Newton-Cartan Geometry	Newton-Cartan Gravity	Non-Relativistic Matter	Comments
000000	000000	00000000	00

Motivation

Newton-Cartan Gravity

000000

Non-Relativistic Matte


000000000

Comments

00

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

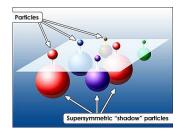
Holography

Gravity is not only used to describe the gravitational force!

Christensen, Hartong, Kiritsis, Obers and Rollier (2013-2015)

Newton-Cartan	Geometry
0000000	

000000


Non-Relativistic Matte

000000000

Comments

00

Supersymmetry

supersymmetry allows to apply powerful localization techniques to exactly calculate partition functions of (non-relativistic) supersymmetric field theories

Pestun (2007); Festuccia, Seiberg (2011), Pestun, Zabzine (2016)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Newton-Cartan	Geometry
0000000	

Non-Relativistic Matter

Comments

00

Condensed Matter

Effective Field Theory (EFT) coupled to NC background fields

serve as response functions and lead to restrictions on EFT

compare to

Coriolis force

Luttinger (1964), Greiter, Wilczek, Witten (1989), Son (2005, 2012), Can, Laskin, Wiegmann (2014)

Jensen (2014), Gromov, Abanov (2015), Gromov, Bradlyn (2017)

Newton-Cartan Gravity

Non-Relativistic Matter

000000000

Comments

00

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Newton-Cartan Geometry

Newton-Cartan Gravity

Non-Relativistic Matter

00000000

Comments

00

Outline

Newton-Cartan Geometry

Newton-Cartan Gravity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Newton-Cartan Gravity

Non-Relativistic Matter

000000000

Comments

00

Outline

Newton-Cartan Geometry

Newton-Cartan Gravity

Non-Relativistic Matter

Newton-Cartan Gravity

Non-Relativistic Matter

000000000

Comments

00

Outline

Newton-Cartan Geometry

Newton-Cartan Gravity

Non-Relativistic Matter

Comments

0000000

Newton-Cartan Gravity

0000000

Non-Relativistic Matte

Comment

Newton-Cartan Geometry

Newton-Cartan Gravity

Non-Relativistic Matter

Comments

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q ()

Newton-Cartan	Geometry
•000000	

Non-Relativistic Matter

Comments

00

NC Geometry in a Nutshell

• Inertial frames: Galilean symmetries

• Constant acceleration: Newtonian gravity/Newton potential $\Phi(x)$

 <u>no</u> frame-independent formulation (needs geometry!)

Riemann (1867)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Newton-Cartan Geometry	Newton-Cartan Gravity	Non-Relativistic Matter	Comments
000000	0000000	00000000	00

Galilei Symmetries

• time translations: $\delta t = \xi^0$ but not $\delta t = \lambda^i x^i$!

• space translations: $\delta x^i = \xi^i$ i = 1, 2, 3

• spatial rotations: $\delta x^i = \lambda^i{}_j x^j$

N

• Galilean boosts: $\delta x^i = \lambda^i t$

Newton-Cartan	Geometry
000000	

000000

Non-Relativistic Matter

000000000

Comments

00

'Gauging' Galilei

symmetry	generators	gauge field	curvatures
time translations	Н	$ au_{\mu}$	$\tau_{\mu\nu} = \partial_{[\mu}\tau_{\nu]}$
space translations	Pª	$e_{\mu}{}^{a}$	$R_{\mu u}{}^{a}(P)$
Galilean boosts	Gª	$\omega_^a$	$R_{\mu u}{}^{a}(G)$
spatial rotations	J ^{ab}	$\omega_^{ab}$	${\sf R}_{\mu u}{}^{ab}(J)$

Imposing Constraints

 $R_{\mu
u}{}^{a}(P) = 0$:

does only solve for part of $\omega_{\mu}{}^{a}$, $\omega_{\mu}{}^{ab}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Newton-Cartan	Geometry
0000000	

Non-Relativistic Matter

Comments

00

Absolute Time

$$au_{\mu
u} \equiv \partial_{[\mu} au_{
u]} = 0 \quad \rightarrow \quad au_{\mu} = \partial_{\mu} au$$

$$\Delta T = \int_{\mathcal{C}} \mathrm{d} x^{\mu} \tau_{\mu} = \int_{\mathcal{C}} \mathrm{d} \tau$$
 is path-independent

Newton-Cartan	Geometry
0000000	

Non-Relativistic Matter

Comments

00

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

From Galilei to Bargmann

the zero commutator

$$[G_a, P_b] = 0$$

implies that a massive particle with non-zero spatial momentum P_b cannot by any boost transformation G_a be brought to a rest frame \Rightarrow

$$[G_a, P_b] = \delta_{ab} M \quad \rightarrow \quad \text{extra gauge field } m_{\mu}$$

Newton-Cartan Geometry	
0000000	

Non-Relativistic Matter

Comments

00

(ロ)、(型)、(E)、(E)、 E、 の(の)

The NC Transformation Rules

The independent NC fields $\{\tau_{\mu}, e_{\mu}{}^{a}, m_{\mu}\}$ transform as follows:

$$\delta \tau_{\mu} = 0,$$

$$\delta e_{\mu}{}^{a} = \lambda^{a}{}_{b} e_{\mu}{}^{b} + \lambda^{a} \tau_{\mu},$$

$$\delta m_{\mu} = \partial_{\mu} \sigma + \lambda_{a} e_{\mu}{}^{a}$$

The spin-connection fields $\omega_{\mu}{}^{ab}$ and $\omega_{\mu}{}^{a}$ are functions of τ_{μ} , $e_{\mu}{}^{a}$ and m_{μ}

Newton-Cartan Geometry	Newton-Cartan Gravity	Non-Relativistic Matter	Comments
000000	000000	00000000	00

What about the dynamics?

(日) (四) (日) (日) (日) (日)

Newton-Cartan Gravity

0000000

Non-Relativistic Matter

Comments

000000000

00

Outline

Newton-Cartan Geometry

Newton-Cartan Gravity

Non-Relativistic Matter

Comments

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Newton-Cartan	Geometry
0000000	

Non-Relativistic Matter 000000000

Comments

00

From General Relativity to NC gravity

Poincare \otimes U(1)

GR plus $\partial_{\mu}M_{\nu} - \partial_{\nu}M_{\mu} = 0$

contraction \Downarrow

 $\Downarrow \quad \text{the NC limit} \quad$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Bargmann

Newton-Cartan gravity

Newton-Cartan	Geometry
0000000	

Non-Relativistic Matter

Comments

00

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Contraction Poincare

 $[P_A, M_{BC}] = 2 \eta_{A[B} P_{C]}, \quad [M_{AB}, M_{CD}] = 4 \eta_{[A[C} M_{D]B]}$

$$P_0 = \frac{1}{2\omega}H, \qquad P_a = P_a, \qquad A = (0, a)$$
$$M_{ab} = J_{ab}, \qquad M_{a0} = \omega G_a$$

Taking the limit $\omega \rightarrow \infty$ gives the Galilei algebra:

$$\left[P_{a}, M_{b0}\right] = \delta_{ab}P_{0} \qquad \Rightarrow \qquad \left[P_{a}, G_{b}\right] = 0$$

n Geometry	Newton-Cartan Gravity	Non-Relativistic Matter	Comments
	000000	00000000	00

Contraction Poincare \otimes U(1)

$$\left[P_A, M_{BC}\right] = 2 \eta_{A[B} P_{C]}, \quad \left[M_{AB}, M_{CD}\right] = 4 \eta_{[A[C} M_{D]B]} \quad \text{plus} \quad \mathcal{Z}$$

$$P_0 = \frac{1}{2\omega} H + \omega Z, \qquad \qquad \mathcal{Z} = \frac{1}{2\omega} H - \omega Z, \qquad \qquad A = (0, a)$$
$$P_a = P_a, \qquad \qquad M_{ab} = J_{ab}, \qquad \qquad M_{a0} = \omega G_a$$

Taking the limit $\omega \rightarrow \infty$ gives the Bargmann algebra including Z:

$$\left[P_{a}, M_{b0}\right] = \delta_{ab}P_{0} \qquad \Rightarrow \qquad \left[P_{a}, G_{b}\right] = \frac{\delta_{ab}Z}{\delta_{ab}Z}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Newton-Cartan	Geometry
0000000	

Non-Relativistic Matter

Comments

00

The NC Limit I

Dautcourt (1964); Rosseel, Zojer + E.B. (2015)

 $\begin{array}{ll} \mbox{STEP I:} & \mbox{express relativistic fields } \{E_{\mu}{}^{A}, M_{\mu}\} \mbox{ in terms of non-relativistic fields } \{\tau_{\mu}, e_{\mu}{}^{a}, m_{\mu}\} \end{array}$

$$E_{\mu}^{0} = \omega \tau_{\mu} + \frac{1}{\omega} m_{\mu}, \qquad M_{\mu} = \omega \tau_{\mu}, \qquad E_{\mu}^{a} = e_{\mu}^{a}$$

constraint : $\partial_{[\mu}\tau_{\nu]} = 0$

N.B. PN approximation uses
$$E_{\mu}^{0} = \omega \tau_{\mu} + \frac{1}{\omega} n_{\mu}$$
 and no M_{μ}

Newton-Cartan	Geometry
0000000	

Non-Relativistic Matter

Comments

00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The NC Limit II

STEP II: substitute the expressions into the transformation rules and the e.o.m. and take the limit $\omega \rightarrow \infty \Rightarrow$

- the NC transformation rules are obtained and agree with the gauging procedure
- the NC equations of motion are obtained

Note: the standard textbook limit gives Newton gravity

Newton-Cartan Gravity

Non-Relativistic Matter

Comments

00

The NC Equations of Motion

The NC equations of motion are given by

Élie Cartan 1923

$$\mathcal{R}_{0c}{}^{c}(G) = \mathcal{R}_{0c}{}^{ca}(J) = \mathcal{R}^{(a}{}_{c}{}^{cb)}(J) = 0$$

$$1 \qquad a \qquad (ab)$$

there is no known action that gives rise to these equations of motion

• after gauge-fixing $\tau_{\mu} = \delta_{\mu,0}$, $e_{\mu}{}^{a} = \delta_{\mu}{}^{a}$ and $m_{0} = \Phi$ the 4D NC e.o.m. reduce to $\Delta \Phi = 0$

Newton-Cartan Geometry	Newton-Cartan Gravity	Non-Relativistic Matter	Comments
000000	000000	00000000	00

what about non-relativistic matter?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Newton-Cartan Gravity

Non-Relativistic Matter

Comments

00

Newton-Cartan Geometry

Newton-Cartan Gravity

Non-Relativistic Matter

Comments

Newton-Cartan	Geometry
0000000	

Newton-Cartan	Gravity
0000000	

Non-Relativistic Matter

Comments

00000000

00

Motivation

special feature FQH Effect: existence of a gapped collective non-rel. parity non-invariant helicity-2 excitation, known as the GMP mode

Girvin, MacDonald and Platzman (1985)

▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ■ ● ● ●

recent proposal for a non-relativistic spatially covariant bimetric EFT describing non-linear dynamics of this massive spin-2 GMP mode

Haldane (2011), Gromov, Geraedts, Bradlyn (2017), Gromov, Son (2017), Nguyen, Gromov, Son (2017)

in a linearized approximation around a flat background this gives rise to a single spin-2 Planar Schrödinger Equation

$$i\hbar\dot{\Psi} + \frac{\hbar^2}{2m}\nabla^2\Psi = 0$$

Newton-Cartan Gravity

0000000

Non-Relativistic Matter

Comments

00000000

00

Key Question

Rosseel, Townsend + E.B. (2018)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

has this single helicity 2 Planar Schrödinger Equation a (massive) gravity origin?

Newton-Cartan	Geometry	Newton-Cartan	Gr
0000000		0000000	

Non-Relativistic Matter

Comments

00

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

The 'force limit' of spin 0

$$\frac{1}{c^2}\ddot{\Phi} - \nabla^2 \Phi + \left(\frac{mc}{\hbar}\right)^2 \Phi = 0$$

Take the non-relativistic limit $c \to \infty$ keeping $\lambda = \hbar/mc$ fixed \to

$$abla^2 \Phi = rac{1}{\lambda^2} \Phi$$

no massive spin 0 particle!

N.B. The limit can also be taken in an arbitrary background

Newton-Cartan	Geometry
0000000	

Non-Relativistic Matter

Comments

00

The 'particle limit' of complex spin 0

$$\frac{1}{c^2}\ddot{\Theta} - \nabla^2 \Phi + \left(\frac{mc}{\hbar}\right)^2 \Phi = 0$$

To avoid infinities we redefine

$$\Phi = e^{-\frac{i}{\hbar}(mc^2)t}\Psi$$

so that the Klein-Gordon equation becomes

$$-\frac{1}{2mc^2}\left(i\hbar\frac{d}{dt}\right)^2\Psi-i\hbar\dot{\Psi}-\frac{\hbar^2}{2m}\nabla^2\Psi=0$$

and the $c \to \infty$ limit yields the Schrödinger equation

$$i\hbar\dot{\Psi}+\frac{\hbar^2}{2m}\nabla^2\Psi=0$$

Newton-Cartan	Geometry
0000000	

Non-Relativistic Matter

Comments

000000000

00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

General Feature

one complex massive helicity mode \Leftrightarrow one Schrödinger Equation

Newton-Cartan	Geometry
0000000	

Non-Relativistic Matter

Comments

00

Alternative Particle Limit of 3D Real Proca

- make time-space decomposition ${\it A}_{\mu}=\left({\it A}_{0},ec{{\it A}}
 ight)$
- eliminate auxiliary field A₀
- rescale $\vec{A} \rightarrow \vec{B}$ and define $B = \frac{1}{\sqrt{2}} (B_1 + iB_2) \Rightarrow$

$$\mathcal{L} = \frac{1}{c^2} \dot{B}^* \dot{B} + B^* \nabla^2 B - \left(\frac{mc}{\hbar}\right)^2 B^* B$$

redefine $B = e^{-\frac{i}{\hbar}(mc^2)t}\Psi[1]$: breaks parity \Rightarrow

$$i\hbar\dot{\Psi}[1] + \frac{\hbar^2}{2m}\nabla^2\Psi[1] = 0$$

single planar spin-1 Schroedinger equation

Newton-Cartan	Geometry
0000000	

Non-Relativistic Matter

Comments

00

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

From Spin-1 to Spin-2

$$A_{\mu}$$
: 3 = 1+2 under spatial SO(2):

 A_0 and $A_1 + iA_2$

 $f_{\mu\nu}$ with $\eta^{\mu\nu}f_{\mu\nu} = 0$: 5=1+2+2 under spatial SO(2):

$$f_{11} + f_{22}, f_{01} + if_{02} \text{ and } \frac{1}{2}(f_{11} - f_{22}) + if_{12} \Rightarrow$$

 single planar spin-2 Schroedinger equation

Same result can be obtained from a SS null-reduction of 4D GR

Newton-Cartan Geometry	Newton-Cartan Gravity	Non-Relativistic Matter	Com
0000000	000000	000000000	00

Towards Interactions: special features of 3D

J. Rosseel, P. Townsend + E.B., work in progress

• 'taking the square-root':

 $\Box - m^2 = O(m)O(-m)$ with $[O(m)]_{\mu}{}^{
ho} = \epsilon_{\mu}{}^{ au
ho}\partial_{ au} + m\delta_{\mu}{}^{
ho}$

• 'boosting up the derivatives':

$$\partial^{\mu}A_{\mu} = 0 \quad \rightarrow \quad A_{\mu} = \epsilon_{\mu}{}^{\nu\rho}\partial_{\rho}B_{\sigma}$$

'CS-like' formulation:

$$L = \frac{1}{2}g_{rs}a^{r} \cdot da^{s} + \frac{1}{6}f_{rst}a_{r} \cdot \left(a^{s} \times a^{t}\right) \qquad r = 1, \cdots, N$$

take real limit or complex limit followed by self-duality truncation?

00

Non-relativistic 3D Chern-Simons Like Gravity

- The 3D Galilei and Bargmann algebras do not allow an invariant bilinear form
- Precisely in 3D there exists a so-called Extended Bargmann Algebra with two central extensions and an invariant bilinear from. The second central extension is related to spin

Jackiw, Nair (2000)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 can one use two such algebras to construct a CS-like bi-metric gravity theory describing the non-linear dynamics of a massive spin 2 particle instead of a massive deformation of Poisson's equation?

Newton-Cartan Gravity

Non-Relativistic Matter

000000000

Comments

00

Outline

Newton-Cartan Geometry

Newton-Cartan Gravity

Non-Relativistic Matter

Comments

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ⊙

Newton-Cartan	Geometry
0000000	

Non-Relativistic Matter

Comments

•0

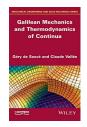
This Talk

 It is not yet clear whether the non-relativistic limit of some 3D relativistic massive gravity model or the direct construction of a CS-like gravity theory based upon some non-relativistic algebra give the boost-covariant completion of the EFT proposal for the GMP mode in the FQE Effect

Gromov and Son (2017)

- If it does, it may lead to interesting connections between 3D gravity and condensed matter concerning
 - higher derivatives
 - higher spins

Newton-Cartan	Geometry
0000000	


Non-Relativistic Matter

Comments

00

Take Home Message

Newton-Cartan Geometry leads to fruitful interactions between holography, effective field theory and supersymmetry. It even has connections with engineering!

・ロト ・ 一下・ ・ ヨト

200

э