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CFTs and Quantum 
Gravity

Gravity in Anti de Sitter
in d+1 dimensions

Conformal Field Theory 
in d dimensions

Scale-
invariance

So studying CFTs teaches us about gravity, and 
vice versa!

equivalent!



CFTs and Quantum 
Gravity

What can we learn about black hole dynamics?
Hawking radiation: 

Semi-classical limit says 
black holes have a 

temperature.
But if this is exactly true, then 

information is lost! Not consistent 
with Quantum Mechanics.

Can we understand “pure” states 
mimicking a thermal states?



CFTs and Quantum 
Gravity

Goals: 
1) Understand how information gets out - need a pure 

quantum state that looks like a thermal state

2) Harder: understand what black hole looks like just outside 
horizon, how is this consistent with pure state 



Anti-de Sitter

The isometries of AdS are in one-to-
one correspondence with the 

generators of the conformal group

AdS is a very special box.  
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 AdS Energy

CFT “Dilatation”AdS Hamiltonian

CFT Scaling 
Dimension=

HAdS = DCFT
Generates scaling

DCFT

Generates time 
evolution



Large C Expansion
Consider large CFT central charge : essentially, large 

number of degrees of freedom. Like a classical limit.

Brown, 
Henneaux, ‘86
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“Perturbative” corrections ~ 
“Non-perturbative” corrections ~ 

“Semi-classical” gravity limit



Some Motivation
Want to be able to calculate how information escapes from 

black hole, hidden in non-perturbative effects

In AdS3/CFT2 , many non-perturbative 
effects are controlled by conformal 

symmetry; we want to calculate them.

E.g.: - late-time decay of correlators, 
                - physics near and across horizons.



Algebraic Gravity
Power of AdS3/CFT2: gravitons are algebraic

AdS CFT

multi-grav products of T

CFT2

Virasoro
generators of Conf. Alg.

Algebra knows about General Relativity!



Focusing on 2d
Useful toy model: conformal symmetry is much bigger!

AdS3: no gravity waves, but there are still black 
holes.

2d QCD at large N:
the gluon has no DOFs, 

and the theory is solvable.

Some other toy 
models:

Lego ATLAS



Operators
In conformal theories, a key role is played by “operators”, 

which can be any local observable

Simple Example: density operator
⇢(x)

We study correlation functions among operators

h⇢(x)⇢(y)⇢(z)i
⇢(x) ⇢(y) ⇢(z)
0.13 0.04 1.04

0.420.190.22
… … …



Operators and States
Every operator creates a unique state, and vice versa:

By “measuring” !, we perturb the vacuum 
and put it in a new state.

⇢(x)|0i $ |⇢i

⇢(x)



Multiple Operators
Start with insertion of two operators

Decompose into a convenient basis at a 
fixed radius.

E.g. Spherical harmonics

Y`m

Quantum: Decompose wavefunction
 (✓,�) =

X
c`,mY`,m(✓,�)



Conformal Irreps
“OPE blocks”= contribution to OPE from a single irrep

Look at irreps of 
conf group on this ball

Arbitrary
background state

OPE block is an operator (can be evaluated in any state)

“Vacuum OPE block”: 



Large c and “Heavy” states

“BH microstate”: 

Fixed geometry

How do we get interesting effects in 
gravity at                ? Keep                     fixedGN ! 0 GNM ⇠ R

fixed,Heavy state       :



Example: a heavy primary state 

OPE block at large c:

=

Exactly thermal!

~Eigenstate Thermalization

Info loss at large c

Large c and “Heavy” 



All blocks decay semiclassically
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Figure 2. This figure shows the time-dependence of leading semiclassical saddles contributing to
1
c log V, with di↵erent ↵I = 1, 3/5, i/2, 5i/4 (black, solid; gray, dot-dashed; red, dashed; and blue,
dotted, respectively) and fixed ↵L = 0.99 and TH = 2⇡. The solid black line corresopnds to ↵I = 1,
which is the vacuum Virasoro block. For ease of comparison we have chosen an overall constant
shift in each f to emphasize that the late-time exponential decay is completely independent of the
intermediate operator dimension. See fig. 13 for more details.

1.4 Summary of Results

Writing semiclassical contributions to the Virasoro blocks as e�
c
6f(⌘i,⌘I ,z) with z ⌘ 1 � e�it,

we find two discrete infinite classes of  = z(1 � z)@zf in the limit t ! ±1. All of the

sub-leading saddles may be interpreted as ‘additional angles’ in AdS
3

, as depicted in figure 4.

We define ↵X ⌘
q

1 � 24hX
c ; we will take ↵L to be real and ↵H = 2⇡iTH to be purely

imaginary, as this is the case of interest for correlators probing BTZ black holes. The first

infinite class are the decaying saddles, with asymptotic  of the form
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where n must be an integer, as discussed near equation (2.43). The leading semiclassical

contribution to the Virasoro blocks is the case n = 0. For all values of n, the ± signs are

always dynamically chosen (by following the solutions from early to late times) so that
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decyas as |t| ! 1 for real ↵L and real TH .

The other infinite class are the oscillating saddles which approach


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(m) =
1
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– 7 –

All blocks decay at same rate at late time in semiclassical limit
Can’t resolve info loss by including just a few heavy states 

semiclassically



Exact Numeric Behavior
In the exact block, late-time exponential decay becomes 

power-law              at t ≳ c

Chen, Hussong, 
Kaplan, Li, ‘17



Euclidean time periodicity 
and forbidden singularities

Periodic in Euclidean time (KMS condition):

If a singular 
event occurs…

…

it gets repeated again and again 
for a thermal background

But the black hole is really a pure state not a 
thermal state, so this can’t be true exactly



Going beyond the 
Semi-classical Limit
Unitarity restoration can be seen 

in the exact quantum theory!
L

GN

Semi-
classical“True” 

singular event
Approximate 

“thermal image”

Chen, Hussong, 
Kaplan, Li, ‘17



Blocks from Wilson Lines

AdS3 gravity Chern-Simons description: ,

Verlinde ’89
ALF, Kaplan, Li, Wang ’16

+many others

Blocks from Wilson Lines:



Bulk
Reconstruction



Bulk Reconstruction
Take one end into bulk

Physically: like " attached to 
boundary with WL

We want to construct an exact definition of "

Basic strategy: 1) reconstruct " from # in fixed background 
metric

2) Then, promote T to operator



Bulk Reconstruction

In terms of Wilson line: line goes 
straight toward boundary along y 

direction, then along boundary to z=0

We will use Fefferman-Graham gauge for vacuum metric:

For practical purposes, we will develop an algebraic definition of " 



Algebraic Definition of "

   is an exact relation for the 
bulk to boundary propagator

Let’s do a warm-up: 
reconstruction of " in the bulk in a free AdS theory. 

 This fixes the contribution to " from all “global” descendants of #

translation generators, 
the simplest elements of the conformal algebra

Metric:



Algebraic Definition of "

translation generators

Substituting into the LHS of  

and demanding that we reproduce the RHS fixes



Algebraic Definition of "

This fixes the contribution to " from the entire Virasoro irrep of #

some specific combination of Virasoro generators

                                                   from the T-dependent coord 
transformation between Fff-Graham metric and pure AdS
We know

Same basic idea let’s us fix contributions from all Virasoro 
descendants of #: 

for example:



Algebraic Definition of "

There is a unique extension of boundary conf txn into the 
bulk that preserves Fefferman-Graham gauge

This plus normalization condition fixes "

Equivalent algebraic definition of " from thinking about 
how it transforms under Virasoro

Easy to check that                                         for all m ≥ 2



“Vacuum sector” Correlators
This definition of " correctly reproduces all bulk correlators of the form 

�(y, 0, 0)

O(z, z̄)

T (z1)

E.g. 

matches Witten diagram computation

(any number of     ,     ’s)



Let’s Compute Stuff
There are several available techniques for computing 

correlators of "
“projectors” aka “Brute force”

Recursion relations
Monodromy method 
Degenerate Operators

Uniformizing coordinates

For example: and

“Two bulk fields approach 
each other” (bulk locality?)

“Bulk field near 
a horizon”

Exact

Large c



Exact ⟨" "⟩
We want to compute ⟨" "⟩

To get our bearings: recall tree-level result in AdS3

geodesic distance
Flat-space limit:



Exact ⟨" "⟩
The exact ⟨" "⟩ is the propagator dressed by gravitons

⟨" "⟩

" "

But does not include " loops 



Will consider various 
limits

the limit of very massive fields.
Also a necessary input to a recursion relation

the limit of massless phi
We will see the breakdown of bulk locality in the exact 

answer

fixed, large c - like taking GN to zero with fixed 
Newtonian force

Simplest limit to see exponentiation in action

1)

2)

3)

large Δ -

small Δ -



Brute Force Computation
Most straightforward in principle, also the most work

Sum can be done to any order in y



Holomorphic Case
In the following slides, I’ll actually be computing a 

“holomorphic” version                        where drop all anti-
holomorphic Ts in "

2) It is possible to extract the full result from just the holomorphic parts, so 
in a sense it’s the “hard” part of the numeric computation

Why?
1) It’s easier to do analytically - results are more transparent and 

under better control

3) From numeric exploration, it doesn’t appear to be very different from 
the full two-point function



“Semiclassical” pieces
At large c with Δ/c fixed, 

f is like a “semiclassical action” piece

f can be computed with Zamolodchikov “monodromy 
method”

~

(imagine a gravity action)



Semiclassical h2/c piece

geodesic distance

At large c with Δ/c fixed, 

Example of semi-classical piece — can 
compute order-by-order in Δ/c: 

singular at !=1, ie at σ=0



At large Δ/c we can go farther and get the exact result:

Branch cut at s=1

large Δ limit



Δ~0 limit
⟨" "⟩ also simplifies somewhat in massless case

This is an asymptotic series 

Looks like an expansion in c σ4

non-perturbative ambiguity ~

A fundamental scale in gravity at c-1/4 ?? 



c1/4 and AdS3 string 
compactifications

The scale c1/4  also shows up as the smallest string length in 
known stable AdS3 compactifications

E.g. AdS3 x S3 x T4

Smallest one can make the radius of T is ~ 



c1/4 and strings

Possible interpretations:

The scale c1/4  also shows up as the smallest string length in 
known stable AdS3 compactifications

— Coincidence? Could be
After all, " isn’t completely local (due to gauge-fixing)

— Fundamental breakdown of spacetime 
locality at this scale, prevents string length 

from being smaller?



Summary
Huge amount of information about gravity is contained in 

CFT2 irreps

This includes BH thermodynamics, information paradox, many 
non-perturbative              corrections

These corrections are computable and in some cases ameliorate 
or even resolve unitarity issues at infinite c

These techniques can be applied to bulk fields
In progress: what do they tell us about bulk physics near horizon?



The End


