A VIEW OF THE BULK FROM THE WORLDLINE

[1712.00885]

Henry Maxfield 10 January 2018

McGill University

MOTIVATION

AdS/CFT: UV complete, nonperturbative quantum gravity Problem: describe bulk physics in CFT language

Emergence of bulk spacetime with local physics

Information paradox: breakdown of bulk effective field theory

AdS₃/CFT₂: best use of Virasoro symmetry

WORLDLINE QFT

Main idea: treat some bulk degree of freedom as a particle rather than a field

Integral over field configurations \longrightarrow particle trajectories

$$\int\limits_{\substack{\text{Field}\\\text{configurations}}} \mathcal{D}\phi \; e^{-\int d^{d+1}x \left(\frac{1}{2}(\partial\phi)^2+\frac{1}{2}m^2\phi^2+\cdots\right)} \longrightarrow \int\limits_{\substack{\text{Worldlines}}} \mathcal{D}x \; e^{-mL[x]}$$

Worldline action is the length of path.

WORLDLINE QFT

Why consider worldline formulation?

$$\int \mathcal{D}x \ e^{-mL[x]}$$
 Worldlines

WORLDLINE QFT

Why consider worldline formulation?

$$\int \mathcal{D}x \ e^{-mL[x]}$$
 Worldlines

Eikonal approximation is worldline classical limit ($\hbar \sim m^{-1}$)

- Geodesics, corrected by m^{-1} worldline loops
- Natural local bulk probes: $\ell_{AdS}^{-1} \ll m \ll \ell_{pl}^{-1}$

Why consider worldline formulation?

$$\int \mathcal{D}x \; e^{-mL[x,\mathbf{g}]}$$
 Worldlines

Eikonal approximation is worldline classical limit ($\hbar \sim m^{-1}$)

- Geodesics, corrected by m^{-1} worldline loops
- Natural local bulk probes: $\ell_{AdS}^{-1} \ll m \ll \ell_{pl}^{-1}$

Simple to couple external fields like gravity

- Gives nonlocal operators in external field
- · Vertex operator correlators in worldline QM

MAIN EXAMPLE: FOUR-POINT CORRELATION FUNCTION

Four-point function of scalars, quantised in worldline formalism, coupled to 'light', second-quantised bulk fields (gravity)

$$\int \mathcal{D}g\mathcal{D}x \exp\left[-\frac{1}{G_N}S_{EH}[g] - mL[x,g]\right]$$

MAIN RESULTS

- · Conformal blocks emerge naturally
- Multi-graviton exchange → Virasoro blocks (in AdS₃)
- · Systematic bulk computation
- · Complementary to Witten diagrams

THE WORLDLINE QUANTUM MECHANICS

WORLDLINE PATH INTEGRAL

Want
$$G(x_0, x_1) = \int \mathcal{D}x \ e^{-mL[x,g]}$$
 over worldlines between x_0, x_1 .

WORLDLINE PATH INTEGRAL

Want
$$G(x_0, x_1) = \int \mathcal{D}x \ e^{-mL[x,g]}$$
 over worldlines between x_0, x_1 .

• Integrate over functions x(s) from an interval into spacetime.

$$G(x_0, x_1) = \int_{x(0)=x_0, x(T)=x_1} \frac{\mathcal{D}x}{V_{\text{diffs}}} e^{-m \int_0^T ds \sqrt{g_{ab}(x(s)) \dot{x}^a(s) \dot{x}^b(s)}}$$

Want
$$G(x_0, x_1) = \int \mathcal{D}x \ e^{-mL[x,g]}$$
 over worldlines between x_0, x_1 .

- Integrate over functions x(s) from an interval into spacetime.
- Introduce worldline auxiliary metric ($e(s) = \sqrt{g_{ss}(s)}$).

$$G(x_0, x_1) = \int_{x(0)=x_0, x(T)=x_1} \frac{\mathcal{D}x \mathcal{D}e}{V_{\text{diffs}}} e^{-\frac{m}{2} \int_0^T ds \ e(s) \left(e(s)^{-2} g_{ab}(x(s)) \dot{x}^a(s) \dot{x}^b(s) + 1\right)}$$

Want
$$G(x_0, x_1) = \int \mathcal{D}x \ e^{-mL[x,g]}$$
 over worldlines between x_0, x_1 .

- Integrate over functions x(s) from an interval into spacetime.
- Introduce worldline auxiliary metric ($e(s) = \sqrt{g_{ss}(s)}$).
- Fix the gauge e(s) = 1.

$$G(x_0, x_1) = \int_{x(0)=x_0, x(T)=x_1} \mathcal{D}x \ e^{-\frac{m}{2} \int_0^T ds} \left(g_{ab}(x(s)) \dot{x}^a(s) \dot{x}^b(s) + 1 \right)$$

Want
$$G(x_0, x_1) = \int \mathcal{D}x \ e^{-mL[x,g]}$$
 over worldlines between x_0, x_1 .

- Integrate over functions x(s) from an interval into spacetime.
- Introduce worldline auxiliary metric ($e(s) = \sqrt{g_{ss}(s)}$).
- Fix the gauge e(s) = 1.
- · Integrate over 'modulus' T.

$$G(x_0, x_1) = \frac{1}{2m} \int_0^\infty dT \, e^{-\frac{mT}{2}} \int \mathcal{D}x \, e^{-\frac{m}{2} \int_0^T ds \, g_{ab}(x(s)) \dot{x}^a(s) \dot{x}^b(s)}$$

$$x(0) = x_0, x(T) = x_1$$

Want
$$G(x_0, x_1) = \int \mathcal{D}x \ e^{-mL[x,g]}$$
 over worldlines between x_0, x_1 .

- Integrate over functions x(s) from an interval into spacetime.
- Introduce worldline auxiliary metric ($e(s) = \sqrt{g_{ss}(s)}$).
- Fix the gauge e(s) = 1.
- · Integrate over 'modulus' T.

$$G(x_0, x_1) = \frac{1}{2m} \int_0^\infty dT \ e^{-\frac{mT}{2}} \int \mathcal{D}x \ e^{-\frac{m}{2} \int_0^T ds \ g_{ab}(x(s)) \dot{x}^a(s) \dot{x}^b(s)}$$

$$x(0) = x_0, x(T) = x_1$$

Compare: worldsheet string theory

RECOVERING QFT

$$G(x_0, x_1) = \frac{1}{2m} \int_0^\infty dT \ e^{-\frac{mT}{2}} \int \mathcal{D}x \ e^{-\frac{m}{2} \int_0^T ds \ g_{ab}(x) \dot{x}^a \dot{x}^b}$$
$$x(0) = x_0, x(T) = x_1$$

Quantum mechanical sigma-model: $H = -\frac{1}{2m}\nabla^2$

$$G(x_0, x_1) = \frac{1}{2m} \int_0^\infty dT \ e^{-\frac{mT}{2}} \langle x_1 | e^{\frac{T}{2m} \nabla^2} | x_0 \rangle = \langle x_1 | \frac{1}{m^2 - \nabla^2} | x_0 \rangle$$

Allow worldlines to meet at vertices to get perturbative QFT

THE WORLDLINE THEORY IN ADS

Integral between points in AdS_{d+1} , at proper distance L:

$$e^{-W_L(m,T)} = \int \mathcal{D}x \ e^{-\frac{m}{2} \int_0^T ds \ g_{ab}(x) \dot{x}^a \dot{x}^b}$$

THE WORLDLINE THEORY IN ADS

Integral between points in AdS_{d+1} , at proper distance L:

$$e^{-W_L(\lambda)} = \int \mathcal{D}x \ e^{-\frac{1}{2\lambda} \int_0^L ds \ g_{ab}(x) \dot{x}^a \dot{x}^b}, \quad \lambda = \frac{T}{mL}$$

Integral between points in AdS_{d+1} , at proper distance L:

$$e^{-W_L(\lambda)} = \int \mathcal{D}x \ e^{-\frac{1}{2\lambda} \int_0^L ds \ g_{ab}(x) \dot{x}^a \dot{x}^b}, \quad \lambda = \frac{T}{mL}$$

AdS_{d+1}:
$$ds^2 = (1 + q^2)dt^2 + dq^2 - \frac{(q.dq)^2}{1 + q^2}$$
 $q = (q^1,...,q^d)$

Write t(s) = s + u(s), with u(0) = u(L) = q(0) = q(L) = 0:

$$S[q, u] = \frac{L}{2\lambda} + \frac{1}{2\lambda} \int_0^L ds \left(\dot{u}^2 + \dot{q}^2 + q^2 + 2\dot{u}q^2 + \dot{u}^2q^2 - \frac{(q \cdot \dot{q})^2}{1 + q^2} \right)$$

Leading order: d harmonic oscillators q of frequency ℓ_{AdS}^{-1}

THE WORLDLINE THEORY IN ADS

Integral between points in AdS_{d+1} , at proper distance L:

$$e^{-W_L(\lambda)} = \int \mathcal{D} x \; e^{-rac{1}{2\lambda} \int_0^L ds \; g_{ab}(x) \dot{\chi}^a \dot{\chi}^b}, \quad \lambda = rac{T}{mL}$$

Correlation functions: take points to boundary of AdS, $L \to \infty$ $W_L(\lambda) \sim L\mathcal{E}(\lambda)$, so modulus integral $\int d\lambda \, e^{-\frac{m^2 \lambda}{2} L - W_L(\lambda)}$ localises.

$$m^2 = -2\mathcal{E}'(\lambda)$$
, physical parameter $\Delta = \mathcal{E}(\lambda) - \lambda \mathcal{E}'(\lambda)$

In
$$AdS_{d+1}$$
,
$$\mathcal{E}(\lambda) = \frac{1}{2\lambda} + \frac{d}{2} + \frac{d^2}{8} \implies \Delta = \frac{1}{\lambda} + \frac{d}{2}, \quad m^2 = \frac{1}{\lambda^2} - \frac{d^2}{4} = \Delta(\Delta - d).$$

VERTEX OPERATORS

Want to couple to gravity: perturb metric $(g \longrightarrow g_{AdS} + h)$

Deform by vertex operator
$$V_h = \frac{1}{2\lambda} \int ds \ h_{ab}(x(s))\dot{x}^a(s)\dot{x}^b(s)$$

VERTEX OPERATORS

Want to couple to gravity: perturb metric $(g \longrightarrow g_{AdS} + h)$

Deform by vertex operator
$$V_h = \frac{1}{2\lambda} \int ds \ h_{ab}(x(s)) \dot{x}^a(s) \dot{x}^b(s)$$

Order by order in h, get correlation functions of \mathcal{V}_h , like

$$\langle \mathcal{V}_h \rangle = \int ds \left(\frac{1}{2\lambda} h_{00} + \frac{1}{8} \partial_i \partial_i h_{00} - \frac{1}{4} h_{ii} + O(\lambda) \right)$$

Higher order in $h: \langle \mathcal{V}_h \mathcal{V}_h \rangle, \langle \mathcal{V}_h \mathcal{V}_h \mathcal{V}_h \rangle, ...$

Higher order in λ : Taylor expand $h(q) = h + q\partial h + \frac{1}{2}q^2\partial^2 h + \cdots$: higher derivatives of external field transverse to worldline

Systematic expansion of worldline amplitude in powers of h, λ

THE FOUR-POINT FUNCTION

FOUR-POINT FUNCTION

Four-point function of scalars, quantised in worldline formalism, coupled to second-quantised 'light' bulk fields (gravity)

$$\langle \phi \phi \phi \phi \rangle = \int \mathcal{D}g \mathcal{D}x \ \exp \left[-\frac{1}{G_N} S_{EH}[g] - m L[x,g] \right]$$

Worldline quantum mechanics coupled to bulk theory

FOUR-POINT FUNCTION

Four-point function of scalars, quantised in worldline formalism, coupled to second-quantised 'light' bulk fields (gravity)

$$\langle \phi \phi \phi \phi \rangle = \int \mathcal{D}g \mathcal{D}x \ \exp \left[-\frac{1}{G_N} S_{EH}[g] - m L[x,g] \right]$$

Worldline quantum mechanics coupled to bulk theory

Perturbation theory in $\lambda \sim m^{-1}$ (loops) and $\lambda^{-1}G_N$ (gravity)

PERTURBATION THEORY

$$\frac{\langle\phi\phi\phi\phi\rangle}{\langle\phi\phi\rangle\langle\phi\phi\rangle} = \exp\left[\sum \text{(connected diagrams, coupling worldlines)}\right]$$

Worldline:		Bulk:		Coupling:	
	$\sim \lambda$	~~~	$\sim G_N$	% \\\	$\sim \lambda^{-1}$
,		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim G_N^{-1}$	→ ~~	$\sim \lambda^{-1}$
	$\sim \lambda^{-1}$	74	$\sim G_N^{-1}$	$\sim \langle$	$\sim \lambda^{-1}$

LEADING ORDER

Order m^2G_N :

LEADING ORDER

Order m^2G_N :

Geodesic Witten diagram [Hijano, Kraus, Perlmutter, Snively]

Conformal block \mathcal{F}_T

Expand
$$\langle \mathcal{V}_h \rangle$$
 in λ : $\langle \mathcal{V}_h \rangle = \int ds \left(\frac{1}{2\lambda} h_{00} + \frac{1}{8} \partial_i \partial_i h_{00} - \frac{1}{4} h_{ii} + O(\lambda) \right)$

Expand
$$\langle \mathcal{V}_h \rangle$$
 in λ : $\langle \mathcal{V}_h \rangle = \int ds \, \left(\frac{1}{2\lambda} h_{00} + \frac{1}{8} \partial_i \partial_i h_{00} - \frac{1}{4} h_{ii} + O(\lambda) \right)$
Use EOM:
$$= \left(\frac{1}{2\lambda} + \frac{d}{4} + \cdots \right) \int ds \, h_{00}(s)$$

Expand
$$\langle \mathcal{V}_h \rangle$$
 in λ : $\langle \mathcal{V}_h \rangle = \int ds \left(\frac{1}{2\lambda} h_{00} + \frac{1}{8} \partial_i \partial_i h_{00} - \frac{1}{4} h_{ii} + O(\lambda) \right)$
Use EOM:
$$= \left(\frac{1}{2\lambda} + \frac{d}{4} + \cdots \right) \int ds \ h_{00}(s)$$

Correct normalisation: $\lambda=\frac{1}{\Delta-\frac{d}{2}}\longrightarrow C_{T\mathcal{O}\mathcal{O}}\propto \sqrt{G_N}\Delta$

Expand
$$\langle \mathcal{V}_h \rangle$$
 in λ : $\langle \mathcal{V}_h \rangle = \int ds \left(\frac{1}{2\lambda} h_{00} + \frac{1}{8} \partial_i \partial_i h_{00} - \frac{1}{4} h_{ii} + O(\lambda) \right)$
Use EOM:
$$= \left(\frac{1}{2\lambda} + \frac{d}{4} + \cdots \right) \int ds \ h_{00}(s)$$

Correct normalisation: $\lambda = \frac{1}{\Delta - \frac{d}{2}} \longrightarrow C_{TOO} \propto \sqrt{G_N} \Delta$

Not equal to Witten diagram (

SECOND ORDER IN GRAVITONS

Order $\lambda^{-3}G_N^2$:

SECOND ORDER IN GRAVITONS

Order $\lambda^{-3}G_N^2$:

Order $\lambda^{-n-1}G_N^n$ (tree): solves classical physics of particles

CFT AND CONFORMAL BLOCKS

Important properties of conformal field theories:

Radial quantisation: Use dilatation as 'Hamiltonian'

State-operator: Local operators \longleftrightarrow states on S^{d-1}

OPE:
$$\mathcal{O}_1(0)\mathcal{O}_2(x) = \sum_i C_{12i} |x|^{\Delta_i - \Delta_1 - \Delta_2} \mathcal{O}_i$$

Leads to conformal block decomposition

$$\langle \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 \mathcal{O}_4 \rangle = \sum_p C_{\mathcal{O}_1 \mathcal{O}_2 p} C_{\mathcal{O}_3 \mathcal{O}_4 p} \mathcal{F}_p$$

Decompose a Witten diagram as conformal blocks:

The 'single trace' exchange (e.g. stress tensor) is intuitive 'Double trace' operators $[\mathcal{OO}]_{n,l} \sim :\mathcal{O}\partial^l\Box^n\mathcal{O}:$

Spin *l*, dimension $\Delta_{n,l}=2\Delta+2n+l+\frac{1}{N}\gamma_{n,l}+\cdots$

Decompose a Witten diagram as conformal blocks:

The 'single trace' exchange (e.g. stress tensor) is intuitive

'Double trace' operators $[\mathcal{OO}]_{n,l} \sim :\mathcal{O}\partial^l\Box^n\mathcal{O}:$

Spin *l*, dimension $\Delta_{n,l}=2\Delta+2n+l+\frac{1}{N}\gamma_{n,l}+\cdots$

Non-perturbative in $\frac{1}{m}$: second saddle point, same topology

VIRASORO BLOCKS

In CFT₂, have extended Virasoro symmetry.

Some gravitational physics is kinematics!

Sum worldline perturbation theory \longrightarrow Virasoro block

Conformal block: a single saddle-point in worldline formalism

EXPONENTIATION

Amplitude is exponential of connected diagrams

Consequence: single-trace blocks exponentiate!

$$\langle \mathcal{OOOO} \rangle = \exp \left(G_N \Delta_1 \Delta_2 \mathcal{F}_T + O(G_N^2 \Delta^3) \right)$$

Seen in Virasoro/kinematic limit [Fitzpatrick, Kaplan, Walters, Wang]

Summation of Witten diagrams at all loop orders

OUTLOOK

SUMMARY

- New approach to compute correlation functions in AdS, using worldline formalism
- · Systematic perturbative expansion
- · Complementary to Witten diagrams
- · Bulk computation of Virasoro conformal blocks
- · New perspective on geodesic Witten diagrams

Plenty to explore:

- · Computing Virasoro blocks
- · One-loop exact (localisation) in AdS₃ [Duistermaat-Heckman]
- Higher-point functions
- Other backgrounds [Kraus, Maloney, HM, Ng, Wu][Anous, Hatman, Rovai, Sonner]
- Fermions ($\mathcal{N} = 1$ worldline supersymmetry)
- · Connect to Chern-Simons formalism [Fitzpatrick, Kaplan, Li, Wang]
- Diff invariant bulk observables[Czech,Lamprou,McCandlinsh,Mosk,Sully]
- · Lorentzian signature, shockwaves
- Bootstrap