Information Loss and Bulk Reconstruction in AdS₃/CFT₂

Liam Fitzpatrick Boston University

in collaboration with Anand, Chen, Kaplan, Li, Walters

So studying CFTs teaches us about gravity, and vice versa!

CFTs and Quantum Gravity

What can we learn about black hole dynamics?

Hawking radiation: Semi-classical limit says black holes have a

temperature.

But if this is exactly true, then information is lost! Not consistent with Quantum Mechanics. Can we understand "pure" states mimicking a thermal states?

CFTs and Quantum Gravity

Goals:

1) Understand how information gets out - need a pure quantum state that looks like a thermal state

2) Harder: understand what black hole looks like just outside horizon, how is this consistent with pure state

The isometries of AdS are in one-toone correspondence with the generators of the conformal group

CFT Scaling AdS Energy Dimension HAdS LCFT CFT "Dilatation" **AdS Hamiltonian** Generates scaling Generates time SENATOR evolution $D_{\rm CFT}$ H_{AdS}

Large C Expansion

Consider large CFT central charge : essentially, large number of degrees of freedom. Like a classical limit.

Brown, Henneaux, '86

$$c = \frac{3\ell_{\rm AdS}}{2G_N}$$

"Semi-classical" gravity limit

"Perturbative" corrections ~ $\frac{1}{c^n}$ "Non-perturbative" corrections ~ e^{-c}

Some Motivation

Want to be able to calculate how information escapes from black hole, hidden in non-perturbative effects

E.g.: - late-time decay of correlators, - physics near and across horizons.

In AdS₃/CFT₂, many non-perturbative effects are controlled by conformal symmetry; we want to calculate them.

Algebraic Gravity

Power of AdS₃/CFT₂: gravitons are algebraic

Algebra knows about General Relativity!

Focusing on 2d

Useful toy model: conformal symmetry is much bigger! AdS₃: no gravity waves, but there are still black holes.

Some other toy models:

2d QCD at large N: the gluon has no DOFs, and the theory is solvable.

<image>

Lego ATLAS

Operators

In conformal theories, a key role is played by "operators", which can be any local observable

Simple Example: density operator ho(x)

We study correlation functions among operators

$$\begin{array}{c|c} \langle \rho(x) \rho(y) \rho(z) \rangle \\ \underline{\rho(x)} \rho(y) \rho(z) \\ \hline 0.13 & 0.04 & 1.04 \\ 0.22 & 0.19 & 0.42 \\ \dots & \dots & \dots \end{array}$$

Operators and States

Every operator creates a unique state, and vice versa:

$$\rho(x)|0\rangle \leftrightarrow |\rho\rangle$$

By "measuring" ho, we perturb the vacuum and put it in a new state. ho(x)

Multiple Operators Start with insertion of two operators

Decompose into a convenient basis at a fixed radius. E.g. Spherical harmonics Quantum: Decompose wavefunction $\psi(\theta, \phi) = \sum c_{\ell,m} Y_{\ell,m}(\theta, \phi)$

Conformal Irreps

"OPE blocks" = contribution to OPE from a single irrep

OPE block is an operator (can be evaluated in any state)

"Vacuum OPE block": $[\mathcal{O}(z_1)\mathcal{O}(z_2)]_{\text{vac}} = \sum_n C_{\mathcal{O}\mathcal{O}T^n}(z_1, z_2)T^n(z_2)$ $\alpha = 1, T, T^2, \dots$

Large c and "Heavy" states

How do we get interesting effects in gravity at $G_N \rightarrow 0$? Keep $G_N M \sim R$ fixed

Heavy state $|\psi\rangle$: $\frac{h_{\psi}}{c}$ fixed, $c \to \infty$

"BH microstate": $G_N \leftrightarrow \frac{1}{c}$ $M_{\psi} \leftrightarrow h_{\psi}$ $\frac{h_{\psi}}{c} \leftrightarrow G_N M_{\psi} \sim R_S$ Fixed geometry

Large c and "Heavy"

Example: a heavy primary state $|\psi\rangle$

OPE block at large c: $\langle \psi | [\mathcal{O}(z_1)\mathcal{O}(z_2)]_{\text{vac}} | \psi \rangle = \left(\frac{1}{\sinh(\pi T_{\psi} t)}\right)^{h_{\mathcal{O}}} + \mathcal{O}(\frac{1}{c})$ Exactly thermal!

~Eigenstate Thermalization

 $|\psi\rangle$

$$= \underbrace{I_{\psi} = \frac{1}{2\pi} \sqrt{\frac{24h_{\psi}}{c} - 1}}_{t \to \infty} \left(\frac{1}{\sinh(\pi T_{\psi} t)} \right)^{h_{\mathcal{O}}} e^{-\pi h_L T_{\psi} t}$$

Info loss at large c

All blocks decay semiclassically

All blocks decay at same rate at late time in semiclassical limit Can't resolve info loss by including just a few heavy states semiclassically

Exact Numeric Behavior

In the exact block, late-time exponential decay becomes

power-law $t^{-3/2}$ at $t \ge c$

Euclidean time periodicity and forbidden singularities

Periodic in Euclidean time (KMS condition):

If a singular it gets repeated again and again event occurs... for a thermal background

• • •

But the black hole is really a *pure* state not a thermal state, so this can't be true exactly

Blocks from Wilson Lines

AdS₃ gravity Chern-Simons description: e^a_{μ} , $\omega^{ab}_{\mu} \longrightarrow A_{\mu}$

Bulk Reconstruction

Bulk Reconstruction

Take one end into bulk

Physically: like ϕ attached to boundary with WL

$$\phi \mathcal{O} \sim P e^{\int_{z_1}^{(z_2, y_2)} dz A_z}$$

We want to construct an exact definition of ϕ

Basic strategy: 1) reconstruct ϕ from \mathcal{O} in fixed background metric

2) Then, promote T to operator

Bulk Reconstruction

We will use Fefferman-Graham gauge for vacuum metric:

$$ds^{2} = \frac{dy^{2} + dzd\bar{z}}{y^{2}} - \frac{6T(z)}{c}dz^{2} - \frac{6\bar{T}(\bar{z})}{c}d\bar{z}^{2} + y^{2}\frac{36T(z)\bar{T}(\bar{z})}{c^{2}}dzd\bar{z}$$

In terms of Wilson line: line goes straight toward boundary along y direction, then along boundary to z=0

For practical purposes, we will develop an algebraic definition of ϕ

Algebraic Definition of ϕ

Let's do a warm-up:

reconstruction of ϕ in the bulk in a free AdS theory.

Metric:
$$ds^2 = \frac{dy^2 + dz d\bar{z}}{y^2}$$

 $\langle \phi \mathcal{O} \rangle_{\text{vac}} = \left(\frac{y}{y^2 + z\bar{z}} \right)^{\Delta}$ is an exact relation for the bulk to boundary propagator

This fixes the contribution to ϕ from all "global" descendants of \mathcal{O}

$$\phi(y,0) = \sum_{n} \lambda_{n} y^{\Delta+2n} (L_{-1}\bar{L}_{-1})^{n} \mathcal{O}(0)$$

translation generators,
the simplest elements of the conformal algebra

Algebraic Definition of ϕ $\phi(y,0) = \sum_{n} \lambda_n y^{\Delta+2n} (L_{-1}\bar{L}_{-1})^n \mathcal{O}(0)$ translation generators

Substituting into the LHS of $\langle \phi \mathcal{O} \rangle_{\text{vac}} = \left(\frac{y}{y^2 + z\bar{z}}\right)^{\Delta}$

and demanding that we reproduce the RHS fixes

$$\lambda_N = \frac{(-1)^N}{N!(\Delta)_N}$$

Algebraic Definition of ϕ

Same basic idea let's us fix contributions from all Virasoro descendants of *O*:

We know $\langle \phi \mathcal{O} \rangle_T = \left(\frac{y'}{y'^2 + z'\bar{z}'} \right)^{\Delta}$ from the *T-dependent* coord transformation between Fff-Graham metric and pure AdS

This fixes the contribution to ϕ from the entire Virasoro irrep of \mathcal{O}

$$\phi(y,0) = \sum_{n} \lambda_n y^{\Delta+2n} (\mathcal{L}_{n} \overline{\mathcal{L}}_{-n}) \mathcal{O}(0)$$
some specific combination of Virasoro generators

for example:
$$\mathcal{L}_{-2} = \frac{(2h+1)(c+8h)}{(2h+1)c+2h(8h-5)} \left(L_{-1}^2 - \frac{12h}{c+8h} L_{-2} \right)$$

Algebraic Definition of ϕ

Equivalent algebraic definition of ϕ from thinking about how it transforms under Virasoro

$$L_m\phi = ((\delta_m y)\partial_y + (\delta_m z)\partial_z + (\delta_m \bar{z})\partial_{\bar{z}})\phi$$

There is a unique extension of boundary conf txn into the bulk that preserves Fefferman-Graham gauge

Easy to check that $\ \delta_m y = 0, \delta_m z = 0 \ \ \text{for all } m \ge 2$

$$L_m \phi = 0 \qquad m \ge 2$$

This plus normalization condition fixes ϕ

"Vacuum sector" Correlators

This definition of ϕ correctly reproduces all bulk correlators of the form

matches Witten diagram computation

Let's Compute Stuff

There are several available techniques for computing correlators of ϕ

"projectors" aka "Brute force" } Recursion relations Exact Monodromy method Degenerate Operators Uniformizing coordinates Large c For example: $\langle \phi \phi \rangle$ and $\langle \psi | \phi \mathcal{O} | \psi \rangle$ "Bulk field near "Two bulk fields approach each other" (bulk locality?) a horizon"

Exact $\langle \phi \phi \rangle$

We want to compute $\langle \phi \phi \rangle$

To get our bearings: recall tree-level result in AdS₃

$$\langle \phi(X_1)\phi(X_2)\rangle = \frac{1}{\ell_{\text{AdS}}} \frac{\rho^{\frac{\Delta}{2}}}{1-\rho}$$

$$\rho = e^{-\frac{2\sigma(X_1, X_2)}{\ell_{\mathrm{AdS}}}}$$

geodesic distance

Flat-space limit:
$$\Delta \to m \ell_{AdS}$$

 $\sigma \to r r$
 $1 - \rho \to 2 \frac{r}{\ell_{AdS}}$ $\langle \phi \phi \rangle \approx \frac{e^{-mr}}{r}$

Exact $\langle \phi \phi \rangle$

The exact $\langle \phi \phi \rangle$ is the propagator dressed by gravitons

But does not include ϕ loops

Will consider various limits

1) $\frac{\Delta^2}{c}$ fixed, large c - like taking G_N to zero with fixed Newtonian force $\frac{G_N m_1 m_2}{r}$ Simplest limit to see exponentiation in action

2) large Δ - the limit of very massive fields. Also a necessary input to a recursion relation

3) small Δ - the limit of massless phi We will see the breakdown of bulk locality in the exact answer

Brute Force Computation

Most straightforward in principle, also the most work

$$\langle \phi(X_1)\phi(X_2)\rangle = \sum_{n,m} \lambda_n \lambda_m y_1^{\Delta+2n} y_2^{\Delta+2m} \langle (\mathcal{L}_{-n}\bar{\mathcal{L}}_{-n}\mathcal{O}(z_1))(\mathcal{L}_{-m}\bar{\mathcal{L}}_{-m}\mathcal{O}(z_2))\rangle$$

Sum can be done to any order in y

Holomorphic Case

In the following slides, I'll actually be computing a "holomorphic" version $\langle \phi \phi \rangle_{holo}$ where drop all antiholomorphic Ts in ϕ

Why?

1) It's easier to do analytically - results are more transparent and under better control

2) It is possible to extract the full result from just the holomorphic parts, so in a sense it's the "hard" part of the numeric computation

3) From numeric exploration, it doesn't appear to be very different from the full two-point function

"Semiclassical" pieces

At large c with Δ/c fixed, $\langle \phi(X)\phi(Y)\rangle \sim e^{cf(X,Y)}$

 $\langle \psi | [\phi(X)\mathcal{O}(z)] | \psi \rangle \sim e^{cf(X,z)}$

f is like a "semiclassical action" piece

(imagine a gravity action)

$$\sim e^{\frac{1}{G_N} \int d^d x \sqrt{g} R} \qquad \frac{1}{G_N} \sim c$$

f can be computed with Zamolodchikov "monodromy method"

Semiclassical h²/c piece

At large c with Δ/c fixed,

 $\begin{array}{l} \left< \phi \phi \right> \sim e^{cf(\rho;\frac{\Delta}{c})} \\ \rho \equiv e^{-2\sigma} \\ \text{geodesic distance} \end{array} \end{array}$

Example of semi-classical piece — can compute order-by-order in Δ/c :

$$cf(\rho) = \Delta \log \rho + \frac{3\Delta^2}{c} \left(\frac{\rho}{(1-\rho)^2} + \log(1-\rho)\right) + \mathcal{O}(\frac{\Delta^3}{c^2})$$

singular at ρ =1, ie at σ =0

large Δ limit

At large Δ/c we can go farther and get the exact result:

$$\begin{split} \langle \phi \phi \rangle &= q^{\frac{\Delta}{2} - \frac{c-1}{24}} \left(\frac{s}{8}\right)^{\frac{c-1}{12}} (1-s)^{\frac{c-13}{144}} \left(\frac{2E(s)}{\pi}\right)^{\frac{19-7c}{36}} \\ q &= 4e^{2\pi \frac{E(1-s)-K(1-s)}{E(s)} - 4} & \frac{s}{2(2-s)} = \frac{2\sqrt{\rho}}{1+\rho} \\ \text{Branch cut at } s = 1 & \sigma(X,Y) = 1.3\ell_{\text{AdS}} \end{split}$$

$\Delta \sim 0$ limit

 $\langle \phi \; \phi \rangle$ also simplifies somewhat in massless case

$$\left\langle \phi \phi \right\rangle \stackrel{\sigma \sim 0}{\sim} \frac{1}{2\sigma} \left(\sum_{n=0}^{\infty} \frac{(4n-1)!!}{n!} \left(\frac{3}{4 \ c \ \sigma^4} \right)^n \right)$$

Looks like an expansion in c σ^4

This is an asymptotic series \longrightarrow non-perturbative ambiguity ~ $e^{-c\sigma^4}$ A fundamental scale in gravity at c^{-1/4}??

c^{1/4} and AdS₃ string compactifications

The scale c^{1/4} also shows up as the smallest string length in known stable AdS₃ compactifications

E.g. $AdS_3 \times S^3 \times T^4$

Smallest one can make the radius of T is ~ ℓ_s

$$\longrightarrow \ell_{\rm pl,3d} \ell_{\rm AdS}^3 \ell_s^4 = \ell_{\rm pl,10d}^8 \lesssim \ell_s^8$$
$$\longrightarrow \frac{\ell_s}{\ell_{\rm AdS}} \gtrsim \left(\frac{\ell_{\rm pl,3d}}{\ell_{\rm AdS}}\right)^{1/4} \sim c^{-1/4}$$

c^{1/4} and strings

The scale c^{1/4} also shows up as the smallest string length in known stable AdS₃ compactifications

$$\ell_s \gtrsim c^{-1/4}$$

Possible interpretations:

— Coincidence? Could be After all, ϕ isn't completely local (due to gauge-fixing)

— Fundamental breakdown of spacetime locality at this scale, prevents string length from being smaller?

Summary

Huge amount of information about gravity is contained in CFT₂ irreps

This includes BH thermodynamics, information paradox, many non-perturbative $e^{-\frac{1}{G_N}}$ corrections These corrections are computable and in some cases ameliorate or even resolve unitarity issues at infinite c

These techniques can be applied to bulk fields In progress: what do they tell us about bulk physics near horizon?

The End