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Introduction

Kinematic Space has been introduced as an auxiliary space in AdS/CFT.
(Czech, Lamprou, McCandlish, Sully 1505.05515)

Reorganizes CFT degrees of freedom to reflect diff invariance of the bulk.

Provides new entries into the holographic dictionary.
(Czech, Lamprou, McCandlish, Mosk, Sully 1604.03110)

Figure: From 1604.03110 and Sully’s talk last Nov.
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Today we modify proposal to work in locally AdS spacetimes.

Use it to distinguish contributions of bulk geodesics to OPE.
(cf. Balasubramanian, Chowdhury, Czech, de Boer 1406.5859)

Define CFT quantity dual to bulk field integrated over geodesic.

𝒪(x) 𝒪(y)

ΣC𝑩(x,y)~
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AdS/CFT is a duality between quantum gravity in asymptotically AdSd+1

(Maldacena Nov. 27, 1997)

ds2 = R2
AdS(− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

d−1), (1)

and states of QFT with conformal symmetry in d dimensions.

The CFT lives at the timelike boundary ρ→∞.

AdS boundary has SO(d,2) isometry - matches d Conformal group.

Duality at level of degrees of freedom, but organization is totally different.
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Some dual relations are fairly simple:

Light field in bulk ⇐⇒ Local CFT operator with same spin

e.g. Massive scalar ϕ(x) ⇐⇒ Spin zero O with dimension m2 = ∆(d−∆).

e.g. Graviton gµν ⇐⇒ CFT stress tensor Tµν , spin 2, ∆ = d.

But local bulk field like ϕ(x) is not a true observable - not gauge invariant.

Diff invariance needs gravitational dressing, like Wilson line in gauge theory.
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Some dual relations are already diff invariant

Area of minimal surface attached to boundary region A ⇐⇒
Entanglement entropy of A with its complement, S(ρA) = −trA(ρA log ρA)
(Ryu & Takayanagi hep-th/0603001):

Gravitationally dressed field can be constructed by geodesic Wilson line.
Here we consider a bulk field integrated over geodesic (AdS3/CFT2).
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What is the CFT dual of ∫γ ϕ(x)ds?

Difficult question, CFT degrees of freedom do not manifest diff invariance.

Kinematic Space reorganizes CFT degrees of freedom to reflect diff
invariance of the bulk.

KS is space of boundary anchored geodesics, or pairs of CFT points.

For pure AdS, unique geodesic for each pair of spacelike boundary points.
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Integral Geometry and Kinematic Space
Space of boundary anchored geodesics appears in Integral Geometry.

Differential Geometry: fundamental quantity is the metric.
Integral Geometry: Crofton 2-form ω determines the geometry

L(c) = 1

4
∬

γ
nγ,c ω. eg. H2 ∶ ω = − 1

sin2 α
dα ∧ dθ. (2)

ω is the metric on the space of geodesics - “kinematic space”.
Each geodesic, parameterized by angles (α, θ) is a point on KS.

For H2 we find kinematic space to be de Sitter2
α

φθ

ds2
KS =

1

sin2 α
[−dα2 + dθ2]
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ds2
H = dρ2 + sinh2 ρ dφ2,

ds2
KS =

1

sin2 α
[−dα2 + dθ2] = 1

sin2(v − u)/2
dudv,

ds2
CFT = −dt2 + dφ2 = dudv

(3)

Recap: Three roles for pair of boundary points (u, v)
• Uniquely identifies a bulk geodesic

• Set of null coordinates on kinematic space

• Defines an interval/subregion on CFT timeslice

Geodesics allow construction of diff invariant observables,
use kinematic space to translate to CFT.
(de Boer, Haehl, Heller, Myers 1606.03307)
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Towards diff-invariant dictionary entries

A pair of CFT points is a point on KS.
A CFT quantity depending on two points could be a field on KS.

Simplest option is a product of CFT operators - the OPE.

Product expanded in basis of local quasiprimary operators and descendants

Oi(x)Oj(0) =∑
k

Cijk ∣x∣∆k−∆i−∆j (1+b1 xµ∂µ+b2 xµxν∂µ∂ν + . . . )Ok(0).

(4)
Coefficients bi fixed by conformal symmetry,

Cijk and spectrum ∆k of primaries are CFT data.
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Oi(x)Oj(0) =∑
k

Cijk ∣x∣∆k−∆i−∆j (1+b1 xµ∂µ+b2 xµxν∂µ∂ν + . . . )Ok(0).

(5)
Repackage part of expression fixed by symmetry.

Contribution to OPE from a conformal family is an OPE block

Oi (x1)Oi (x2) = ∣x1 − x2∣−2∆i∑
k

CiikBk (x1, x2) . (6)

Depends on pair of insertion points, and is candidate for field on KS.

Let’s study its properties.
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CFT operators are in representations of conformal group labelled by
dimension ∆k, and spin lk.

These are eigenvalues of Casimirs C2 built from symmetry generators LAB

[C2,Ok(x)] = −
1

2
LABLABOk(x) = [∆k(∆k−d)−lk(lk+d−2)]Ok(x). (7)

C2 commutes with conformal generators Ô⇒ descendants satisfy (7) with
same eigenvalue.

For the same reason, the OPE block of quasiprimary Ok satisfies

[C2,Bk] = [∆k(∆k − d) − lk(lk + d − 2)]Bk. (8)

In terms of standard conformal generators SL(2,R) × SL(2,R)

C2 = −2L2
0 +

1

2
(L1L−1 +L−1L1) + (L→ L̄). (9)
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Casimir equations are 2nd order DE’s. Need to express the generators L0,±1

in a differential representation.

Warm-up: Scalar Ok dual to massive scalar field ϕk.
Conformal generators in scalar repn

L−1 = ∂ξ, L0 = −ξ∂ξ −
1

2
∆k, L1 = ξ2∂ξ + ξ∆k, (10)

correspond to AdS Killing vectors,

η−1 = ∂ξ, η0 = −ξ∂ξ −
1

2
z∂z, η1 = ξ2∂ξ + ξz∂z − z2∂ξ̄. (11)

Scale/Radius duality tells us ∆k → z∂z. Casimir equation for Ok becomes

[C2,Ok(x)] = ∆k(∆k − 2)Ok, Ô⇒ − ◻AdS ϕ = −m2ϕ. (12)
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OPE block Bk is in a different representation.
In this repn. C2 = −1

2L
ABLAB becomes

[C2,Bk (x1, x2)] = −
1

2
(LAB1 +LAB2 )(LAB,1 +LAB,2)Bk (x1, x2) . (13)

Leads to the differential equation

[C2,Bk (x1, x2))] = −4 sin2 α (−∂2
α + ∂2

θ)Bk (x1, x2) (14)

which is the scalar Laplacian on the dS2 kinematic space: C2 = −◻dS ,

− ◻dS Bk (x1, x2) = ∆k(∆k − 2)Bk (15)

Conclusion: OPE block Bk is a massive scalar field on KS.
Sully’s talk: Bk(γ)↔ ∫γ ϕk(x)ds
(Czech, Lamprou, McCandlish, Mosk, Sully 1604.03110)
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Discussion so far was entirely in pure AdS3 dual to ground state of CFT2

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dφ2. (16)

1-to-1 correspondence of boundary intervals, bulk geodesics.

This is emphatically not the case for most geometries.
e.g. Conical defect spacetime, massive particle sitting at origin

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dφ̃2, φ̃ ∈ (0,2π/N) (17)

Can kinematic space still be defined consistently? What is the role of
non-minimal geodesics? (cf. Asplund, Callebaut, Zukowski 1604.02687)

Cresswell (University of Toronto) Refining with kinematic space 28 November 2017 15 / 26



Kinematic Space for Conical Defects

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dφ̃2, φ̃ ∈ (0,2π/N). (18)

Simple quotient of AdS3 along the angular Killing vector ∂φ, φ = φ + 2π/N .
Breaks SO(2,2) isometry group to ∂φ̃, ∂t.

Quotient acts on geodesics through identifications as well.
Each geodesic comes from an equivalence class of geodesics in AdS3
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Identifications on geodesics change the kinematic space
(Zhang & Chen 1610.07134):

α

θ

π

2π0 ∼ 2π/N

π
2

n=0

n=1

n=2

n=1

n=2

n=0

Consists of geodesics with centre angle θ̃ ∈ (0,2π/N) - angular quotient.

Includes non-minimal geodesics, winding number n > 0 and α > π/2N .
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Can still say KS = space of boundary anchored geodesics.
Cannot say KS = space of pairs of CFT points.

KS Metric no longer fixed by conformal symmetry, need new strategy!
Use OPE blocks - Casimir equation implies the Laplacian on KS.

Dual of conical defect is an excited state.
(Lunin, Mathur, Saxena hep-th/0211292)

Could consider OPE in excited background.

Excited state obtained from
conformal map, has branch point.

Operators can be “exchanged” in several
channels. OPE sees all.
(Asplund, Bernamonti, Galli, Hartman 1410.1392)

0
1 Z
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Õi (x1) Õi (x2) = ∣x1 − x2∣−2∆i∑
k

CiikB̃k (x1, x2) . (19)

Upshot is: this OPE block contains contributions from all geodesics
connecting insertion points B̃k (x1, x2)↔ ∑γ ∫γ ϕkds.

Can we refine this statement by isolating geodesic contributions?

Lift to covering CFT - excited state maps to ground state.
Base CFT lives on φ̃ ∈ (0,2π/N) cylinder, covering CFT on φ ∈ (0,2π).

Theories are not the same. Base CFT has discrete gauge symmetry ZN .
(Balasubramanian, Bernamonti, Craps, De Jonckheere, Galli 1609.03991)

Cover CFT “ungauges” discrete symmetry. ZN symmetric observables on
cover are valid observables in the base.
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Example: Scalar base operators Õ are symmetrized cover operators O with
same dimension ∆

Õk (t, φ̃) =
1

N

N−1

∑
m=0

exp(i2πm
N

∂

∂φ
)Ok (t, φ) . (20)

Insertions are placed symmetrically around the circle, result is ZN
symmetric.

exp (i2πm
N

∂
∂φ) is a finite rotation, made from conformal generators.

Take Õi and form the base OPE ÕiÕi. Involves cover OPE OiOi

Cresswell (University of Toronto) Refining with kinematic space 28 November 2017 20 / 26



OPE of base operators = double sum over OPE of cover operators.
Sums can be rearranged. Define partial OPE blocks Bk,m

Bk,m (t, α, θ) = 1

N
∣2 − 2 cos(2α)∣−∆

N−1

∑
b=0

exp(i2πb
N

∂

∂θ
)Bk (t, α, θ) , (21)

This is ZN symmetric - valid observable in base CFT.

The base OPE receive contributions from all partial OPE blocks

Õi(t, φ̃1)Õi(t, φ̃2) =∑
k

Ciik
1

N

N−1

∑
m=0

exp(i2πm
N

∂

∂φ1
)Bk,m(t, αm, θ).

(22)

Bk,m is a new finer-grained observable, but what does it represent?
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𝒪(φ1)
𝒪(φ2)

𝒪(φ1')

𝒪(φ1'')

𝒪(φ2')

𝒪(φ2'')

∂θ

(a) Bk,m=0, n = 0

𝒪(φ1)
𝒪(φ2)

𝒪(φ2')

𝒪(φ1')

𝒪(φ1'')
𝒪(φ2'')

∂θ

(b) Bk,m=1, n = 2

𝒪(φ1)
𝒪(φ2)

𝒪(φ1'')
𝒪(φ2'')

𝒪(φ1')

𝒪(φ2')

∂θ

(c) Bk,m=2, n = 1

Bk,m (t, αm, θ) ∼
N−1

∑
b=0

exp(i2πb
N

∂

∂θ
)Bk (t, αm, θ) . (23)

Partial OPE blocks - contribution of cover operator pairs at fixed distance.
Corresponds to choice of OPE channel on punctured plane.

Bk,m ↔ ∫
γn
ϕk(x)ds Bulk field integrated over single geodesic.
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Cover OPE block Bk satisfies Casimir equation [C2,Bk] = ∆k(∆k − 2)Bk.

C2 commutes with conformal generators, hence partial blocks
Bk,m ∼ ∑ exp(i ∂

∂φ1
)Bk satisfy the same equation

[C2,Bk,m] = ∆k(∆k − 2)Bk,m (24)

C2 in same representation as before, so

− ◻dS2Bk,m(α, θ) = ∆k(∆k − 2)Bk,m(α, θ). (25)

i.e. Bk,m is a scalar field on kinematic space.

But coordinates θ ∈ (0,2π/N) and α ∈ (αm, αm + π/2N) are restricted.
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Each Bk,m(αm, θ) is a scalar field on a small region of dS2

◻dS2 Bk,m(αm, θ) =m2Bk,m(αm, θ). (26)

α

θ

π

2π0 2π/N
m=0

m=1

m=2

The base OPE is a sum over all Bk,m(αm, θ). The resulting KS is the union
of each small block.
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Summary
Kinematic space reorganizes CFT degrees of freedom to reflect the
diffeomorphism invariance of the bulk.

It provides a new duality in AdS/CFT between OPE blocks and geodesic
operators

Bk(α, θ)↔ ∫
Γ(α,θ)

ϕ(x)ds, (27)

Also facilitates easy re-derivations of many recent results:
Geodesic Witten diagrams ↔ conformal blocks
(Hijano, Kraus, Perlmutter, Snively 1508.00501)

Einstein equations from entanglement first law
(Faulkner, Guica, Hartman, Myers, Van Raamsdonk 1312.7856)

Bulk reconstruction of ϕ by inverting R[ϕ](Γ)
(Hamilton, Kabat, Lifschytz, Lowe hep-th/0606141)
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Original results only apply in pure AdS. Extended to locally AdS spacetime.

Defined a new CFT observable Bk,m in states dual to conical defects.

A defect in the bulk implies a branch point in the CFT.
Non-minimal geodesics in the bulk, OPE channels on different branches.

Bk,m isolates contributions of single OPE channel.
Bk,m is a scalar field on a small subregion of dS2.
Bk,m is dual to ∫γ ds ϕCD(x̃), bulk field integrated over a single geodesic.
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